Zielsetzung und Anlass des Vorhabens: Ziel der letzten Projektphase war es, mit einer Langzeit-Praxiserprobung das zweistufige biologische Verfahren zur Deponiesickerwasserreinigung als Stand der Technik zu etablieren und zu bilanzieren. Nach der Inbetriebnahme des Technikums am Deponiestandort Schöneiche ging es in der zwölfmonatigen Laufzeit des Projektes AZ 14996/04 in den Langzeitversuchen um die Validierung der Laborergebnisse im technischen Maßstab, die verfahrenstechnische Optimierung der Anlage und um eine damit verbundene mögliche Kostenreduzierung des Systems. Darstellung der Arbeitsschritte und der angewandten Methoden: Nach dem ersten Technikums-Probebetrieb wurde eine Reihe von Optimierungsmaßnahmen durchgeführt: - der Umbau des Rohsickerwasserzulaufs, - die Verwendung von Soda statt Bicarbonat für die Ammoniumoxidation in Reaktor 2, - der Einsatz von Membrandosierpumpen mit integrierten Rückschlagventilen für die Zugabe von Soda und Essigsäure, - der Einbau von zusätzlichen Polyurethan-Festbetten zur Vergrößerung der Oberfläche für die Besiedlung mit Mikroorganismen, - die Einstellung des Sollwerts für Reaktor 4 auf einen pH-Wert von 6,5, - ein Update der SPS-Steuerung der Nanofiltration zur freien Programmierung der Spülzyklen, - der Einbau eines Absperrhahns vor den Nanofiltrations-Vorfilter - und die Trennung des Nanofiltrationsablaufs vom Reaktoren-Sammelablauf zur Behälterleerung. Es wurde sowohl Rohsickerwasser der MEAB-Deponie Schöneiche als auch Sickerwasserkonzentrat der Deponie Vorketzin behandelt. Fazit: Wegen der durchgeführten Optimierungsmaßnahmen ist es prinzipiell gelungen, das Schöneicher Rohsickerwasser gemäß Anhang 51 der Abwasserverordnung aufzureinigen. In Vorketzin wurde die organische Belastung über 70% und Stickstoff über 80% reduziert. Nach Rückgang der Calciumfracht sollte es zukünftig möglich sein, mit der Zweistufen-Biologie das Sickerwasserkonzentrat ausreichend zu reinigen, da organische Belastung und Stickstoffgehalt geringer als im Schöneicher Rohsickerwasser sind. Um das Verfahren als Stand der Technik, vor allem für die Behandlung von Sickerwasserkonzentraten, zu etablieren, müssten die Laborvorgaben mit den Erfahrungen des Technikumsbetriebs kombiniert und in einer weiteren Versuchsreihe unter optimierten Bedingungen verifiziert werden.
Äthiopien erhält den Großteil seiner Niederschläge durch Winde aus dem Süden die der Ostafrikanische Sommermonsun in den Nordhemisphärischen Sommermonaten bringt. Die Stärke der Ostafrikanischen Monsunniederschläge variierte jedoch zum Teil erheblich im Verlaufe des Quartärs und auch der Anteil von Niederschlägen durch die Westerlies könnte in der Vergangenheit sehr variabel gewesen sein. Während der vergangenen Jahre entwickelten sich einige neue Biomarker- und Stabilisotopenmethoden zu hochinnovativen und viel versprechenden (semi-)quantitativen Paläoklima-Proxies. Durch die Entwicklung und Anwendung solcher Biomarker- und Stabilisotopenmethoden zielt das beantragte Projekt darauf ab, einen Beitrag zur (semi-)quantitativen Paläoklimarekonstruktion der Bale Mountains in Äthiopien zu leisten. Im Speziellen sollen Temperatur, relative Luftfeuchte, Niederschlagsmenge und Änderungen im Quellgebiet der Niederschläge rekonstruiert werden.Im Rahmen eines der Arbeitspakete wird der rezente Niederschlag räumlich und zeitlich aufgelöst auf seine Isotopensignatur (2H/1H and 18O/16O) untersucht. Diese Daten sollen u.a. helfen die für die Bale Mountains relevanten atmosphärischen Zirkulationssysteme und deren spezifische Isotopensignaturen besser zu verstehen. In einem zweiten Arbeitspaket wird untersucht wie akkurat sich die Isotopensignatur des Niederschlags wie auch die relative Luftfeuchte und Temperatur in den Biomarker- und Stabilisotopensignaturen von Pflanzen und Böden widerspiegeln. Hierzu werden Klimagradienten entlang von Höhentransekten auf die Bale Mountains untersucht. Der methodische Schwerpunkt wird auf der Untersuchung von komponenten-spezifischen 2H-Analysen von Pflanzenwachs-bürtigen n-Alkan- und Fettsäurebiomarkern, auf komponenten-spezifischen 18O-Analysen von Hemizellulose-bürtigen Zuckerbiomarkern und auf Bodenbakterien-bürtigen Glycerol Dialkyl Glycerol Tetraether (GDGT) Lipidbiomarkern liegen. Das dritte Arbeitspaket trägt zur Gewinnung von Sedimentbohrkernen und Aufstellung von dazugehörigen Chronostratigraphien bei. Diese Sedimentbohrkerne werden gemeinsam mit den Teilprojekten P2-Antrosole und P4-Paläoökologie als Archive genutzt um die menschliche Besiedelungsgeschichte wie auch die Spätquartäre Klima- und Landschaftsgeschichte der Bale Mountains zu rekonstruieren. Das Teilprojekt P5-Paläoklimatologie wird hierzu die oben spezifizierten Biomarker- und Stabilisotopenmethoden anwenden.