Dark Septate Endophytes (DSEs) sind eine polyphyletische Gruppe innerhalb der Ascomyceten, die Pflanzenwurzeln besiedeln und durch hohe Melaninkonzentrationen in ihren Hyphen charakterisiert sind. Möglicherweise ist die Melanisierung bei Pflanzen-DSE-Assoziationen von Vorteil und eine Reaktion auf eine Vielzahl biotischer und abiotischer Stressfaktoren. Es gibt jedoch noch keine Beweise dafür, dass die hohe Melanisierung von DSEs zur erhöhten Stresstoleranz beiträgt. Es ist ebenfalls wahrscheinlich, dass Melanin eine Rolle bei der Penetration der Wurzeloberfläche durch die pilzlichen Hyphen und der anschließenden Besiedelung der Wurzelrinde spielt. Hier besteht jedenfalls eine Analogie zu einigen ebenfalls melanisierten, pathogenen Pilzen die sowohl tierische, als auch pflanzliche Gewebe erfolgreich infizieren. In diesem deutsch-französischen Kooperationsprojekt wollen wir den Melanisierungsprozess im DSE-Modell Leptodontidium sp. besser verstehen, einschließlich der Untersuchung von Regulationsmechanismen, die diese Melanisierung modulieren. Darüber hinaus werden komplementäre genetische, pharmakologische, physikalisch-chemische, physiologische und Omics-Ansätze der deutsch-französischen Partner genutzt, um zu entschlüsseln welche Rolle Melanin zum einen bei der Besiedelung von Pflanzen und bei der hohen Toleranz von Leptodontidium sp. gegenüber einer Reihe von abiotischen und biotischen Stressfaktoren spielen könnte. Das Konsortium besteht aus vier Forschergruppen, die über komplementäre Fachkenntnisse in den Bereichen Mikrobiologie, Interaktionen zwischen Pflanzen und Mikroorganismen unter Stressbedingungen, Pilzökologie, Multi-Omic-Analysen und Bioinformatik verfügen. Besondere Techniken und Themen sind die genetische Transformation von DSEs und die Rasterkraftmikroskopie (Université de Lorraine - P1), miRNA-Analysen und Metallstress (Université de Bourgogne Franche-Comté - P2), Epigenetik und RNAseq-Analysen (Friedrich-Schiller-Universität Jena - P3) sowie Interaktionen zwischen Pilzen und Mykoparasiten (Hochschule Wismar - P4). Im deutsch-französichen Team werden diese gebündelt um die Funktion Melanins für DSEs und für DSE-Pflanzen-Interaktionen aufzuklären. Das Verständnis wie Melanine die Toleranz gegenüber Umweltstress für DSEs und für die von DSEs besiedelten Pflanzen erhöhen, sollte dazu beitragen, diese wichtige Pilzressource für die nachhaltige und wirtschaftlich sinnvolle Produktion von Nutzpflanzen zu nutzen. Dies schließt auch die Betrachtung mykophager und pflanzenpathogener Organismen in der Rhizosphäre, die Exposition gegenüber Schadstoffen und Auswirkungen des Klimawandels wie Trockenheit und Hitze zwingend mit ein. Folglich streben wir auch eine weite Verbreitung der Projektergebnisse an, nicht nur in der wissenschaftlichen Gemeinschaft, sondern auch bei Interessengruppen aus Landwirtschaft, Gartenbau und der Forstwirtschaft.
Neben Stickstoff ist in natürlichen (Wald)ökosystemen vor allem Phosphat (P) limitierend für die Gesamtbiomasseproduktion. Aufgrund der geringen Mobilität von Phosphat sind höhere Pflanzen jedoch selbst auf gut gedüngten Ackerböden in mehr oder weniger starkem Umfang auf spezielle Anpassungen zur P Aneignung, wie die Ausbildung von Feinwurzelstrukturen, Veränderungen der Rhizosphärenchemie zur P-Mobilisierung, die Expression hochaffiner -ufnahmesysteme, auf Mycorrhizierung und effiziente interne P Verwertung angewiesen. Die genetischen Grundlagen derartiger Anpassungen wurden in den letzten Jahren intensiv untersucht. Weitgehend unbekannt ist in diesem Zusammenhang jedoch, inwieweit auch epigenetische Modifikationen dabei eine Rolle spielen, die möglicherweise sehr viel schnellere vererbbare Anpassungen an umweltabhängige Stressfaktoren ermöglichen als mutationsbedingte Veränderungen. Im beantragten Forschungsvorhaben wird untersucht, ob genetisch identisches Ausgangsbaummaterial von unterschiedlichen Standorten genomweite epigenetische Unterschiede zeigt. Insbesondere wird gemessen, ob diese mit der Ernährungsstrategie für Phosphor in Verbindung stehen, bzw. für die Standortanpassung mit verantwortlich sein könnten. Die genetisch sehr gut charakterisiere und über über Stecklinge klonal vermehrte Balsampappel (Populus trichocarpa) wird als Modellsystem genutzt. Stecklinge von unterschiedlichen Standorten werden zunächst auf ihre Nährstoffgehalte geprüft und anschließend in Gefäßversuchen unter identischen Bedingungen mit unterschiedlichem Gehalt an pflanzenverfügbarem P angezogen. P-Gehalte der Pflanzen, sowie potenzielle morphologische und physiologische Anpassungen an die neue Umwelt werden gemessen. Anschließend wird das Methylierungsmuster der DNA mittels Bisulfit-Hochdurchsatzsequenzierungen genomweit kartiert und die epigenetischen Unterschiede werden mit der Genexpression im Phosphatstoffwechsel korreliert.
Pflanzen passen sich mit erstaunlicher morphologischer Plastizität an Umweltveränderungen an, wie sie z.B. durch landwirtschaftliche Nutzung erzeugt werden. Die diesen morphologischen Veränderungen zugrundeliegenden molekulargenetischen Prozesse und hieraus resultierende Verschiebungen in genetischer Diversität sind jedoch größtenteils unbekannt. In dem hier beantragten Projekt wollen wir deshalb die molekulargenetischen Reaktionen auf Störungen und Umweltveränderungen untersuchen (Mahd und Düngung im Grünland). Rotklee (Trifolium pratense) ist als wertvoller Proteinlieferant eine der wichtigsten Nutzpflanzen im Grünland und trägt durch N2-Fixierung zur Reduktion der Stickstoffdüngung in Böden bei, sodass er die Ökobilanz landwirtschaftlich genutzter Grünlandflächen nachaltig verbessern kann. T. pratense findet sich auf allen Grünlandflächen der Biodiversitätsexploratorien und wir konnten in TRATSCH I zeigen, dass T. pratense (i) verschiedene morphologische Reaktionen auf Mahd zeigt. (ii) Wir identifizierten Mahd-spezifisch differenziell exprimierte Entwicklungskontrollgene und Gene, die standortspezifisch differenziell exprimiert werden, und (iii) etablierten ein mRNA-seq-Fingerprinting Protokoll. Mit diesem kann eine große Zahl an Individuen auf vielen Plots unter unterschiedlichen Landnutzungsbedingungen analysiert werden. Durch Korrelation mit diversen Umweltdaten können Effekte der Umwelt von denjenigen der Landnutzung unterschieden werden. Damit verknüpfen wir Landscape Genetics mit Landscape Genomics, um die Genomfunktionalität einzelner Arten im Umweltzusammenhang zu analysieren. In TRATSCH II beabsichtigen wir unsere Datenaufnahme auf alle Exploratorien auszudehnen, um die Störungs- und Umweltspezifität der exprimierten Transkriptom-Fingerprints in größerem Zusammenhang zu analysieren. Expressionsstudien und funktionelle Studien der Mahd-spezifischen Entwicklungskontrollgene werden Aufschluss darüber geben, wie Pflanzen auf molekulargenetischer Ebene die Veränderung des Morphotypus und das Nachwachsen nach der Mahd steuern. Um die Ökobilanz im Grünlandanbau zu optimieren, untersuchen wir experimentell verschiedene Anbauverfahren, um hohe Proteinerträge mit möglichst niedrigen Düngergaben zu erhalten. Ferner überprüfen wir die Hypothese, dass epigenetische Modifikationen für die Regulation der morphologischen Veränderungen mit verantwortlich sind durch temporäre und quantitative Analyse von Methylierungsmustern der genomischen Loci von Entwicklungskontrollgenen.