API src

Found 2495 results.

Related terms

Entwicklung umweltfreundlicher und kostengünstiger Lithium-Schwefel-Batterien für eine nachhaltige Energiewende, LiSSy - Entwicklung umweltfreundlicher und kostengünstiger Lithium-Schwefel-Batterien für eine nachhaltige Energiewende

ALIBES - Aluminium-Ionen-Batterie für stationäre Energiespeicher

Entwicklung druckloser Wärmespeicher für die effiziente Nutzung industrieller Abwärme

Reversible metallische Energiespeicher zur nachhaltigen Erzeugung von Wasserstoff

evTrailer2 - Elektrisches Antriebskooperations- und Energiesystem für schwere Nutzfahrzeuge, Teilvorhaben: Entwicklung hybrider Energiespeicher

Weiterentwicklung des Campus Lichtwiese Energiesystems mit Integration erneuerbarer Energiequellen und Abwärme, Weiterentwicklung des Campus Lichtwiese Energiesystems mit Integration erneuerbarer Energiequellen und Abwärme

Die TU Darmstadt strebt eine drastische und zeitnahe Reduktion der Treibhausgasemissionen an. Zu diesem Ziel wurden im Rahmen der Vorgängerprojekte EnEff Campus Lichtwiese I und II Maßnahmen theoretisch und praktisch untersucht und umgesetzt. Nachdem in Phase II bereits Einzelmaßnahmen umgesetzt und hinsichtlich ihres Einflusses auf die effiziente Energieversorgung des Campus bewertet wurden, erfolgt in Phase III die physische und digitale Integration dieser und weiterer Maßnahmen, die aufbauend auf den Erkenntnissen der Phase II geplant werden, in das Energiesystem des Quartiers. Der Fokus liegt dabei auf der Integration CO2-freier Energiequellen und wird aus drei verschiedenen Perspektiven untersucht. Durch die Umsetzung einer elektrischen Energiezelle wird eine PV-Anlage mit Flexibilitäten und einem Batteriespeicher kombiniert um deren Erzeugung effektiv in einem Subquartier und im gesamten Campus zu integrieren. In einem weiteren Subquartier steht der Verbund von Abwärme aus mehreren Quellen, Solarthermie und einem geothermischen Speicher zur Nutzung in Bestandsgebäuden im Fokus. Dabei wird auch bewertet, wie geringinvasive Maßnahmen im Gebäudebestand umgesetzt werden können, um Wärme aus CO2-freien Quellen dort nutzbar zu machen. Durch den aktiven Digitalen Zwilling werden einzelne Komponenten anhand einer mathematisch optimalen Betriebsstrategie automatisiert gesteuert. Neben der Integration der genannten Energiespeicher werden auch bereits vorhandene thermische und elektrische Flexibilitäten regelungstechnisch nutzbar gemacht. Alle Umsetzungsmaßnahmen und ihre Interaktion werden im realen Betrieb erprobt und auf ihr Skalierungspotential hin untersucht. Das Projekt wird von einem interdisziplinären Forschungsteam aus vier Fachrichtungen sowie dem Baudezernat bearbeitet. Durch die Beteiligung des Baudezernats ist die dauerhafte Nutzung der Projektergebnisse gewährleistet. Damit wird das Projekt die TU Darmstadt auf dem Weg zur Klimaneutralität unterstützen.

Weiterentwicklung des Campus Lichtwiese Energiesystems mit Integration erneuerbarer Energiequellen und Abwärme

Die TU Darmstadt strebt eine drastische und zeitnahe Reduktion der Treibhausgasemissionen an. Zu diesem Ziel wurden im Rahmen der Vorgängerprojekte EnEff Campus Lichtwiese I und II Maßnahmen theoretisch und praktisch untersucht und umgesetzt. Nachdem in Phase II bereits Einzelmaßnahmen umgesetzt und hinsichtlich ihres Einflusses auf die effiziente Energieversorgung des Campus bewertet wurden, erfolgt in Phase III die physische und digitale Integration dieser und weiterer Maßnahmen, die aufbauend auf den Erkenntnissen der Phase II geplant werden, in das Energiesystem des Quartiers. Der Fokus liegt dabei auf der Integration CO2-freier Energiequellen und wird aus drei verschiedenen Perspektiven untersucht. Durch die Umsetzung einer elektrischen Energiezelle wird eine PV-Anlage mit Flexibilitäten und einem Batteriespeicher kombiniert um deren Erzeugung effektiv in einem Subquartier und im gesamten Campus zu integrieren. In einem weiteren Subquartier steht der Verbund von Abwärme aus mehreren Quellen, Solarthermie und einem geothermischen Speicher zur Nutzung in Bestandsgebäuden im Fokus. Dabei wird auch bewertet, wie geringinvasive Maßnahmen im Gebäudebestand umgesetzt werden können, um Wärme aus CO2-freien Quellen dort nutzbar zu machen. Durch den aktiven Digitalen Zwilling werden einzelne Komponenten anhand einer mathematisch optimalen Betriebsstrategie automatisiert gesteuert. Neben der Integration der genannten Energiespeicher werden auch bereits vorhandene thermische und elektrische Flexibilitäten regelungstechnisch nutzbar gemacht. Alle Umsetzungsmaßnahmen und ihre Interaktion werden im realen Betrieb erprobt und auf ihr Skalierungspotential hin untersucht. Das Projekt wird von einem interdisziplinären Forschungsteam aus vier Fachrichtungen sowie dem Baudezernat bearbeitet. Durch die Beteiligung des Baudezernats ist die dauerhafte Nutzung der Projektergebnisse gewährleistet. Damit wird das Projekt die TU Darmstadt auf dem Weg zur Klimaneutralität unterstützen.

Energieoptimiertes Reallabor Jena mittels in Echtzeit skalierbarer Energiespeicher, Teilvorhaben: Virtuelle Kraftwerksstrukturen im humanitären und sozialen Kontext

Um in Zeiten der Energiewende menschlichen Bedürfnissen im Alter gerecht zu werden, stellen wir in unserem Teilprojekt den Bewohner in den Mittelpunkt. Im Rahmen des Gesamtprojektes ermöglichen wir älteren Menschen innerhalb der 30 geplanten Wohneinheiten ein lebenswertes, digital unterstütztes Umfeld, in dem ein selbstständiges Agieren im Alltag trotz altersbedingter Einschränkungen problemlos möglich ist. Dieses Ziel erreichen wir mit smarten AAL-Ansätzen (Ambient Assisted Living) und selbst-lernenden Algorithmen, die die Bedürfniserfüllung der Bewohner im zentralen Fokus haben. Für eine erweiterte Unterstützungspalette bzw. die Schaffung eines bedürfnisgerechten Umfeldes ist die Integration von Pflegedienstleistungen und digitalen Hilfestellungen in unterschiedler Ausführung geplant. Somit schaffen wir Mehrwerte bei der Selbstorganisation und Selbsthilfe der Bewohner im Alltag.

Energieoptimiertes Reallabor Jena mittels in Echtzeit skalierbarer Energiespeicher, Teilvorhaben: Konzeption und Erprobung virtueller Kraftwerksstrukturen am Beispiel der Stadt Jena

JenErgieReal versteht sich als 'Blaupause' für die zukünftig ganzheitliche Versorgung mit elektrischer und thermischer Energie sowie der Integration der Mobilität als Bindeglied. Dabei werden die Haupttreiber des Energieverbrauchs Verkehr, Industrie, Gewerbe und Wohnen sektorenübergreifend betrachtet. JenErgieReal wird als Reallabor der Energiewende die für die deutsche Energiepolitik wesentlichen systemischen Herausforderungen in einem klar umrissenen Großvorhaben exemplarisch angehen und die Rolle der Infrastrukturbetreiber im Energiewendeprozess verdeutlichen. JenErgieReal hat Pioniercharakter für die Transformation des Energiesystems und widmet sich Forschungsfragestellungen, die eine Schlüsselrolle bei der Umsetzung der Energiewende einnehmen. Die Demonstration der Ergebnisse erfolgt als Reallabor in der Stadt Jena. Das Teilziel des TP 8 ist dabei die wissenschaftliche Betreuung des in der Verbundvorhabenbeschreibung gestellten Gesamtziels. Die zentralen Themen des Projektes JenErgieReal fokussieren die Netzdienlichkeit und zielen auf die Netzstabilisierung ohne Netzausbau ab. Als Beispiele seien die Lastspitzenglättung, die Lastensteuerung, auch aus dem vorgelagerten Netz, und die verringerte Rückeinspeisung erwähnt. In den verschiedenen Arbeitsthemen werden Lösungen für zukünftige Quartiere vom Endverbraucher bis zum Erzeugerentwickelt und realisiert. Das regulatorische Lernen nimmt dabei eine wichtige Rolle ein.

Energieoptimiertes Reallabor Jena mittels in Echtzeit skalierbarer Energiespeicher, Teilvorhaben: Thermische Sektorenkopplung im Virtuellen Kraftwerk

JenErgieReal versteht sich als 'Blaupause' für die zukünftig ganzheitliche Versorgung mit elektrischer und thermischer Energie sowie der Integration der Mobilität als Bindeglied. Dabei werden die Haupttreiber des Energieverbrauchs Verkehr, Industrie, Gewerbe und Wohnen sektorenübergreifend betrachtet. JenErgieReal wird als Reallabor der Energiewende die für die deutsche Energiepolitik wesentlichen systemischen Herausforderungen in einem klar umrissenen Großvorhaben exemplarisch angehen und die Rolle der Infrastrukturbetreiber im Energiewendeprozess verdeutlichen. JenErgieReal hat Pioniercharakter für die Transformation des Energiesystems und widmet sich Forschungsfragestellungen, die eine Schlüsselrolle bei der Umsetzung der Energiewende einnehmen. Die Demonstration der Ergebnisse erfolgt als Reallabor in der Stadt Jena. Das primäre Ziel des Teilprojektes 2 (TP 2) im Verbundprojekt JenErgieReal ist die Integration dezentraler Wärmesysteme und somit einer thermischen Sektorenkopplung im Quartier, das u.a. aus der entstehenden Verlustwärme von Schnellladeprozessen gespeist werden soll. So können Wärmeverluste minimiert und nachgenutzt werden. Die Potenziale zur Wärmenachnutzung im Quartiersmaßstab soll hier als Baustein u.a. der Elektromobilitätsoffensive im urbanen Raum entwickelt werden. Die energetischen Modelle und Untersuchungen liefern entscheidende Erkenntnisse für die Energie- und Klimawende.

1 2 3 4 5248 249 250