JenErgieReal versteht sich als 'Blaupause' für die zukünftig ganzheitliche Versorgung mit elektrischer und thermischer Energie sowie der Integration der Mobilität als Bindeglied. Dabei werden die Haupttreiber des Energieverbrauchs Verkehr, Industrie, Gewerbe und Wohnen sektorenübergreifend betrachtet. JenErgieReal wird als Reallabor der Energiewende die für die deutsche Energiepolitik wesentlichen systemischen Herausforderungen in einem klar umrissenen Großvorhaben exemplarisch angehen und die Rolle der Infrastrukturbetreiber im Energiewendeprozess verdeutlichen. JenErgieReal hat Pioniercharakter für die Transformation des Energiesystems und widmet sich Forschungsfragestellungen, die eine Schlüsselrolle bei der Umsetzung der Energiewende einnehmen. Die Demonstration der Ergebnisse erfolgt als Reallabor in der Stadt Jena. Das primäre Ziel des Teilprojektes 3 (TP 3) im Verbundprojekt JenErgieReal liegt in der Umsetzung der mit den Projektpartnern entwickelten wissenschaftlichen und technischen (Wohn-) Quartierspeicherlösungen, ausgehend von der kleinsten Zelle Wohnung zum smarten Quartier. Durch den Einsatz von Smart-Home-Komponenten werden die Wohnungen Teil des Virtuellen Kraftwerkes. Es sollen neue Prozesse und Formen des Zusammenlebens für eine Verbesserung der Lebensqualität und attraktiven Lebensraumgestaltung entwickelt und erprobt werden. Das Wohnen soll einfacher und angenehm erlebbar und ein langes (eigenständiges) Wohnen durch smarte Anwendungen ermöglicht werden. Somit soll nachhaltig die Wohn- und Lebensqualität der Bewohner verbessert, eine Senkung der Betriebskosten durch die Reduzierung der Stromverbräuche, z.B. Photovoltaik am Gebäude (Mieterstrom) und der Heizkosten sowie eine zukunftssichere Ausstattung der Wohnungen und nachhaltige Immobilienbewirtschaftung unter Berücksichtigung von sozialen, technischen, ökonomischen und ökologischen (CO2-Einsparung) Parametern erreicht werden.
Die notwendigen Anpassungsmaßnahmen der Energieversorgung im Rahmen des Energiepaktes erfordern den Ausbau der erneuerbaren Energien, die Steigerung der Energieeffizienz sowie die Senkung des Energieverbrauchs. Im Rahmen regionaler Energiekonzepte können der Energieverbrauch, aber auch Einspar- und Erzeugungspotenziale ermittelt sowie energiepolitische Strategien für die Region entwickelt werden. Der Landes- und Regionalplanung kommt dabei aufgrund der Flächenrelevanz einiger erneuerbarer Energien, aber auch als regionaler Koordinator eine besondere Rolle zu. Regionale Energiekonzepte gelten als wichtiges Planungsinstrument, das neben den Ausbaupotenzialen für erneuerbare Energien auch Empfehlungen für die Energieeinsparung sowie die Steigerung der Energieeffizienz beinhaltet. Dabei nimmt die Regionalplanung eine zentrale Rolle ein, da sie nicht nur für die Ausweisung und räumliche Konkretisierung benötigter Flächen zuständig ist, sondern auch als Mittler zwischen den Interessen der Kommunen und den übergeordneten Zielen des Bundes und der Länder im Gegenstromprinzip wirkt. Zielsetzung und Gegenstand des Modellvorhabens: Gegenstand des Modellvorhabens sind die Anwendung und Umsetzung bereits vorliegender regionaler Energiekonzepte. Dabei sollen unterschiedliche erneuerbare Energieoptionen, Energieeffizienz, Netz- und Speicherinfrastrukturen sowie formelle und informelle Verfahren zur Umsetzung der Energiewende auf regionaler Ebene im Vordergrund stehen. Die Regionalplanung dient in diesem Zusammenhang als Schnittstelle zwischen Landes- und Bundesvorgaben sowie kommunalen Interessen, die die zunehmend dynamischen Entwicklungen des Einsatzes erneuerbarer Energien und Effizienzmaßnahmen auf der kommunalen und regionalen Ebene ebenso in den Blick nimmt, wie Ausbauziele und energietechnische Fragestellungen. In fünf Modellregionen sollen bis Ende 2014 Lösungsansätze zur Umsetzung, Weiterentwicklung oder Überprüfung vorliegender Energiekonzepte untersucht werden. Dabei werden auch die Möglichkeiten der Integration in die Regionalplanung berücksichtigt. Das Instrument des regionalen Energiekonzepts und dessen Bausteine sollen auf dieser Grundlage für alle Beteiligten weiterentwickelt und etabliert werden. Neben übertragbaren Ergebnissen für andere Regionen stehen ebenfalls Handlungsempfehlungen für die Bundes- und Landespolitik im Vordergrund des Vorhabens. Durchgeführt wird das Modellvorhaben unter wissenschaftlicher Begleitung des Fachgebietes Ver- und Entsorgungssysteme (VES) der Fakultät Raumplanung an der Technischen Universität Dortmund unter der Leitung von Prof. Dr. Tietz in Zusammenarbeit mit BPW baumgart+partner, Stadt- und Regionalplanung als MORO-Geschäftsstelle sowie MUT Energiesysteme, Gesellschafter der Klima- und Energieeffizienzagentur (KEEA). (Text gekürzt)
Welche Salzformationen eignen sich zur Speicherung von Wasserstoff oder Druckluft? Im Forschungsprojekt InSpEE-DS entwickelten Wissenschaftler Anforderungen und Kriterien mit denen sich mögliche Standorte auch dann bewerten lassen, wenn sich deren Erkundung noch in einem frühen Stadium befindet und die Kenntnisse zum Aufbau der Salinare gering sind. Wissenschaftler der DEEP.KBB GmbH, Hannover erarbeiten gemeinsam mit ihren Projektpartnern der Bundesanstalt für Geowissenschaften und Rohstoffe und der Leibniz Universität Hannover, Institut für Geotechnik Hannover, Planungsgrundlagen zur Standortauswahl und zur Errichtung von Speicherkavernen in flach lagernden Salzen und Mehrfach- bzw. Doppelsalinaren. Solche Kavernen könnten erneuerbare Energie in Form von Wasserstoff oder Druckluft speichern. Während sich das Vorgängerprojekt InSpEE auf Salzformationen großer Mächtigkeit in Norddeutschland beschränkte, wurden jetzt unterschiedlich alte Salinar-Horizonte in ganz Deutschland untersucht. Zur Potenzialabschätzung wurden Tiefenlinienkarten des Top und der Basis sowie Mächtigkeitskarten der jeweils betrachteten stratigraphischen Einheit und Referenzprofile erarbeitet. Informationen zum Druckluft- und Wasserstoff-Speicherpotential in den einzelnen Bundesländern sind an die identifizierten Flächen mit nutzbarem Potential gekoppelt. Die Daten können über den Webdienst „Informationssystem flach lagernde Salze“ genutzt werden. Der Darstellungsmaßstab hat eine untere Grenze von 1 : 300 000. Die Geodaten sind Produkte eines BMWi-geförderten Forschungsprojektes „InSpEE-DS“ (Laufzeit 2015-2019). Das Akronym steht für „Informationssystem Salz: Planungsgrundlagen, Auswahlkriterien und Potenzialabschätzung für die Errichtung von Salzkavernen zur Speicherung von Erneuerbaren Energien (Wasserstoff und Druckluft) – Doppelsalinare und flach lagernde Salzschichten“.
Die TU Darmstadt strebt eine drastische und zeitnahe Reduktion der Treibhausgasemissionen an. Zu diesem Ziel wurden im Rahmen der Vorgängerprojekte EnEff Campus Lichtwiese I und II Maßnahmen theoretisch und praktisch untersucht und umgesetzt. Nachdem in Phase II bereits Einzelmaßnahmen umgesetzt und hinsichtlich ihres Einflusses auf die effiziente Energieversorgung des Campus bewertet wurden, erfolgt in Phase III die physische und digitale Integration dieser und weiterer Maßnahmen, die aufbauend auf den Erkenntnissen der Phase II geplant werden, in das Energiesystem des Quartiers. Der Fokus liegt dabei auf der Integration CO2-freier Energiequellen und wird aus drei verschiedenen Perspektiven untersucht. Durch die Umsetzung einer elektrischen Energiezelle wird eine PV-Anlage mit Flexibilitäten und einem Batteriespeicher kombiniert um deren Erzeugung effektiv in einem Subquartier und im gesamten Campus zu integrieren. In einem weiteren Subquartier steht der Verbund von Abwärme aus mehreren Quellen, Solarthermie und einem geothermischen Speicher zur Nutzung in Bestandsgebäuden im Fokus. Dabei wird auch bewertet, wie geringinvasive Maßnahmen im Gebäudebestand umgesetzt werden können, um Wärme aus CO2-freien Quellen dort nutzbar zu machen. Durch den aktiven Digitalen Zwilling werden einzelne Komponenten anhand einer mathematisch optimalen Betriebsstrategie automatisiert gesteuert. Neben der Integration der genannten Energiespeicher werden auch bereits vorhandene thermische und elektrische Flexibilitäten regelungstechnisch nutzbar gemacht. Alle Umsetzungsmaßnahmen und ihre Interaktion werden im realen Betrieb erprobt und auf ihr Skalierungspotential hin untersucht. Das Projekt wird von einem interdisziplinären Forschungsteam aus vier Fachrichtungen sowie dem Baudezernat bearbeitet. Durch die Beteiligung des Baudezernats ist die dauerhafte Nutzung der Projektergebnisse gewährleistet. Damit wird das Projekt die TU Darmstadt auf dem Weg zur Klimaneutralität unterstützen.
Die TU Darmstadt strebt eine drastische und zeitnahe Reduktion der Treibhausgasemissionen an. Zu diesem Ziel wurden im Rahmen der Vorgängerprojekte EnEff Campus Lichtwiese I und II Maßnahmen theoretisch und praktisch untersucht und umgesetzt. Nachdem in Phase II bereits Einzelmaßnahmen umgesetzt und hinsichtlich ihres Einflusses auf die effiziente Energieversorgung des Campus bewertet wurden, erfolgt in Phase III die physische und digitale Integration dieser und weiterer Maßnahmen, die aufbauend auf den Erkenntnissen der Phase II geplant werden, in das Energiesystem des Quartiers. Der Fokus liegt dabei auf der Integration CO2-freier Energiequellen und wird aus drei verschiedenen Perspektiven untersucht. Durch die Umsetzung einer elektrischen Energiezelle wird eine PV-Anlage mit Flexibilitäten und einem Batteriespeicher kombiniert um deren Erzeugung effektiv in einem Subquartier und im gesamten Campus zu integrieren. In einem weiteren Subquartier steht der Verbund von Abwärme aus mehreren Quellen, Solarthermie und einem geothermischen Speicher zur Nutzung in Bestandsgebäuden im Fokus. Dabei wird auch bewertet, wie geringinvasive Maßnahmen im Gebäudebestand umgesetzt werden können, um Wärme aus CO2-freien Quellen dort nutzbar zu machen. Durch den aktiven Digitalen Zwilling werden einzelne Komponenten anhand einer mathematisch optimalen Betriebsstrategie automatisiert gesteuert. Neben der Integration der genannten Energiespeicher werden auch bereits vorhandene thermische und elektrische Flexibilitäten regelungstechnisch nutzbar gemacht. Alle Umsetzungsmaßnahmen und ihre Interaktion werden im realen Betrieb erprobt und auf ihr Skalierungspotential hin untersucht. Das Projekt wird von einem interdisziplinären Forschungsteam aus vier Fachrichtungen sowie dem Baudezernat bearbeitet. Durch die Beteiligung des Baudezernats ist die dauerhafte Nutzung der Projektergebnisse gewährleistet. Damit wird das Projekt die TU Darmstadt auf dem Weg zur Klimaneutralität unterstützen.
Ziel des Konsortiums ist es im Verbundprojekt 'Wasserstoff in der Intralogistik (WI)' die Vorteile und Potenziale von Wasserstoff in der Intralogistik zu erforschen und voranzutreiben. Das Fundament des Forschungsantrags bildet der Aufbau der gesamten Kette von Erzeugung grünen Wasserstoffs bis hin zur Nutzung in der Intralogistik als ganzheitliche Pilotanlage. Im Teilprojekt 'Energieeffizienter Roboter mit Schnittstelle für Fahrerloses Transportsystem' wird die Firma Yaskawa für die Energieeffizienz und die Kommunikationsschnittstellen des Roboters, auch Manipulator genannt, verantwortlich sein. Solch ein Roboter, bzw. Manipulator, ist in der Intralogistik essentiell, damit Be- und Entladeprozesse automatisiert werden können. Für ein Autonomes fahrerloses Transportsystem (FTS) ist dies von großer Bedeutung, allerdings nicht für die derzeit verfügbaren Stationären Roboter. Damit ein Roboter auf ein FTS montiert werden kann, muss somit die Energieeffizienz dem Energiespeicher des FTS angepasst und kommunikationsschnittstellen für beide autonome Systeme entwickelt werden. Darüber hinaus wird die Sicherheit des neuen Systems evaluiert und zertifiziert.
Um in Zeiten der Energiewende menschlichen Bedürfnissen im Alter gerecht zu werden, stellen wir in unserem Teilprojekt den Bewohner in den Mittelpunkt. Im Rahmen des Gesamtprojektes ermöglichen wir älteren Menschen innerhalb der 30 geplanten Wohneinheiten ein lebenswertes, digital unterstütztes Umfeld, in dem ein selbstständiges Agieren im Alltag trotz altersbedingter Einschränkungen problemlos möglich ist. Dieses Ziel erreichen wir mit smarten AAL-Ansätzen (Ambient Assisted Living) und selbst-lernenden Algorithmen, die die Bedürfniserfüllung der Bewohner im zentralen Fokus haben. Für eine erweiterte Unterstützungspalette bzw. die Schaffung eines bedürfnisgerechten Umfeldes ist die Integration von Pflegedienstleistungen und digitalen Hilfestellungen in unterschiedler Ausführung geplant. Somit schaffen wir Mehrwerte bei der Selbstorganisation und Selbsthilfe der Bewohner im Alltag.
| Origin | Count |
|---|---|
| Bund | 2387 |
| Kommune | 10 |
| Land | 58 |
| Wissenschaft | 2 |
| Zivilgesellschaft | 6 |
| Type | Count |
|---|---|
| Daten und Messstellen | 3 |
| Ereignis | 2 |
| Förderprogramm | 2312 |
| Text | 72 |
| Umweltprüfung | 7 |
| unbekannt | 38 |
| License | Count |
|---|---|
| geschlossen | 101 |
| offen | 2327 |
| unbekannt | 6 |
| Language | Count |
|---|---|
| Deutsch | 2213 |
| Englisch | 440 |
| Resource type | Count |
|---|---|
| Archiv | 10 |
| Bild | 1 |
| Datei | 9 |
| Dokument | 49 |
| Keine | 1153 |
| Multimedia | 1 |
| Webdienst | 13 |
| Webseite | 1248 |
| Topic | Count |
|---|---|
| Boden | 1155 |
| Lebewesen und Lebensräume | 967 |
| Luft | 1219 |
| Mensch und Umwelt | 2434 |
| Wasser | 652 |
| Weitere | 2367 |