Die Anwendung „Informationssystem Salzstrukturen“ liefert Informationen zur räumlichen Verteilung von Salzstrukturen (Salzstöcke und Salzkissen) in Norddeutschland. Zusammen mit allgemeinen Struktur beschreibenden Angaben, wie beispielsweise Teufenlage und sekundärer Mächtigkeit, sowie Internbautyp, Nutzungsarten oder Erkundungsgrad lassen sich Abfragen durchführen und Salzstrukturumrisse in vier Tiefenschnitten bis zu einer maximalen Tiefe von 2000 m u. NN anzeigen. Zu jeder Salzstruktur ist ein Datenblatt mit Informationen und weiterführender Literatur hinterlegt. Der Darstellungsmaßstab hat eine untere Grenze von 1:300.000, da der Bearbeitungsmaßstab des Systems nicht für Einzelstrukturuntersuchungen geeignet ist. Die Webanwendung ist das Produkt eines BMWi-geförderten Forschungsprojektes „InSpEE“(Laufzeit 2012-2015). Das Akronym steht für „Informationssystem Salzstrukturen: Planungsgrundlagen, Auswahlkriterien und Potenzialabschätzung für die Errichtung von Salzkavernen zur Speicherung von Erneuerbaren Energien (Wasserstoff und Druckluft).
Welche Salzformationen eignen sich zur Speicherung von Wasserstoff oder Druckluft? Im Forschungsprojekt InSpEE-DS entwickelten Wissenschaftler Anforderungen und Kriterien mit denen sich mögliche Standorte auch dann bewerten lassen, wenn sich deren Erkundung noch in einem frühen Stadium befindet und die Kenntnisse zum Aufbau der Salinare gering sind. Wissenschaftler der DEEP.KBB GmbH, Hannover erarbeiten gemeinsam mit ihren Projektpartnern der Bundesanstalt für Geowissenschaften und Rohstoffe und der Leibniz Universität Hannover, Institut für Geotechnik Hannover, Planungsgrundlagen zur Standortauswahl und zur Errichtung von Speicherkavernen in flach lagernden Salzen und Mehrfach- bzw. Doppelsalinaren. Solche Kavernen könnten erneuerbare Energie in Form von Wasserstoff oder Druckluft speichern. Während sich das Vorgängerprojekt InSpEE auf Salzformationen großer Mächtigkeit in Norddeutschland beschränkte, wurden jetzt unterschiedlich alte Salinar-Horizonte in ganz Deutschland untersucht. Zur Potenzialabschätzung wurden Tiefenlinienkarten des Top und der Basis sowie Mächtigkeitskarten der jeweils betrachteten stratigraphischen Einheit und Referenzprofile erarbeitet. Informationen zum Druckluft- und Wasserstoff-Speicherpotential in den einzelnen Bundesländern sind an die identifizierten Flächen mit nutzbarem Potential gekoppelt. Die Daten können über den Webdienst „Informationssystem flach lagernde Salze“ genutzt werden. Der Darstellungsmaßstab hat eine untere Grenze von 1 : 300 000. Die Geodaten sind Produkte eines BMWi-geförderten Forschungsprojektes „InSpEE-DS“ (Laufzeit 2015-2019). Das Akronym steht für „Informationssystem Salz: Planungsgrundlagen, Auswahlkriterien und Potenzialabschätzung für die Errichtung von Salzkavernen zur Speicherung von Erneuerbaren Energien (Wasserstoff und Druckluft) – Doppelsalinare und flach lagernde Salzschichten“.
Ziel des Konsortiums ist es im Verbundprojekt 'Wasserstoff in der Intralogistik (WI)' die Vorteile und Potenziale von Wasserstoff in der Intralogistik zu erforschen und voranzutreiben. Das Fundament des Forschungsantrags bildet der Aufbau der gesamten Kette von Erzeugung grünen Wasserstoffs bis hin zur Nutzung in der Intralogistik als ganzheitliche Pilotanlage. Im Teilprojekt 'Energieeffizienter Roboter mit Schnittstelle für Fahrerloses Transportsystem' wird die Firma Yaskawa für die Energieeffizienz und die Kommunikationsschnittstellen des Roboters, auch Manipulator genannt, verantwortlich sein. Solch ein Roboter, bzw. Manipulator, ist in der Intralogistik essentiell, damit Be- und Entladeprozesse automatisiert werden können. Für ein Autonomes fahrerloses Transportsystem (FTS) ist dies von großer Bedeutung, allerdings nicht für die derzeit verfügbaren Stationären Roboter. Damit ein Roboter auf ein FTS montiert werden kann, muss somit die Energieeffizienz dem Energiespeicher des FTS angepasst und kommunikationsschnittstellen für beide autonome Systeme entwickelt werden. Darüber hinaus wird die Sicherheit des neuen Systems evaluiert und zertifiziert.
Die ganzjährige Versorgung mit erneuerbarer thermischer Energie stellt eine zentrale Herausforderung der Energiewende dar. Die Gründe sind die saisonalen Zyklen des Energiebedarfs und die eingeschränkte Möglichkeit des Transports thermischer Energie. Das Projekt 'EEW' verfolgt das Ziel einer dezentralen, ganzheitlichen Sektorenkopplung auf Quartiersebene, die ganzjährig die Versorgung mit erneuerbarer Wärme sicherstellen kann. Die Grundlage für das Projekt bilden zwei vom Projektpartner GP Joule mitentwickelte Modellregionen - eine dominiert durch PV-Strom die andere durch Wind-Strom. Für diese Modellregionen wird der vom Projektpartner DLR entwickelte thermochemische Energiespeicher auf Basis von gebranntem Kalk und Wasser weiterentwickelt. Die Vorteile des Speichers liegen im denkbar günstigen und weltweit verfügbaren Speichermaterial 'Kalk' sowie in einer verlustfreien Speicherung. Die zentrale Herausforderung der Speichertechnologie liegt in der effizienten Reaktionsführung der Be- bzw. Entladungsreaktion die im Rahmen des Projekts auf Basis der Pflugscharmischer-Technologie des Projektpartners Lödige optimiert werden soll. Das Projektziel ist daher eine kostengünstige, ressourcenschonende und effizienten Speichertechnologie zur Kopplung des Strom- und Wärmesektors für die regenerative Wärmebereitstellung in der Nahwärmeversorgung von Wohnquartieren zu entwickeln. Das Projekt verfolgt dabei einen ganzheitlichen Lösungsansatz: Die Systemintegration, die experimentelle Hardwareentwicklung als auch die industrielle Skalierung und wirtschaftliche Verwertungsmöglichkeiten aus Hersteller- und Nutzersicht. Mit Abschluss des Projekts liegt ein Integrations- und Betriebskonzept für das Speichersystems in einem realen Nahwärmenetz vor und ist anhand belastbarer Betriebsdaten techno-ökonomisch bewertet. Damit kann im Anschluss an das Projekt die Technologie direkt im Feld demonstriert und von den Partnern wirtschaftlich verwertet werden.
Die ganzjährige Versorgung mit erneuerbarer thermischer Energie stellt eine zentrale Herausforderung der Energiewende dar. Die Gründe sind die saisonalen Zyklen des Energiebedarfs und die eingeschränkte Möglichkeit des Transports thermischer Energie. Das Projekt 'EEW' verfolgt das Ziel einer dezentralen, ganzheitlichen Sektorenkopplung auf Quartiersebene, die ganzjährig die Versorgung mit erneuerbarer Wärme sicherstellen kann. Die Grundlage für das Projekt bilden zwei vom Projektpartner GP Joule mitentwickelte Modellregionen - eine dominiert durch PV-Strom die andere durch Wind-Strom. Für diese Modellregionen wird der vom Projektpartner DLR entwickelte thermochemische Energiespeicher auf Basis von gebranntem Kalk und Wasser weiterentwickelt. Die Vorteile des Speichers liegen im denkbar günstigen und weltweit verfügbaren Speichermaterial 'Kalk' sowie in einer verlustfreien Speicherung. Die zentrale Herausforderung der Speichertechnologie liegt in der effizienten Reaktionsführung der Be- bzw. Entladungsreaktion die im Rahmen des Projekts auf Basis der Pflugscharmischer-Technologie des Projektpartners Lödige optimiert werden soll. Das Projektziel ist daher eine kostengünstige, ressourcenschonende und effizienten Speichertechnologie zur Kopplung des Strom- und Wärmesektors für die regenerative Wärmebereitstellung in der Nahwärmeversorgung von Wohnquartieren zu entwickeln. Das Projekt verfolgt dabei einen ganzheitlichen Lösungsansatz: Die Systemintegration, die experimentelle Hardwareentwicklung als auch die industrielle Skalierung und wirtschaftliche Verwertungsmöglichkeiten aus Hersteller- und Nutzersicht. Mit Abschluss des Projekts liegt ein Integrations- und Betriebskonzept für das Speichersystems in einem realen Nahwärmenetz vor und ist anhand belastbarer Betriebsdaten techno-ökonomisch bewertet. Damit kann im Anschluss an das Projekt die Technologie direkt im Feld demonstriert und von den Partnern wirtschaftlich verwertet werden.
Die ganzjährige Versorgung mit erneuerbarer thermischer Energie stellt eine zentrale Herausforderung der Energiewende dar. Die Gründe sind die saisonalen Zyklen des Energiebedarfs und die eingeschränkte Möglichkeit des Transports thermischer Energie. Das Projekt 'EEW' verfolgt das Ziel einer dezentralen, ganzheitlichen Sektorenkopplung auf Quartiersebene, die ganzjährig die Versorgung mit erneuerbarer Wärme sicherstellen kann. Die Grundlage für das Projekt bilden zwei vom Projektpartner GP Joule mitentwickelte Modellregionen - eine dominiert durch PV-Strom die andere durch Wind-Strom. Für diese Modellregionen wird der vom Projektpartner DLR entwickelte thermochemische Energiespeicher auf Basis von gebranntem Kalk und Wasser weiterentwickelt. Die Vorteile des Speichers liegen im denkbar günstigen und weltweit verfügbaren Speichermaterial 'Kalk' sowie in einer verlustfreien Speicherung. Die zentrale Herausforderung der Speichertechnologie liegt in der effizienten Reaktionsführung der Be- bzw. Entladungsreaktion die im Rahmen des Projekts auf Basis der Pflugscharmischer-Technologie des Projektpartners Lödige optimiert werden soll. Das Projektziel ist daher eine kostengünstige, ressourcenschonende und effizienten Speichertechnologie zur Kopplung des Strom- und Wärmesektors für die regenerative Wärmebereitstellung in der Nahwärmeversorgung von Wohnquartieren zu entwickeln. Das Projekt verfolgt dabei einen ganzheitlichen Lösungsansatz: Die Systemintegration, die experimentelle Hardwareentwicklung als auch die industrielle Skalierung und wirtschaftliche Verwertungsmöglichkeiten aus Hersteller- und Nutzersicht. Mit Abschluss des Projekts liegt ein Integrations- und Betriebskonzept für das Speichersystems in einem realen Nahwärmenetz vor und ist anhand belastbarer Betriebsdaten techno-ökonomisch bewertet. Damit kann im Anschluss an das Projekt die Technologie direkt im Feld demonstriert und von den Partnern wirtschaftlich verwertet werden.
Das Projekt BattLifeBoost soll die Zustandsschätzung und die damit verbundene Lebensdauerabschätzung für Batteriesysteme verbessern. Dabei wird von den 4 Projektpartnern unter Berücksichtigung von vorhandenen Felddaten sowie der Anwendung von statistischen Methoden, maschineller Lernverfahren und den im Projekt entwickelten Zellalterungsmodell ein Systemalterungsmodell entwickelt, was eine deutlich verbesserte Prädiktion der noch möglichen Speicherlebensdauer ermöglicht. Neben der verbesserten Prognose der Batteriehaltbarkeit in vorgegebenen stationären Anwendungen wird zudem ein Modelltransfer auf bis dato nicht hinreichend parametrierte Batteriezellen untersucht. Abschließen werden die Projektergebnisse von allen Partnern ökonomisch und ökologisch bewertet. Dieses Teilprojekt fokussiert sich auf die State-of-Health (SOH) Bestimmung von stationären Energiespeichern. Dabei soll der SOH aus Felddaten von Heimspeichersystemen ermittelt und mittels Machine-Learning Algorithmen extrapoliert werden, um ein End-of-life (EOL) Datum bestimmen zu können. Aus den gewonnenen sowie geclusterten Daten sollen Degradationsparameter bestimmt und daraus ein SOH-Model entwickelt werden, um die Auswirkungen weiterer Lastprofile bzw. Anwendungsfelder auf die Lebensdauer abschätzen zu können. Mit den Ergebnissen soll die Überdimensionierung der Speicher sowie die Zeit für die notwendige Qualifizierung von Zellen verringert werden, wodurch sich wirtschaftliche und ökologische Vorteile wie die Reduktion des CO2-Fußabdrucks ergeben.
| Origin | Count |
|---|---|
| Bund | 2433 |
| Kommune | 5 |
| Land | 51 |
| Wissenschaft | 2 |
| Zivilgesellschaft | 6 |
| Type | Count |
|---|---|
| Daten und Messstellen | 3 |
| Ereignis | 2 |
| Förderprogramm | 2366 |
| Text | 68 |
| Umweltprüfung | 7 |
| unbekannt | 32 |
| License | Count |
|---|---|
| geschlossen | 96 |
| offen | 2378 |
| unbekannt | 4 |
| Language | Count |
|---|---|
| Deutsch | 2245 |
| Englisch | 453 |
| Resource type | Count |
|---|---|
| Archiv | 7 |
| Bild | 1 |
| Datei | 9 |
| Dokument | 43 |
| Keine | 1170 |
| Multimedia | 1 |
| Webdienst | 11 |
| Webseite | 1279 |
| Topic | Count |
|---|---|
| Boden | 1180 |
| Lebewesen und Lebensräume | 980 |
| Luft | 1235 |
| Mensch und Umwelt | 2478 |
| Wasser | 665 |
| Weitere | 2410 |