API src

Found 2459 results.

Related terms

Hocheffiziente, kostengünstige und langlebige Natrium-Ionen-Batterie Zellen

Zielsetzung: Batterien spielen eine entscheidende Rolle in der Transformation der (Strom-)Wirtschaft zu einer CO2 neutralen Zukunft. Die Emissionsreduktion hängt primär vom vorliegenden Strom- bzw. Energiemix ab. Einerseits für den Energieaufwand während der Erzeugung, andererseits während ihres Betriebs. Überdies dürfen CO2 Emissionen für die Erzeugung, Raffinierung und den Transport von Grundmaterialien nicht vernachlässigt werden. Hier setzen die in diesem Projekt beschriebenen Innovationen an. Aktuelle State-of-the-Art LIB Batterien verwenden einerseits nicht weltweit geläufige Rohstoffe, wie Lithium, Kobalt, Nickel, Mangan und Graphit. Diese Rohstoffe werden primär in China raffiniert. Die so hergestellten Ausgangsmaterialien werden dann ihrerseits erneut über weite Strecken transportiert. Anodenseitig wird aktuell Graphit verwendet. Beispielsweise stammen sowohl natürlicher (74%) als auch synthetischer Graphit (51%) primär aus China, weswegen chinesische Exportrestriktionen auf diesen essentiellen Zellbestandteil ein zusätzliches Hemmnis für die europäische LIB Technologie darstellen. Zusätzlich bedürfen LIB Batterien deutlich mehr CO2 in der Herstellung aufgrund der Anforderung an die Trockenräume, was bei NIB zumindest mit zusätzlicher Forschung deutlich reduzierbar wäre. Im Gegensatz dazu beruhen die Materialien für hier entworfene NIB auf weltweit geläufigen Mengenrohstoffen, was sowohl Kosten, CO2 Emissionen, Umweltbelastungen, und eben auch Abhängigkeiten von außereuropäischen Ländern minimiert. Für eine Transformation hin zu einer nachhaltigen, erneuerbaren Wirtschaft sind billige Energiespeicher essenziell. Seit langem werden in den Roadmaps NIB als die beste Zukunftstechnologie bezeichnet, um möglichst kostengünstige Energiespeicher zu bauen. Daher wurde ein Konzept der vertikalen Integration entlang der Wertschöpfungskette erarbeitet, dass mit hoher Erfolgswahrscheinlichkeit, binnen von zwei Jahren zu einem NI-Batteriepack Prototyp führen soll. Der große Vorteil darin besteht in der raschen Weitergabe von Innovationssprüngen an den Prototypen und eventuellen Produkten. Die Zielsetzung ist eine Zelle mit einer Energiedichte von 180 Wh/kg zu entwickeln, welche dann in Endanwendungen wie Gabelstapler, Heimspeicher, und stationäre Speicher eingesetzt werden kann. Durch den angestrebten niedrigen Preis pro kWh für NIB’s sind alle Anwendungen mit einer niedrigen bis mittleren Energiedichte denkbar. Fazit: In diesem Projekt wurde eine Methode entwickelt, um Mangan-dotiertes preussisch Weiss deutlich langlebiger zu machen - mit Zyklenzahlen, die man auch von Lithium-Eisen-Phosphat Akkus kennt, die schon bisher als sehr langlebig gelten. Durch die Erhöhung Spannung können der wesentliche Nachteil der geringeren Energiekapazität von preussisch Weiss mitigiert werden. Das so entstandene Material kann nicht nur LFP, sondern auch NiCd und Blei-Säure Batterien ersetzen.

KI unterstützte Kommunikationstechnologien zur dynamischen Optimierung von Mobilität und Energiespeichern zur Frequenzstabilisierung und Energieversorgung, Teilvorhaben Meshmerize: Mesh-Fernüberwachung

In DymoBat wird ein Single-User-Controller für die Verwaltung der einzelnen DERs entwickelt. Anschließend wird eine zentrale Steuerungseinheit für die Synchronisierung und Optimierung des Netzbetriebs innerhalb einer kleinen Gruppe von Distributed Emergy Ressouces (DERs), Microgrid, entworfen. Im Anschluss werden Mobilitätsalgorithmen für die Nutzung von batterieelektrischen Fahrzeugen als mobile Energiespeicher entwickelt, die temporäre Selbstversorgung von Teilnetzen ermöglichen. Die entwickelten Algorithmen werden virtuell in einem Testbed-Modell anhand von realen Eingangsparametern erprobt, optimiert und validiert. Im zweiten Schritt wird ein reales Testfeld konzipiert, installiert und die Leistungsfähigkeit der modellhaft erprobten Algorithmen in einer realen Testumgebung bewertet und anhand des dadurch erarbeiteten Know-hows weiter verbessert. Das übergeordnete Ziel des Projektes DymoBat ist die Entwicklung von marktfähigen Lösungen für die zukünftige Stromnetzverwaltung zur Nutzung von verteilten Energieressourcen auf Basis der Anwendung von 5G-Technologien. Meshmerize wird dazu ein WLAN-basiertes Mesh-Netzwerk mit IoT Unterstützung zur Echtzeit-Fernüberwachung aufbauen. Dieses unterstützt den Controller eines Energiemanagementsystems in der Sammlung der benötigten Datengrundlage für die Optimierung. Das Kommunikationsnetzwerk wird dafür auch um weitere Kommunikationstechnologien wie 5G erweitert. Als Anpassung an die angesprochenen Anwendungen wird das zugrunde liegende Mesh-Protokoll genau auf die Anforderungen der Echtzeit-Fernüberwachung eingestellt.

Entwicklung und Transfer von kosteneffizienten, nachhaltigen und sicheren Dual-Ionen-Batterien für stationäre Energiespeicherlösungen

Vergleichende ökonomische und ökologische Bewertung von innovativen, stationären Energiespeichertechnologien in der industriellen Produktion

Das Ziel der Studie besteht darin, mit einem interdisziplinären Ansatz eine vergleichende ökologische Bewertung und eine vergleichende ökonomische Analyse von drei ausgewählten dezentralen stationären Energiespeicherlösungen durchzuführen. Der Vergleich wird anhand eines konkreten Anwendungsszenarios in der industriellen Produktion durchgeführt.

Integrierte und beschleunigte Prozessoptimierung zur Herstellung prälithiierter Elektroden für Energiespeicher mit Methoden des Maschinellen Lernens

Thermische Sicherheitsanalytik von sulfidischen Festkörperbatterien, FB2-SAFE - Thermische Sicherheitsanalytik von sulfidischen Festkörperbatterien

EnEff:Stadt: Optimierter Energieeinsatz im Hafen-Microgrid @ DGT, Teilprojekttitel: Planung und Erweiterung der Wasserstoffverteilung im Hafengebiet

Lebensdaueroptimierte 'Multi-Use' Speichersysteme

Als 'Enabling technology' für Schnelladesäulen an Autobahnen, PV-Mieterstromkonzepten oder zur Verbesserung der Netzstabilität sind industrielle Batteriespeichersysteme (CSS) ein entscheidender Baustein der zukünftigen Energiewende. Derzeit ist der Betrieb dieser Technologie nur in Einzelfällen oder durch öffentliche Fördermittel wirtschaftlich darstellbar. Ein bisher bewährter Ansatz zur Ertragsoptimierung ist es den Speicher für mehrere Anwendungen zu nutzen (PV-Eigenverbrauch; BHKW Optimierung; Peak Shaving). Der Einfluss dieser 'Multi-Use' Ansätze auf die Alterung der Energiespeicher ist jedoch weitgehend unbekannt. In der Praxis wird daher häufig eine Überdimensionierung der Speichersysteme sowie eine Einschränkung der Garantiebedingungen vorgenommen. Das Projekt 'Storage Multi-App' will daher über 'digitale Zwillinge' Speicher hinsichtlich der Alterungseigenschaften optimiert Auslegen und Betriebsstrategien entwickeln, welche deren Kosten und Ertragskraft signifikant verbessert.

WD 8 - 056/18 Kurzinformation Aktuelle Entwicklungen zu Stromspeicher-Technologien

Kurzinformation des wissenschaftlichen Dienstes des Deutschen Bundestages. 2 Seiten. Auszug der ersten drei Seiten: Wissenschaftliche Dienste Kurzinformation Aktuelle Entwicklungen zu Stromspeicher-Technologien Literaturhinweise zu aktuellen Entwicklungen von Strom-(Energie)speicher-Systemen und tech- nische Kenndaten: Einen einführenden Überblick ausgewählter Speichertechnologien und ihrer Speicherkapazitä- ten liefert die Arbeit der Wissenschaftlichen Dienste aus dem Jahr 2016 „Entwicklung von Strom- speicherkapazitäten in Deutschland 2010 bis 2016“ Deutscher Bundestag, Dokumentation WD 8- 3000-083/16, https://www.bundestag.de/blob/496062/759f6162c9fb845aa0ba7d51ce1264f1/wd- 8-083-16-pdf-data.pdf Darüber hinaus finden sich in den nachfolgenden Quellenangaben Informationen zum aktuellen Stand der einzelnen Speicher-Technologien. Im Jahresbericht über das „Mess- und Evaluierungsprogramm Solarstromspeicher 2.0“ beschreibt Kapitel 3 die Markt- und Technologieentwicklung von Solarstromspeichern. Institut für Strom- richtertechnik und Elektrische Antriebe (ISEA) der RWTH Aachen (2017). http://www.speicher- monitoring.de und https://www.bves.de/wp-content/uploads/2017/07/Speichermonitoring_Jah- resbericht_2017_ISEA_RWTH_Aachen.pdf Der aktuelle „Solactive Battery Energy Storage Performance-Index“ liefert weitere Daten zu Solar- speichern: Solaractive (2018). https://www.solactive.com/wp-content/uploads/solac- tiveip/de/Factsheet_DE000SLA4Z26.pdf Auf den Internetseiten des Bundesverbands Energiespeicher (BVES) finden sich weitere detail- lierte Informationen in den Fact-Sheets der einzelnen Technologien https://www.bves.de/tech- nologien-final/ und im Faktenpapier „Energiespeicher“ https://www.bves.de/wp-content/uplo- ads/2017/05/Faktenpapier_2017.pdf. Im Rahmen der Dena-Netzflexstudie, Deutschen Energie Agentur (dena) (2017). „Optimierter Ein- satz von Speichern für Netz- und Marktanwendungen in der Stromversorgung“, haben die Auto- ren verschiedene Einsatzszenarien analysiert. Das Fact-Sheet liefert eine kurze Zusammenfas- sung zur Studie, https://shop.dena.de/fileadmin/denashop/media/Downloads_Da- teien/esd/9192_dena-Factsheet_dena-Netzflexstudie.pdf WD 8 - 3000 - 056/18 (18. Juni 2018) © 2018 Deutscher Bundestag Die Wissenschaftlichen Dienste des Deutschen Bundestages unterstützen die Mitglieder des Deutschen Bundestages bei ihrer mandatsbezogenen Tätigkeit. Ihre Arbeiten geben nicht die Auffassung des Deutschen Bundestages, eines sei- ner Organe oder der Bundestagsverwaltung wieder. Vielmehr liegen sie in der fachlichen Verantwortung der Verfasse- rinnen und Verfasser sowie der Fachbereichsleitung. Arbeiten der Wissenschaftlichen Dienste geben nur den zum Zeit- punkt der Erstellung des Textes aktuellen Stand wieder und stellen eine individuelle Auftragsarbeit für einen Abge- ordneten des Bundestages dar. Die Arbeiten können der Geheimschutzordnung des Bundestages unterliegende, ge- schützte oder andere nicht zur Veröffentlichung geeignete Informationen enthalten. Eine beabsichtigte Weitergabe oder Veröffentlichung ist vorab dem jeweiligen Fachbereich anzuzeigen und nur mit Angabe der Quelle zulässig. Der Fach- bereich berät über die dabei zu berücksichtigenden Fragen.[.. next page ..]Wissenschaftliche Dienste Kurzinformation Seite 2 Aktuelle Entwicklungen zu Stromspeicher- Technologien Die Internetseiten der „Forschungsinitiative Energiespeicher“ der Bundesregierung berichten über aktuelle Entwicklungen sämtlicher Energiespeicher-Technologien: http://forschung-ener- giespeicher.info/projektschau/analysen/ Aktuelle Daten von Speichersystemen sind im Factsheet „U.S. Grid Energy StorageFact-Sheet“, Center for Sustainable Systems, Universität Michigan (2017). http://css.umich.edu/si- tes/default/files/U.S._Grid_Energy_Storage_Factsheet_CSS15-17_e2017.pdf zusammengefasst. Aktuelle Statistiken und ein Dossier zu Energiespeichern finden sich bei Statista (2018). „Ener- giespeicher“, https://de.statista.com/themen/2779/energiespeicher/ bzw. https://de.sta- tista.com/download/MTUyOTMzMTc1MyMjMTUzMDQzIyMzMTY4MyMjMSMjcGRmIyN- TdHVkeQ== *** Fachbereich WD 8 (Umwelt, Naturschutz, Reaktorsicherheit, Bildung und Forschung)

Biogene CO2-Konversion: Umfassende Optimierung der biologischen Methanisierung in Blasensäulenreaktoren, Teilvorhaben 1

1 2 3 4 5244 245 246