LEDs und andere künstliche Lichtquellen Auf künstliche Lichtquellen - seien es Energiesparlampen (Kompaktleuchtstofflampen), Halogenlampen, Glühlampen oder LEDs (Licht emittierende Dioden) – möchte im Alltag wohl niemand verzichten. "Mach doch mal das Licht an" Wir legen einen Schalter um oder drücken auf einen Knopf und schon ist es da, das Licht, das unsere Wohn- und Arbeitswelten erhellt. Aber wie funktioniert das? Glühlampen und Halogenlampen Glühlampen und Halogenlampen sind sogenannte Temperaturstrahler. Licht entsteht, indem ein Metalldraht erhitzt und zum Glühen gebracht wird. Der größte Teil der zugeführten Energie geht dabei allerdings als Wärme verloren. Das macht diesen Lampentyp ineffizient. Leuchtstofflampen Leuchtstofflampen gibt es in Röhrenform (Leuchtstoffröhre) oder sozusagen "aufgewickelt" als Kompaktleuchtstofflampe (Energiesparlampe). Wird die Lampe angeschaltet, wird ein darin befindliches Gas angeregt. Bei dieser Anregung entsteht UV -Strahlung. An der Innenseite des Lampenrohres aufgebrachte Leuchtstoffe machen dann aus der energiereichen UV -Strahlung energieärmeres, sichtbares, "weißes" Licht. Licht emittierende Dioden (LEDs) LEDs sind vergleichsweise neu auf dem Markt. Nicht zuletzt aufgrund der Anforderungen an die Energieeffizienz und wegen ihrer vielseitigen Verwendbarkeit nimmt ihr Marktanteil zu. LEDs sind kleine Halbleiter-Bauelemente. Da sie grundsätzlich nahezu einfarbiges (also z.B. blaues, gelbes, rotes) Licht abgeben, muss man Tricks anwenden, um weißes Licht zu erzeugen, das sich aus einem Gemisch verschiedener Wellenlängen zusammensetzt. 1. Photolumineszenz Über einer blauen LED wird eine dünne Schicht aus Phosphorverbindungen aufgetragen. Das energiereiche blaue Licht der LED regt die Phosphorschicht zum Leuchten an. Ein Teil des blauen Lichts wird dabei in energieärmeres Licht mit größeren Wellenlängen ( z.B. Gelb) umgewandelt. Das entstehende Gemisch aus verschiedenen Wellenlängen wird als weißes Licht wahrgenommen. Je nach Art und Dosierung der Phosphorverbindungen kann der verbleibende Anteil des von einer LED abgestrahlten blauen Lichts größer oder kleiner sein. Bei Lampen der Allgemeinbeleuchtung ist Photolumineszenz die übliche Methode zur Erzeugung von Weißlicht. 2. Additive Farbmischung In diesem Fall entsteht weißes Licht durch die Kombination von einfarbigen roten, grünen und blauen LEDs. Durch gezielte Ansteuerung der einzelnen LEDs kann neben weißem Licht auch farbiges Licht erzeugt werden. Dieses Verfahren wird zum Beispiel bei Fernsehern angewendet, bei denen LEDs zur Bilddarstellung und zur Hintergrundbeleuchtung eingesetzt werden oder bei Bühnenbeleuchtung. Für Massenprodukte wie Haushaltslampen ist es nicht üblich. Spektren künstlicher Lichtquellen Das Spektrum einer Lichtquelle zeigt, welche Anteile die verschiedenen Farben (Wellenlängen) am abgestrahlten "weißen" Licht haben, beispielsweise wie hoch der Anteil von energiereichem violettem und blauem Licht ist. Wie Wellenlänge und Farbe zusammenhängen, ist in dem Artikel Was versteht man unter sichtbarem Licht? dargestellt. Gegenüberstellung der Spektren unterschiedlicher Lampen mit gleicher Farbtemperatur 2700 Kelvin = warmweiß. LED (farbig hinterlegt), Glühlampe (graue Linie), Kompaktleuchtstofflampe (gestrichelte schwarze Linie). Die Spektren künstlicher Lichtquellen unterscheiden sich deutlich. Bei Temperaturstrahlern wie der Glühlampe ist das Spektrum wie bei der Sonne kontinuierlich, steigt allerdings ins Langwellige, d.h. nach Rot an. Bei Leuchtstofflampen ist das Spektrum dagegen nicht kontinuierlich, sondern durch schmale Spektralbänder gekennzeichnet. Wie diese „Zacken“ aussehen, hängt von den jeweils verwendeten Leuchtstoffen ab (siehe Abbildung 1). Die Vielfalt der LEDs spiegelt sich in den Spektren wider. Der Blaulichtanteil von LEDs kann höher oder niedriger sein (siehe Abbildung 2). Abb. 2 Spektren handelsüblicher LED-Lampen für die Allgemein-beleuchtung mit unterschiedlichen Farbtemperaturen. 2700 K (Warmweiß, farbig unterlegt), 3000 K (Warmweiß), 4000 K (Neutralweiß) und 6000 K (Tageslichtweiß, auch „Kaltweiß“ genannt). Quelle: BfS Grundsätzlich gilt: Je höher die Farbtemperatur in Kelvin (K), desto höher der Blaulichtanteil. Wer den Blaulichtanteil niedriger halten möchte, kann eine Lampe mit warmweißem Licht wählen (siehe Empfehlungen für gute Beleuchtung ). Informationen zu den Wirkungen von Blaulicht und weiteren Wirkungen von sichtbarem Licht finden Sie in dem Artikel Wirkungen des Lichts . Sicherheit von Lampen und Lampensystemen Die photobiologische Sicherheit von Lampen und Lampensystemen liegt in der Verantwortung der Hersteller. Bei der Beurteilung der Sicherheit ziehen die Hersteller in der Regel einschlägige Normen heran. Betrachtet werden dabei nicht nur Wirkungen des sichtbaren Lichts, sondern auch mögliche Risiken durch UV -Strahlung oder Wärmestrahlung (Infrarot). Weitere Informationen zur photobiologischen Sicherheit von Lampen und Lampensystemen sowie zur Einordnung in Risikogruppen finden Sie in dem Artikel Schutz bei sichtbarem Licht . Lichtflimmern ("Flicker") Eine Eigenschaft künstlicher Lichtquellen, die als unangenehm empfunden werden kann, ist das "Lichtflimmern". Darunter versteht man Schwankungen der Helligkeit des Lichts. Die Hauptursache dieser Schwankungen liegt darin, dass künstliche Lichtquellen mit Wechselstrom betrieben werden. Ändert sich die Stromstärke, wie das bei Wechselstrom mit einer Frequenz von 50 Hz der Fall ist, ändert sich die Helligkeit 100 mal pro Sekunde. Anders als Glühlampen reagieren Kompaktleuchtstofflampen und LEDs schnell auf diese Stromstärkeschwankungen. was sich als Flimmern bemerkbar machen kann. Das Flimmern kann bis maximal 100 Hz bewusst wahrgenommen werden. Oberhalb dieser Frequenz kann das Auge die Helligkeitsänderungen nicht mehr auflösen und das Licht wird als gleichmäßig wahrgenommen. Allerdings gibt es auch Berichte über Beschwerden wie Kopf- oder Augenschmerzen oberhalb dieser sogenannten Flimmerverschmelzungsfrequenz. Um Flimmern zu vermeiden, muss mit Hilfe eines Vorschaltgerätes dafür gesorgt werden, dass die Lichtquelle für einen kurzen Zeitraum konstant mit Strom versorgt wird. Wie gut das gelingt, ist nicht zuletzt eine Qualitätsfrage. Weitere Informationen dazu finden Sie in dem Artikel Lichtflimmern und Stroboskopeffekte - allgemein: Temporal Light Artefacts (TLA) Stand: 07.10.2025
<p>Altglas richtig trennen und entsorgen</p><p>Wie Sie Altglas richtig trennen und entsorgen</p><p><ul><li>Entsorgen Sie Altglasbehälter im Altglas-Container.</li><li>Achten Sie auf die korrekte Trennung von Weiß-, Grün- und Braunglas.</li><li>Noch besser: Verwenden Sie Mehrweg-Behälter.</li></ul></p><p>Gewusst wie</p><p>Der Einsatz von Altglas in der Produktion von neuem Glas verringert den Primärrohstoff- und Energieverbrauch, die Wasser- und Luftbelastung deutlich. Beispielsweise sinkt der Bedarf an Schmelzenergie um bis zu 3 % pro 10 % Scherbeneinsatz. Außerdem wird hierdurch eine Deponierung von Altglas überflüssig.</p><p><strong>Im Altglas-Container entsorgen:</strong> Altglas-Container finden sich in Deutschland fast immer in fußläufiger Entfernung von Wohnungen. Sparen Sie sich deshalb zusätzliche Spritkosten durch einen Transport mit dem Auto. Bringen Sie das Altglas zu Fuß oder per Fahrrad zum Container. Wenn Sie Schraubdeckel entfernen, vermindert sich zudem der Ausschuss des nicht nutzbaren Altglases. In den Altglas-Container gehört nur sogenanntes Behälterglas (Flaschen, Konservengläser, etc.). Auf keinen Fall dürfen Porzellan und Keramik, Bleikristallgläser und andere Trinkgläser sowie temperaturbeständiges Glas (z.B. Mikrowellen- oder Backofengeschirr) in den Altglas-Container. Sie gehören in den Restmüll, wie auch Fenster- und Spiegelglas. Leuchtmittel (Energiesparlampen, LEDs) müssen gesondert über Sammelboxen oder Wertstoffhöfe entsorgt werden.</p><p><strong>Die richtige Farbwahl:</strong> Je sortenreiner die gesammelten Glasfarben, desto mehr Altglas kann in der Neuproduktion eingesetzt werden. Bei farblichen "Verunreinigungen" entstehen sonst vom Verbraucher nicht gewollte "Zwischentöne". Achten Sie deshalb auf das farblich richtige Einwurfloch. Im Zweifelsfall (z.B. weiß-grün oder blau) verwenden Sie den Container für Grünglas.</p><p><strong>Mehrweg – der bessere Weg:</strong> Auch wenn aus Altglas neue Glasverpackungen erzeugt werden können, sind Mehrweg-Verpackungen Glas-Einwegverpackungen vorzuziehen. Glas-<a href="https://www.umweltbundesamt.de/umwelttipps-fuer-den-alltag/essen-trinken/mehrwegflaschen">Mehrwegflaschen</a> können z.B. über 40-mal wiederbefüllt werden. Einweg-Glasverpackungen haben wegen ihres hohen Gewichtes auch im Vergleich zu anderen Einwegverpackungen wie Karton oder Plastik eine schlechtere Ökobilanz.</p><p><strong>Was Sie noch tun können:</strong></p><p>Hintergrund</p><p>Glas kann grundsätzlich beliebig oft geschmolzen und zu neuen Produkten verarbeitet werden. Da Altglas bei niedrigeren Temperaturen als die zur Glasherstellung erforderlichen Rohstoffe schmilzt, verringert sich je Prozentpunkt Scherbenzugabe der Energiebedarf um etwa 0,3 %. Altglasrecycling verringert somit die mit dem Glasschmelzprozess verbundenen Umweltbelastungen (z.B. CO2-Emissionen) und schont Deponieraum für Abfälle. Die Einsparung von Rohstoffen (unter anderem Quarzsand, Soda, Kalk) reduziert ebenfalls Umweltbelastungen.</p><p>Seit Beginn der Altglassammlung Anfang der 1970er-Jahre hat sich der Anteil von Altglas bei der Glasherstellung kontinuierlich gesteigert. Ab 01.01.1996 sah die Verpackungsverordnung für Glas eine jährliche Recyclingquote von mindestens 70 %, seit 01.01.1999 von mindestens 75 % vor. Das Verpackungsgesetz sieht seit dem 1.1.2019 vor, dass 80 % des in Verkehr gebrachten Glases zur Wiederverwendung vorbereitet oder recycelt werden müssen. Ab dem 01.01.20022 stieg die Quote sogar auf 90 %. Die Sammelquote ist von 78,8 % (1996) auf den Maximalwert von 91,2 % (2004) gestiegen, dann allerdings wieder auf 82,5 % (2009) gesunken (UBA 2012). Im Jahr 2022 lag die Quote bei 80,1 % (UBA 2024).</p><p>In Deutschland wurden 2024 insgesamt 6,686 Millionen Tonnen (Mio. t) Glas und Mineralfasern hergestellt. Zu den Hauptproduktgruppen zählten Behälterglas mit etwa 3,788 Mio. t und Flachglas mit 1,794 Mio. t. Behälterglas wird insbesondere im Lebensmittel- und Getränkehandel zum Warenverkauf eingesetzt (Getränke, Joghurt etc.).</p><p>Weitere Informationen finden Sie unter:</p><p><strong>Quellen:</strong></p>
Energiesparmaßnahmen beginnen mit einfachen Dingen wie dem richtigen Heizen und Lüften oder dem Vermeiden eines ständigen Stand-By-Betriebes von Elektro- und Heimelektronikgeräten. Schon durch geringfügige Investitionen wie z.B. selbstklebendes Dichtungsband für undichte Fenster und Türen oder den Einsatz von LED- oder Energiesparlampen können die Kosten und der Energieverbrauch gesenkt werden. Hausbesitzer können darüber hinaus weitere Energiekosten sparen, z.B. durch eine Heizungsmodernisierung, den Austausch der alten Pumpe oder eine bessere Wärmedämmung. Die Inanspruchnahme qualifizierter Energieberatung hilft Ihnen dabei, Energieeinsparpotentiale aufzudecken und Ihre Energiekosten zu senken. Sie bekommen z.B. Unterstützung bei der Planung und Durchführung von energetischen Sanierungsmaßnahmen oder beim Neubau auf hohem energetischem Niveau bei der Nachweisführung im Rahmen der Energieeinsparverordnung (EnEV) bei der Beratung zur Inanspruchnahme der staatlichen Förderung wie z.B. Zuschüsse und vergünstigte Kredite sowie bei der bei der konkreten Beantragung von Fördermitteln. "Energieberater" ist keine geschützte Berufsbezeichnung. Handwerker und Schornsteinfeger, Techniker, Ingenieure und Architekten haben die Möglichkeit, sich entsprechend weiterzubilden. Verschiedene nachgewiesene Zulassungen, Qualifikationen, Zertifizierungen und Listeneintragungen erlauben also, einen anerkannten Energieberater zu finden. Eine Zulassung durch das BAfA (Bundesamt für Wirtschaft und Ausfuhrkontrolle) bedeutet beispielsweise, dass die notwendigen Fachkenntnisse nachgewiesen sind und kein wirtschaftliches Eigeninteresse an Investitionsentscheidungen des Beratenen besteht. Im Energieatlas Sachsen-Anhalt finden Sie eine Übersicht von Energieberatern in Ihrer Nähe. Für die qualitätsgesicherte Inanspruchnahme und Abwicklung der Förderprogramme „Vor-Ort-Beratung“ (BAfA) und „Energieeffizient Bauen und Sanieren“ (KfW, Kreditanstalt für Wiederaufbau) sollte auf die Liste der Energieeffizienz-Experten der Deutschen Energieagentur (dena) zurückgegriffen werden. Durch diese bundesweit gültige und berufsständisch übergreifende Liste ist es leichter geworden, einen geeigneten Experten für die genannten Förderprogramme zu finden. Ab dem 01.06.2014 müssen Sachverständige in der Energieeffizienz-Expertenliste für die Förderprogramme des Bundes eingetragen sein, um bei der KfW eine Bestätigung zum Antrag oder einen Online-Antrag in den Förderprodukten Energieeffizient Bauen (153) und Sanieren (151, 152, 430) erstellen zu können.
Die integrierte Sekundarschule mit gymnasialer Oberstufe in Wilmersdorf ist nach dem Zukunftsforscher Robert Jungk benannt, welcher 1986 für seinen Einsatz für die Umwelt den alternativen Nobelpreis (Right Livelihood Award) erhielt. Durch ihr aktives Engagement im Klima- und Umweltschutz ehrt die Schule ihren Namensgeber im gesamten Schulalltag. Biodiversität auf dem Schulgelände Mit zahlreichen Maßnahmen auf dem Schulgelände leistet die Robert-Jungk-Oberschule einen dezidierten Beitrag zur Artenvielfalt im urbanen Raum Berlins. Der Schulgarten umfasst eine Ackerfläche, einen Teich, einen Bienengarten und eine Imkerei. Vögel und Insekten finden auf dem Gelände Schutzräume, Nahrung sowie Nisthilfen und -plätze. Die Schule verfügt zudem über ein autarkes Regenwasser-Versickerungssystem. So wird das kostbare Regenwasser nicht in die Kanalisation geleitet, sondern effektiv genutzt. Die Schülerinnen und Schüler bewirtschaften den Garten unter Anleitung in Eigenregie und betreiben ebenfalls die schuleigene Imkerei. Diese bietet nicht nur hochwertigen Honig an, sondern ebenfalls selbst hergestellte Seifen, Kerzen und Salben. Der Schulgarten wird permanent weiterentwickelt und erweitert. Wissen ist Macht! Dieser Grundsatz gilt insbesondere in der Bildung für nachhaltige Entwicklung (BNE). Die Wilmersdorfer Schule führt regelmäßige Klimaschutz-Projektwochen durch. In den AGs Nachhaltigkeit, Schulimkerei und Schulgarten haben die Lernenden die Möglichkeit, sich intensiv mit dem Umweltschutz in der Praxis auseinandersetzen. Die Schule plant zudem die zukünftige Haltung von Schulhühnern, um dieses Angebot weiter zu vertiefen. Das Unterrichtskonzept „Natur und Draußen“ ermuntert Schülerinnen und Schüler, sich als Teil der Umwelt zu betrachten und diese zu schützen. Der geplante Bau eines offenen Klassenzimmers soll dies weiter unterstützen. Abfallvermeidung und -trennung ist einer der Hauptbestandteile nachhaltiger und umweltschonender Lebensweisen. In der Robert-Jungk-Oberschule liegt deshalb ein besonderes Augenmerk auf ein effektives und transparentes Abfallmanagement, welches die Schülerinnen und Schüler für die Thematik sensibilisiert. So führte die Schulmensa etwa ein Mehrwegsystem ein. Zudem können nachhaltige Trinkflaschen erworben werden. Klamotten-Tausch-Partys sowie eine Kunstkampagne zur Abschaffung von Einwegverpackungen schärft das Bewusstsein der Lernenden für das Thema der Abfallvermeidung. Die Einführung eines schulweiten stringenten Abfalltrennungssystems ist geplant. Ein Teil des Energiebedarfs der Schule wird von einer Solaranlage geliefert. Nach einem Energierundgang mit Experten arbeitet die UNESCO-Projektschule sukzessive daran, den Energiebedarf des Gebäudes im Sinne der Nachhaltigkeit mit diversen Maßnahmen zu reduzieren. So wurde bereits ein stromsparendes Beleuchtungssystem installiert. Die Flure des Gebäudes werden zudem mit Energiesparlampen beleuchtet. Geplant ist weiterhin die Optimierung des Heiz-Managements sowie der Austausch der Leuchtmittel in den Klassenräumen mit Energiesparlampen. Einsatz neuer Technik | Regenerative Energien | Abfallvermeidung | Abfalltrennung | Schulgarten | Heiz-Management | Stromsparendes Beleuchtungssystem | Energierundgang | Schulprogramm | Projekte Die integrierte Sekundarschule in Wilmersdorf zählt knappt 1000 Schülerinnen und Schüler sowie 115 Lehrkräfte und Erziehende. Als Staatliche Europaschule Berlin (Deutsch – Polnisch) bietet die Robert-Jungk-Oberschule zweisprachigen Unterricht und bilinguale Lerngruppen an. Neben dem doppelten Spracherwerb erlangen die Schülerinnen und Schüler ein europäisches Selbstverständnis und tief gehende Einblicke in die polnische Kultur. Im Sinne des Namensgebers Robert Jungk wird die Schule als gemeinsamer Gestaltungsraum von Schülerinnen und Mitarbeitern betrachtet. Intensive Kommunikation sowie transparente Entscheidungen ermutigen alle dazu, aus der Rolle des Betroffenen zu treten und zum Beteiligten zu werden. Darüber hinaus legt die Robert-Jungk-Oberschule einen besonderen Fokus auf die Entwicklung der Medienkompetenz und der Entfaltung der Persönlichkeit ihrer Schülerinnen und Schüler. Durch den europäischen Schwerpunkt des Lernortes wird die interkulturelle Kompetenz der Lernenden gefördert. UNESCO-Projektschule Gütesiegel Berliner Klimaschule 2013 und 2015 Bild: halfpoint/Depositphotos.com Weitere engagierte Schulen in Charlottenburg-Wilmersdorf Übersicht: Diese Charlottenburger und Wilmersdorfer Schulen engagieren sich besonders im Klima- und Umweltschutz. Weitere Informationen Bild: Rawpixel/Depositphotos.com Handlungsfelder im Klimaschutz Ressourcenschutz, Nachhaltigkeit, Klimabildung: In diesen Bereichen engagieren sich Schülerinnen und Schüler aller Altersgruppen um nachhaltige Verbesserungen im Klimaschutz. Weitere Informationen
Das Robert-Havemann-Gymnasium engagiert sich auf vielfältige Weise im Umwelt- und Klimaschutz. Hierfür konnte das Gymnasium im Laufe der Jahre zahlreiche Wettbewerbe und Preise gewinnen. Naturwissenschaftliche Lehre am Energiezentrum Pankow Besonderes Highlight am Pankower Gymnasium sind die Energiewerkstätten, welche im Energiezentrum Pankow auf dem Schulgelände angesiedelt sind. In den Schülerlaboratorien können sich nicht nur Schüler und Schülerinnen des Robert-Havemann-Gymnasiums, sondern aus ganz Berlin mit dem Themenkomplex der Energie auseinander setzen. Die kleinen Forscherinnen und Forscher erhalten praktische und weitreichende Einblicke in die Bereiche Energieeffizienz, regenerative Energien, Energiespeicher und Klimaschutz. Die einzelnen Stationen sind sowohl für Grundschulklassen als auch für Sekundarschulklassen und Gymnasien konzipiert. Das Robert-Havemann-Gymnasium nahm am Energiespar- und Klimaprojekt „Köpfchen statt Kohle“ der Bezirke Pankow und Lichtenberg teil, welches 2010 bis 2018 bestand. Im Rahmen des Projektes machten Schülerinnen und Schüler auf Energieverschwendung an Schulen aufmerksam und schlugen individuelle und zielgerichtete Lösungen zur Verbesserung der Klimabilanz ihrer Schulen vor. 2017 qualifizierten sich die Teilnehmerinnen und Teilnehmer der Projektgruppe als Junior-Energieberater. 2019 folgte die Gründung der Schüler-Aktiengesellschaft energyECO, welche über den Projektzeitraum hinaus noch heute besteht und Energielecks an Schulen den Kampf ansagt. Die wohl jüngsten Energieberaterinnen und Energieberater Deutschlands unterstützen andere Schulen bei der Installation von Messnetzen, beraten rund um die Themen Recycling, Energie-, Strom- und Wassereinsparung und bilden interessierte Schülerinnen und Schüler zu Junior-Energieexperten aus. Im offenen Ganztagsunterricht haben die Schülerinnen und Schüler die Möglichkeit, sich in diversen AGs und Projekten vertiefend mit dem Themenkomplex Nachhaltigkeit, Klimaschutz und Umwelt zu befassen. So lernen die Teilnehmerinnen und Teilnehmer der AG Energiemanager etwa, wie ein energiesparsamer Schulalltag aussieht und sorgen für die Einhaltung bestimmter Maßnahmen während des Schuljahres. Seit 2012 können sich interessierte Schülerinnen und Schüler zudem mit der Gestaltung der Lernwerkstatt „Erneuerbare Energien“ befassen. Weitere AGs und Projekte befassen sich mit den Energiewerkstätten, dem Themenkomplex der Nachhaltigkeit im Allgemeinen und der Teilnahme an Energie-Wettbewerben. Auf vielfältige Weise wurden die Schulgebäude im Laufe der vergangenen Jahre zunehmend ressourcenschonend gestaltet. Die einzelnen Maßnahmen wurden zum großen Teil von den Schülerinnen und Schülern selbst ermittelt und vorgeschlagen. So sorgen etwa Dimmerschaltungen und Energiesparlampen für einen geringen Stromverbrauch bei der Beleuchtung. Zudem kommen CO 2 -Messgeräte, Thermostate und Raspberry Pis zur Steuerung zum Einsatz. Eine Solar- und Biogasanlage mit Solartankstelle sowie eine Bio- und Windenergiestation unterstützen den ressourcenschonenden Ansatz des Robert-Havemann-Gymnasium weiterhin. Die Finanzierung der Umbauten wurde unter anderem über Preisgelder von Klimaschutz-Wettbewerben gestaltet. Einsatz neuer Technik | Regenerative Energien | Heiz-Management | Energierundgang | Stromsparendes Beleuchtungssystem | Schulprogramm | Projekte Das Robert-Havemann-Gymnasium in Pankow ist als Ganztagsgymnasium mit offenen Ganztagsbereich konzipiert. Ca. 1000 Schülerinnen und Schüler werden von rund 80 Lehrkräften unterrichtet und gefördert. Die Schule weist einen naturwissenschaftlichen Fokus auf, welcher sich in den zahlreichen Auszeichnungen und Preisen der Schülerinnen und Schüler widerspiegelt. Im Sinne von Robert Havemann folgt die schulische Erziehung an dem Gymnasium den Grundgedanken der Toleranz und Würde jedes Einzelnen. Während ihrer Zeit am Robert-Havelmann-Gymnasium sollen die Jugendlichen zu mündigen, verantwortungsvollen und reflektierten Bürgern werden, die sich Fragestellungen und Problemen auf logische und kritische Art und Weise nähern. Aus diesem Grund wird besonderer Wert auf das Lernen des Lernens gelegt. Preisträger KlimaSchutzPartner 2020 Gütesiegel Berliner Klimaschule 2013-2020 Energiesparmeister 2020 Deutscher Klimapreis der Allianz Umweltstiftung 2017, 2019 Anerkennungspreis KlimaSchutzPartner 2016, 2018 Bild: DeepGreen/Depositphotos.com Weitere engagierte Schulen in Pankow Übersicht: Diese Pankower Schulen engagieren sich besonders im Klima- und Umweltschutz. Weitere Informationen Bild: Dmyrto_Z/Depositphotos.com Handlungsfelder im Klimaschutz Ressourcenschutz, Nachhaltigkeit, Klimabildung: In diesen Bereichen engagieren sich Schülerinnen und Schüler aller Altersgruppen um nachhaltige Verbesserungen im Klimaschutz. Weitere Informationen
ich bin Journalistin und habe bereits über das Thema Vieles von Ihnen zitiert. Mir ist jedoch auch aufgefallen, dass es für Straßenlaternen andere Regeln gibt, als für Haushaltsglühbirnen. Ich zitiere gleich die offiziellen Quellen von Ihnen, von einer bayerischen Behörde und Deutschlandfunk und bitte Sie freundlich um Informationen, wieso es für Straßenlaternen andere Regeln gibt als für Haushaltsglühbirnen, denn eindeutig sind Erkrankungen dann ein Unfall, ein von außen einwirkendes Ereignis. Das heißt es ist in Wahrheit keine GKV Leistung, sondern etwaig Unfallversicherung, die gesetzliche. Welche Regeln gibt es da? Außerdem bitte ich um Zusendung von Listen für Meldestelle für Quecksilberopfer oder Infos an wen man sich wenden kann. Auch benötige ich für meinen Artikel auf Achtung Intelligence genaue Sicherheitsanleitung, wie man wirklich zerbrochene Birnen dann entsorgt, Schutzkleidung, Atemschutz, Schadstoffmobil, etc. Bitte benennen Sie auch weitere Behörden, die ebenso zuständig sind oder sein könnten und auch zuständige oder ergänzende gesetzgebende Stellen, die noch weitere Informationen haben könnten. Falls Sie nicht zuständig sind, geben Sie bitte Bescheid, wer denn alles zuständig und wer für den "Schmuh" mit dem Quecksilber bzw. Amalgam verantwortlich ist. Viele haben kein Amalgam mehr im Mund. Verdampfen sozusagen Tote in den Glühbirnen oder unsere alten entfernten Amalgamfüllungen? Hier worauf ich mich beziehe: http://www.swd-energieeffizienz.de/mehr-sicherheit-fuer-energiesparlampen-1424/ Mehr Sicherheit für Energiesparlampen Montag, 26. September 2011 Das Umweltbundesamt (UBA) hat neuwertige Energiesparlampen auf ihre Bruchsicherheit getestet. Danach ist bisher keine Lampe vollständig bruchsicher; die handelsüblichen Schutzhüllen verhindern nicht, dass Quecksilber austreten kann. Energiesparlampen mit Splitterschutz, die etwa einen Silikonüberzug besitzen, brechen allerdings nicht so schnell. Außerdem sind sie besser gegen Zerbersten geschützt, so dass sich der Scherbenbruch bei diesen Lampen einfacher beseitigen lässt. Allerdings ist das Angebot splittergeschützter Lampen noch sehr begrenzt. In der Untersuchung wurden auch die gesundheitlichen Risiken des Quecksilberdampfes nach Zerbrechen der Energiesparlampe gemessen. Die untersuchten Produkte enthielten Quecksilber mit jeweils unterschiedlichen Anteilen von 1,5 bis 2 Milligramm (mg), dosiert als Flüssigquecksilber, Quecksilber-Eisen-Pille oder als Amalgam gebunden. Neuwertige Energiesparlampen mit Amalgam dampften bei den Versuchen des UBA deutlich weniger Quecksilber aus als Lampentypen mit anderer Quecksilbertechnik. Die Versuche in einem Büroraum bestätigten eindeutig, dass schnelles und gründliches Lüften von 15 Minuten im Falle eines Bruches ausreichenden Schutz bietet. Danach können die Bruchreste bei weiter geöffnetem Fenster sachgerecht entsorgt werden. Ohne Lüften jedoch können gesundheitlich relevante Konzentrationen im Innenraum über mehrere Stunden auftreten und im ungünstigsten Falle bis zu zwei Tage andauern. Auf längere Sicht empfiehlt das UBA, Lampen zu kaufen, die ganz ohne Quecksilber auskommen; etwa die bereits im Handel erhältliche LED-Technik. Die nächstgelegene Sammelstelle für alte Energiesparlampen finden Sie hier. Langversion: https://www.umweltbundesamt.de/presse/presseinformationen/energiesparlampen-bei-bruch-ist-lueften-ao https://www.umweltbundesamt.de/themen/abfall-ressourcen/abfallwirtschaft/abfallarten/gefaehrliche-abfaelle/quecksilberhaltige-abfaelle 27.05.2013 67 mal als hilfreich bewertet Verwendung von Quecksilber Quecksilber wurde und wird als Metall und in Form von Verbindungen bei zahlreichen industriellen und haushaltsnahen Anwendungen genutzt. Beispiele für Verwendungen von flüssigem Quecksilber sind: Elektrode in Chlor-Alkali-Anlagen, elektrische Schalter, Thermometer, Baro- und Manometer. Weitere Anwendungen sind Leuchtstofflampen (an das Leuchtpulver adsorbiertes elementares Quecksilber) und Zahnamalgam, das zu etwa 50 Prozent Quecksilber enthält. In vielen Staaten wird elementares Quecksilber beim kleintechnischen Goldbergbau eingesetzt. Beispiele für die Verwendung von Quecksilberverbindungen sind: Katalysatoren in der chemischen Industrie, Knopfzellen, Farbpigmente, Saatgutbeizen, Konservierungsmittel für Medizinprodukte. Entsprechend vielfältig sind die zu entsorgenden Abfälle. Anfallendes Quecksilber Bei mehreren industriellen Prozessen fällt Quecksilber an, das abgeschieden und beseitigt werden muss. Beispiele sind die Verbrennung von Kohle, die Reinigung von Erdgas und metallurgische Verfahren. Quecksilberhaltige Abfälle (..) Beseitigung quecksilberhaltiger Abfälle Quecksilberhaltige Abfälle müssen dauerhaft in geeigneter Form von der Umwelt ferngehalten und in tauglichen Behältern abgelagert werden. In Deutschland bieten die Untertagedeponien dafür die besten Voraussetzungen. Oberirdisch dürfen nur geringe Mengen Quecksilber enthaltende Abfälle abgelagert werden, wenn sie die Zuordnungswerte nach Anhang 3 der Deponieverordnung einhalten. Die Zuordnungswerte für Quecksilber sind zum Beispiel nach Deponieklassen gestaffelte Grenzwerte für die in einem genormten Schüttelversuch in Wasser gelöste Quecksilbermenge. Auszug-Ende https://www.umweltbundesamt.de/themen/wie-kommt-quecksilber-in-die-umwelt Nur noch wenige Alltagsprodukte enthalten Quecksilber. 24.06.2014 166 mal als hilfreich bewertet Zum Beispiel Batterien (Knopfzellen) oder bestimmte Energiesparlampen. Die größten Mengen an Quecksilber werden beim Goldbergbau und in Zahnamalgam eingesetzt. In Deutschland liegen die quecksilberhaltigen Zahnfüllungen sogar auf Platz eins. Seit 2013 dürfen Kompaktleuchtstofflampen nur noch bis zu 2,5 Milligramm pro Lampe enthalten. Zudem können sie für ein späteres Recycling gesammelt werden. Dafür gibt es zahlreiche Sammelstellen im Einzelhandel sowie die Rückgabemöglichkeiten auf kommunalen Wertstoffhöfen. Dies gilt auch für Batterien. Verbraucherinnen und Verbraucher sind verpflichtet, diese Rückgabemöglichkeiten zu nutzen, damit die Wertstoffe recycelt werden können und kein Quecksilber in die Umwelt gelangt. Der Großteil des weltweit vom Menschen verursachten Quecksilbereintrags in die Umwelt entsteht durch die Produktion von Wärme und Strom aus Kohle, Öl oder Gas sowie durch kleingewerblichen Goldbergbau. Quecksilber wird weltweit in der Chloralkali-Industrie, in Messinstrumenten oder auch in Kosmetika verwendet. Den Abbau von Quecksilber-Erzen hat die EU wegen der hohen Belastungen für die Umwelt seit 2000 eingestellt. Die weltweit letzte offiziell betriebene Quecksilbermine befindet sich in Kirgistan. Natürliche Emissionen von Quecksilber werden durch aktive Vulkane, Waldbrände, Gesteinsverwitterung und Ausgasen von Quecksilber aus der Erdkruste und aus den Ozeanen verursacht. Quecksilber ist ein Metall mit einer besonderen Eigenschaft: Es verdampft bereits bei Zimmertemperatur. Deshalb kann es sich in der Luft verteilen. Ein Grund, warum das Quecksilber-Problem einer weltweiten Lösung bedarf. Mit der Genfer Luftreinhaltekonvention gibt es bereits seit 1998 ein Schwermetallprotokoll, das sogenannte Århus-Protokoll. Es schreibt den Stand der Technik für Industrieprozesse vor und will so die Emissionen in die Luft begrenzen. 2003 richtete das Umweltprogramm der Vereinten Nationen (UNEP) ein globales Quecksilberprogramm ein, das 2013 in der Minamata-Konvention mündete. Die Konvention schränkt den Handel ein und legt Regeln fest, die den Quecksilbereinsatz in Produkten verbieten oder begrenzen. Außerdem soll der Quecksilberbergbau eingestellt werden. Das Abkommen muss noch von 49 Staaten ratifiziert werden und soll 2017 in Kraft treten. Mit ihrer Quecksilberstrategie geht die Europäische Union u.a. das Problem von Quecksilber in der Nahrungskette an. Hierzu gehört auch eine sichere Entsorgung von nicht mehr benötigtem Quecksilber innerhalb der EU. Ein Forschungsprojekt des UBA belegt, dass das Schwermetall in den deutschen Untertagedeponien sicher und dauerhaft gelagert werden kann. In Europa nehmen Menschen Quecksilber übrigens hauptsächlich über das Essen von Fisch und Meerestieren auf, wie Ergebnisse einer europaweiten Untersuchung von Menschen auf bestimmte Schadstoffe ergaben. Aufgrund des geringen Fischkonsums sind Deutsche im Vergleich zu Menschen aus dem Mittelmeerraum auch verhältnismäßig gering mit dem Schwermetall belastet. Neben der wichtigen Aufnahmequelle – dem regelmäßigen Konsum von quecksilberhaltigem Fisch und Meerestieren – sind Zahnfüllungen aus Amalgam von Bedeutung für die Höhe der Belastung – und dies ganz besonders bei Kindern. Auszug-Ende Nun stellen Sie sich vor, in Ihrem Haus würde der Müll gesammelt werden, auch Quecksilberlampen und diese gehen kaputt, aus Fahrlässigkeit oder aufgrund von Dieben und Einbrechern ... Hier in nicht chronologischer Reihenfolge des Tests Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit & WHO http://www.lgl.bayern.de/gesundheit/arbeitsplatz_umwelt/projekte_a_z/ir_quecksilber_energiesparlampen.htm Bewertung Das Auftreten akuter gesundheitlicher Effekte ist beim Zerbrechen einer KLL nicht wahrscheinlich, insbesondere wenn Maßnahmen nach derartigen Ereignissen sofort und konsequent durchgeführt werden (SCHER 2010). So sollten Kinder sofort den Raum verlassen und ein Erwachsener rasch für eine ausreichende Durchlüftung der Räume sorgen. Nach einer Lüftungszeit von mindestens 15 Minuten, während der sich keine Personen in dem Raum aufhalten sollten, wird mit der gezielten Reinigung begonnen, d. h. das Quecksilber und die Lampenreste in einem dicht verschlossenen Glasgefäß gesammelt und sachgerecht entsorgt. In keinem Fall darf für die Reinigungsarbeiten ein Staubsauger verwendet werden, da bekannt ist, dass Quecksilber hierdurch fein im Raum verteilt wird, was bei höheren Belastungen zu gesundheitlichen Beeinträchtigungen führen kann. Genauere Informationen zum sachgerechten Umgang finden sich im Internet (siehe Links im rechten Kasten). Kritischer müssen alle Fälle betrachtet werden, bei denen keine sofortige Entfernung des Quecksilbers aus dem Raum erfolgt und somit ein längeres Expositionsrisiko, bei ggf. schlechten Lüftungsbedingungen, insbesondere für Kinder bestehen könnte. (... darüber steht) Nach der Aufnahme wird es aufgrund seiner Fettlöslichkeit (Lipophilie) im Körper verteilt, wobei Nierenrinde, Leber und Nervensystem wichtige Zielorte sind. Intrazellulär (z. B. im Erythrozyten) wird Hg° durch Katalasen zu Hg2 oxidiert und akkumuliert (Counter et al. 2004). Seit Jahrhunderten liegen Berichte über gesundheitliche Beeinträchtigungen durch Quecksilber vor. Eine Vielzahl gut dokumentierter klinischer Fälle und Erfahrung bei hohen Arbeitsplatzbelastungen belegen akute und chronische Effekte. Wirkort ist in erster Linie das Nervensystem mit typischen Symptomen wie z. B. Tremor, Sprachstörungen, Neuropathien und Sensibilitätsstörungen, neurokognitiven Beeinträchtigungen, leichter Erregbarkeit und Reizbarkeit (sog. Erethismus mercurialis) (Carpi & Chen 2001, WHO 2003, Lettmeier et al. 2010). Lokale Wirkungen bei hoher Hg-Exposition sind an der Mundschleimhaut (Speichelfluss, Gingivitis, Stomatitis), in den Atemwegen mit Husten und Dyspnoe sowie an der Haut im Sinne einer sogenannten Acrodynie beschrieben. Als Nierenveränderungen treten insbesondere Schäden an den Nierentubuli und eine Proteinurie auf. Im Rahmen von Arbeitsplatzstudien ergaben sich bei langfristiger Exposition neurotoxische Effekte ab ca. 20.000 ng/m3, während Effekte an anderen Organen erst bei höheren Gehalten beobachtet wurden (WHO 2003). Wegen der Verbreitung von Kompaktleuchtstofflampen auch in Privathaushalten, ist es notwendig, die möglichen gesundheitlichen Risiken, die durch ihre Benutzung entstehen, genauer zu untersuchen. Quecksilber ist im normalen Betrieb hermetisch in der Lampe eingeschlossen und stellt für die Nutzer in dieser Form daher kein gesundheitliches Risiko dar. Auszug-Ende Quecksilberdampf in Straßenlaternen Deutschlandfunk berichtet über Quecksilberdampf in Straßenlaternen. Eine Technologie, die eigentlich ab diesem Jahr verboten ist. Ob bereits alle Laternen umgerüstet sind? Da wird Achtung Intelligence den Staat befragen müssen. http://www.deutschlandfunk.de/neues-licht-fuer-die-strasse.697.de.html?dram:article_id=79128 Umwelt und Verbraucher / Archiv / Beitrag vom 19.04.2012 Neues Licht für die Straße LED-basierte Laternen sparen Energie Von Manfred Kloiber Die Stadtwerke Düsseldorf haben LED-Leuchten zur Straßenbeleuchtung bereits erprobt. Die Stadtwerke Düsseldorf haben LED-Leuchten zur Straßenbeleuchtung bereits erprobt. (swd-ag.de) Die Straßenlaterne von morgen sieht zwar bei Bedarf so aus wie die von heute, innen steckt aber Hochtechnologie: Leuchtdioden lösen nicht nur Glühleuchten und Energiesparlampen im Wohnbereich, sondern auch herkömmliche Straßenlaternen ab. Die Vorteile dieser Entwicklung beim Energieverbrauch liegen auf der Hand. Doch die Finanznot der Kommunen verzögert den Umstieg. (...) Doch trotz aller Vorteile bleibt ein großes Problem: Straßenleuchten mit LED-Technologie sind sehr teuer. Oft rechnen sich der sinkende Energieverbrauch und die geringeren Wartungskosten erst nach Jahren. Doch viele Kommunen haben jetzt kein Geld und können auch keinen Kredit für teure Leuchten aufnehmen. Auf der anderen Seite müssen bis 2015 viele Straßenlampen mit Quecksilber-Dampflampen erneuert werden, weil diese Technologie dann nicht mehr angeboten werden darf. Deshalb, so Bodenhaupt, beschaffen viele Kommunen lieber billigere, aber weniger effiziente Ersatztechnologie: Auszug-Ende Wenn Quecksilber-Dampflampen eigentlich seit diesem Jahr verboten sind, wieso gibt es noch immer Quecksilberglühbirnen im Supermarkt für die normale Lampe zu kaufen? Hier mein Artikel in der aktuellen Version mit allen Zitaten und politischen Ergänzungen. http://www.achtung-intelligence.org/articles.php?art_id=368&start=1 Über Ihre Antwort würde ich mich sehr freuen.
Ressourcenschutz ist Klimaschutz. Ein rücksichtsvoller und sparsamer Gebrauch von natürlichen Ressourcen wie Wasser und aus natürlichen Ressourcen erzeugten Energien wie Wärme und Strom tragen zum Klimaschutz bei. In der Schule werden naturgemäß viel Strom, Wasser und Energie verbraucht. An vielen Stellen besteht ein, je nach Ausgangslage, hohes Einsparpotenzial. Sei es durch Maßnahmen am Gebäude selbst oder durch Verhaltensänderungen seitens der Schülerschaft und des Lehrpersonals. Wer den Stromverbrauch reduzieren möchte, muss sich erst einmal darüber im Klaren sein, welches die größten „Stromfresser“ sind. Schülerinnen und Schüler können zusammen mit Lehrerinnen und Lehrern eine Bestandsaufnahme der Stromverbraucher im Schulgebäude durchführen und anschließend geeignete Einsparungsmaßnahmen umsetzen. Schulgebäude sind je nach Entstehung und Zeitpunkt der letzten Sanierung unterschiedlich gut gegen Wärmeverluste gedämmt. Je nach Gebäudezustand gibt es Quellen für Wärmeverluste, sogenannte Kältebrücken. Wer Schwachpunkte eines Gebäudes finden möchte, kann diese mithilfe einer Wärmebildkamera ausfindig machen. Das Suchen und Identifizieren von Kältebrücken kann in den Unterricht eingebaut werden und von Schülerinnen und Schülern übernommen werden. Bei der nächsten Sanierung können die Ursachen der Kältebrücken gezielt beseitigt werden. Eine weitere Möglichkeit den Stromverbrauch einer Schule zu reduzieren ist das konsequente Trennen von Geräten vom Stromnetz, wenn sie nicht verwendet werden. Auch in Ferienzeiten und am Wochenende sollte Standby-Strom vermieden werden. Was kompliziert klingt, ist nichts anderes als richtiges und effizientes Lüften, sowie das Einstellen der passenden Temperatur in genutzten Räumen. Die modernste Heizungsanlage kann nicht klimaschonend arbeiten, wenn die Raumtemperatur nicht sachgerecht eingestellt wird. Die Raumtemperatur sollte an die aktuelle Nutzung anpasst werden. Aber nicht nur effizientes Heizen spielt eine große Rolle für eine positive Klimabilanz, auch durch richtiges Lüften kann viel Energie eingespart werden. So sollte zum Beispiel die Kippstellung von Fenstern während der Heizperiode vermieden werden. Stattdessen ist kurzes Stoßlüften bei heruntergedrehter Heizung effektiv und spart Energie. CO 2 -Messgeräte können dabei helfen zu erkennen, wann Lüften nötig ist. Häufig stellen sich alte Fenster als Verlustquelle für Wärme heraus. Ein Austausch alter gegen neue, wärmedämmende Fenster hilft, Heizenergie zu sparen. Der Einbau einer modernen Heizungsanlage hat ebenfalls einen positiven Effekt auf die Klimabilanz des Hauses. Heizungen sollten außerdem funktionierende Thermostate haben, an denen die Raumtemperatur geregelt werden kann, sodass Räume nicht überheizt werden. Zu den größten Stromverbrauchern an einer Schule gehört die Beleuchtung. Eine der einfachsten und schnellsten Maßnahmen, den Stromverbrauch in der Schule zu reduzieren, ist der Austausch konventioneller Glühlampen gegen Energiesparlampen wie LEDs. Außerdem sollte Licht nur da brennen, wo es auch gerade benötigt wird. Die Installation von Bewegungsmeldern in den Schultoiletten oder den Fluren verhindert, dass Licht angelassen wird, wo es nicht mehr gebraucht wird. In Klassenräumen können Schülerinnen und Schüler abwechselnd die Aufgabe übernehmen, auf das Ausschalten des Lichtes nach Verlassen des Raumes zu achten. Eine Solaranlage (Photovoltaikanlage) produziert umweltfreundlichen Strom und kann je nach Größe nicht nur für den eigenen Stromverbrauch genutzt werden, sondern wirft unter Umständen nach einigen Jahren sogar Gewinne ab. Neben der reinen Stromgewinnung aus Sonnenenergie bietet eine Installation einer Solaranlage auf dem Schuldach auch die Möglichkeit, Schülerinnen und Schülern den Nutzen erneuerbarer Energiequellen ganz praktisch zu demonstrieren – beispielsweise durch eine solarbetriebene Ladestation für Handys oder Elektroräder. Schulen, die nicht die Möglichkeit einer eigenen Solaranlage auf dem Dach haben, können alternativ Ökostrom statt konventionell erzeugtem Strom aus dem Stromnetz beziehen und so Strom aus regenerativen Energien bevorzugen. Das Wässern eines Schulgartens verbraucht gerade im Sommer große Wassermengen. Wer Regenwasser auffängt und damit den Schulgarten versorgt, wässert umweltschonend. Durch tropfende Wasserhähne können am Tag mehrere Liter Wasser ungenutzt verloren gehen. Hähne und Dichtungen sollten daher häufig und regelmäßig auf ihre Dichtheit überprüft werden und gegebenenfalls zügig repariert werden. In Schulgebäuden passiert es zudem häufig, dass versehentlich ein Wasserhahn nicht geschlossen wird. Der Einbau von automatischen Wasserhähnen mit Bewegungssensoren kann zum Wassersparen beitragen. Auch bei der Toilettenspülung ergeben sich Einsparpotentiale: Wassersparende Spülkästen helfen ebenso Ressourcen zu sparen, wie der Einbau von Spülkästen mit einer Zwei-Mengentechnik. Bild: Heinrich-Mann-Schule Heinrich-Mann-Schule Die Integrierte Sekundarschule Heinrich-Mann-Schule in Neukölln engagiert sich bereits seit 2008 aktiv im Klima- und Umweltschutz – sowohl mit baulichen Maßnahmen als auch mit zahlreichen (Weiter)Bildungsangeboten. Weitere Informationen Bild: wckiw/Depositphotos.com Carl-Friedrich-von-Siemens-Gymnasium In Sachen Umwelt- und Klimaschutz verfolgt das Carl-Friedrich-von-Siemens-Gymnasium in Spandau einen ganzheitlichen Ansatz. Weitere Informationen Bild: Robert-Havemann-Gymnasium Robert-Havemann-Gymnasium Das Robert-Havemann-Gymnasium engagiert sich auf vielfältige Weise im Umwelt- und Klimaschutz. Hierfür konnte das Gymnasium im Laufe der Jahre zahlreiche Wettbewerbe und Preise gewinnen. Weitere Informationen Bild: Peter-Lenné-Schule Peter-Lenné-Schule Die Peter-Lenné-Schule in Zehlendorf trägt seit 2014 den Zusatz „Oberstufenzentrum Natur und Umwelt“ und zeigt so ihr umfassendes Engagement für den Klimaschutz. Die Schülerinnen und Schüler setzen sich mit der gesamten Bandbreite der Klimaschutz-Maßnahmen auseinander. Weitere Informationen Bild: Goethe-Gymnasium Lichterfelde Goethe-Gymnasium Lichterfelde Das Gymnasium in Lichterfelde engagiert sich seit Jahren mit steigender Intensität im Bereich der Bildung für nachhaltige Entwicklung (BNE). Weitere Informationen
| Origin | Count |
|---|---|
| Bund | 75 |
| Land | 12 |
| Zivilgesellschaft | 1 |
| Type | Count |
|---|---|
| Ereignis | 8 |
| Förderprogramm | 51 |
| Text | 23 |
| unbekannt | 6 |
| License | Count |
|---|---|
| geschlossen | 28 |
| offen | 60 |
| Language | Count |
|---|---|
| Deutsch | 86 |
| Englisch | 4 |
| Resource type | Count |
|---|---|
| Bild | 1 |
| Datei | 9 |
| Dokument | 10 |
| Keine | 36 |
| Unbekannt | 2 |
| Webseite | 47 |
| Topic | Count |
|---|---|
| Boden | 56 |
| Lebewesen und Lebensräume | 56 |
| Luft | 32 |
| Mensch und Umwelt | 88 |
| Wasser | 32 |
| Weitere | 71 |