Bisphenol A is found in many everyday products. The largest portion of manufactured bisphenol A is converted into stable plastics (polycarbonate and epoxy resins). Under certain conditions, the chemical can be released from consumer products – from can coatings, for instance – and enter the human body by way of food or through the skin, from thermal paper for example. In the human body the substance can act like the female sex hormone oestrogen. Veröffentlicht in Hintergrundpapier.
Bisphenol A ist in vielen Produkten unseres täglichen Lebens. Der größte Teil des produzierten Bisphenol A wird zu stabilen Kunststoffen verarbeitet (Polykarbonat und Epoxidharzen). Unter bestimmten Bedingungen kann sich die Chemikalie aus Gebrauchsgegenständen lösen – wie aus der Beschichtung von Dosen – und über die Nahrung oder über die Haut – wie bei Thermopapier – in den menschlichen Körper gelangen. Hier kann die Substanz wie das weibliche Sexualhormon Östrogen wirken. Veröffentlicht in Hintergrundpapier.
Der Bund für Umwelt und Naturschutz Deutschland (BUND) stellte bei einer Untersuchung von Lebensmittelkonserven großer deutscher Handelsketten eine Belastung von mehr als der Hälfte der getesteten Lebensmittel mit Bisphenol A (BPA) fest. Von 26 in Stichproben ausgewählten Produkten aus dem Sortiment von Rewe, Lidl, Aldi, Netto, Penny und Edeka enthielten 14 Produkte das Hormongift. BPA ist Ausgangsstoff für die Herstellung von Epoxidharzen. Das sind Kunststoffe, mit welchen das Innere von Konservendosen häufig ausgekleidet wird, um Korrosion zu verhindern. BPA kann sich aus der Beschichtung lösen und auf die Lebensmittel übergehen. Im menschlichen Körper wirkt die Chemikalie ähnlich dem weiblichen Hormon Östrogen. Viele Studien belegen, dass BPA bereits in sehr geringen Mengen das Hormonsystem stören und schädlich für die Fortpflanzung sein kann. Unter anderem werden Unfruchtbarkeit, Prostata- und Brustkrebs, Diabetes Typ 2, Immunschwäche und Übergewicht mit BPA in Verbindung gebracht. Der BUND hatte Konserven mit Thunfisch, gestückelten und ganzen Tomaten, Kokosmilch sowie Mais und Sauerkraut untersucht. Bei Thunfisch, Tomaten und Kokosmilch waren 74 Prozent der Proben BPA-belastet. Zwar handele es sich um eine stichprobenartige Untersuchung, die nicht repräsentativ für das gesamte Sortiment sein müsse, jedoch sei bei der Zahl belasteter Produkte eine deutliche Tendenz erkennbar, sagte der BUND-Chemikalienexperte Manuel Fernández. Ähnliche Ergebnisse habe ein parallel durchgeführter Test der österreichischen BUND-Partnerorganisation Global 2000 gezeigt.
Studien belegen hormonelle Wirkung auf Fische und Amphibien – UBA prüft weitere Regulierung Das Umweltbundesamt (UBA) begrüßt die Entscheidung der EU, die Chemikalie Bisphenol A nun auch aufgrund ihrer hormonellen Wirkungen auf Tiere in der Umwelt als besonders besorgniserregend anzuerkennen. Der zuständige Ausschuss der Mitgliedstaaten der Europäischen Chemikalienagentur (ECHA) hatte dies im Dezember 2017 entschieden und ist damit einem Vorschlag Deutschlands einstimmig gefolgt. Ab Januar 2018 ist Bisphenol A damit nicht nur wegen seiner schädlichen Wirkung auf den Menschen sondern auch wegen seiner Umwelteigenschaften auf der sogenannten REACH-Kandidatenliste. Der Stoff könnte nun noch weitgehender reguliert werden. Studien hatten gezeigt, dass Bisphenol A bei Fischen und Froschlurchen hormonähnlich wirkt und Fortpflanzung und Entwicklung schädigt. Das UBA wird prüfen, ob und gegebenenfalls welche Verwendungen von Bisphenol A für einen besseren Schutz der Umwelt zusätzlich beschränkt werden müssen. Umzusetzen wäre das durch den europäischen Gesetzgeber. Bisphenol A ist Ausgangsstoff für Polykarbonat-Kunststoffe sowie Epoxidharze und gehört mit 3,8 Millionen Tonnen pro Jahr zu den am meisten produzierten Chemikalien weltweit. Der Stoff steckt noch in vielen Alltagsprodukten wie Trinkflaschen, Konservendosen, DVDs, Kassenzetteln aus Thermopapier oder Lebensmittelverpackungen und kann über verschiedene Wege in die Umwelt gelangen. Für den Menschen wurde Bisphenol A bereits auf Vorschlag von Frankreich wegen seiner fortpflanzungsschädigenden und hormonellen Wirkung als besonders besorgniserregender Stoff identifiziert und in die sogenannte Kandidatenliste aufgenommen. Stoffe dieser Liste sind Kandidaten für das Zulassungsverfahren unter REACH , welches das langfristige Ziel hat, den Stoff zu ersetzen und die Verwendung von weniger schädlichen Alternativen zu fördern. Im August 2017 hatte das UBA bei der Europäischen Chemikalienagentur ECHA ein Dossier zur Identifizierung von Bisphenol A als besonders besorgniserregenden Stoff (SVHC) für die Umwelt eingereicht. Ziel war, Bisphenol A aufgrund seiner hormonellen Wirkung auf Organismen in der Umwelt als sogenannten „endokrinen Disruptor“ zu identifizieren. Dem folgte der zuständige Ausschuss der Mitgliedstaaten der ECHA im Dezember 2017. Vorausgegangen war eine ausführliche Bewertung der verfügbaren wissenschaftlichen Studien durch das UBA. Diese zeigte, dass Bisphenol A vor allem in Fischen und Amphibien (Froschlurchen) endokrin-vermittelte schädliche Effekte auf die Fortpflanzung und Entwicklung haben kann. Mit der erneuten Aufnahme in die Kandidatenliste müssen nun auch die Wirkungen auf die Umwelt bei weiteren regulatorischen Maßnahmen stärker berücksichtigt werden. Die Verwendung von Bisphenol A in Thermopapier ist aus Gründen des Gesundheitsschutzes ab 2020 verboten. Hierdurch könnten auch Einträge von Bisphenol A in die Umwelt sinken. Das UBA prüft derzeit ob und wenn ja welche weiteren Verwendungen beschränkt werden müssten, um das Vorkommen in der Umwelt zu reduzieren. Welche Risiken Ersatzstoffe von Bisphenol A für die Umwelt haben, wird derzeit in einem Forschungsprojekt des UBA und durch Bewertungen von EU-Mitgliedstaaten analysiert. Mit der Identifizierung von Bisphenol A als SVHC und der Aufnahme in die REACH-Kandidatenliste geht eine Informationspflicht innerhalb der Lieferkette einher. Für Verbraucherinnen und Verbraucher gilt ein explizites Auskunftsrecht über Vorkommen von SVHC in Erzeugnissen. Die Hersteller, Lieferanten und Händler müssen offenlegen, ob in Erzeugnissen ein besonders besorgniserregender Stoff in einer Konzentration von über 0,1% enthalten ist. Verbraucherinnen und Verbraucher können dazu mit Hilfe der Smartphone-App „Scan4Chem“ des UBA bei Herstellern einfach eine Anfrage stellen – und so deutlich machen, dass sie keine SVHC in Produkten akzeptieren. Auch für die Umwelt lassen sich mögliche Einträge verringern: Alltagsprodukte mit Bisphenol A lassen sich vermeiden, indem man zum Beispiel von Konservendosen (dort kann Bisphenol A in der Innenbeschichtung enthalten sein) und von Plastikbehältern auf Mehrweg-Behälter aus z.B. Glas umsteigt. Bedrucktes Thermopapier wie Kassenzettel oder Fahr- und Eintrittskarten sollten soweit wie möglich über den Restmüll entsorgt werden. Dadurch wird verhindert, dass Bisphenol A über recycelte Papierprodukte wie Toilettenpapier wieder in den Stoffkreislauf und in die Umwelt gelangt.
Umweltbundesamt liefert aktuellen Hintergrundbericht Berichten die Medien über gefährliche Chemikalien, fällt häufig der Name Bisphenol A. Immer wieder verunsichern Meldungen über diese Substanz Verbraucherinnen und Verbraucher. Was ist das für ein Stoff, wo kommt er vor, und wie hoch sind die Risiken für Mensch und Umwelt? In einem aktuellen Hintergrundpapier erläutert das Umweltbundesamt (UBA) die Risiken von Bisphenol A und zeigt Handlungsoptionen für die Zukunft auf. UBA-Präsident Jochen Flasbarth empfiehlt Herstellern und Nutzern der Chemikalie, vorsorglich schon heute alternative Stoffe einzusetzen und so Mensch und Umwelt zu schützen. Bisphenol A steckt in vielen Alltagsgegenständen: Konservendosen, DVDs, Thermopapier, Lebensmittelverpackungen und Babyflaschen. Aus diesen Produkten kann sich der Stoff lösen und dann auch von Menschen aufgenommen werden. Herstellung, Weiterverarbeitung und Recycling kann Flüsse und Seen mit Bisphenol A belasten. Der Ausgangsstoff für Polykarbonat-Kunststoffe und Epoxidharze gehört mit 3,8 Millionen Tonnen pro Jahr zu den am meisten produzierten Chemikalien weltweit. Bisphenol A wirkt ähnlich wie das weibliche Sexualhormon Östrogen. Das zeigen zahlreiche Studien an Säugern oder Fischen. Die Chemikalie ist zwar weniger potent als das natürliche Sexualhormon, stört aber nachweislich bei einigen Organismen die Fortpflanzung. Das Altstoffchemikalien-Programm der EU und die europäische Lebensmittelsicherheitsbehörde EFSA bewerten Produkte auf Bisphenol A-Basis für Verbraucherinnen und Verbraucher derzeit als unbedenklich. Kanada, Dänemark und Frankreich dagegen haben aus Vorsorgegründen Bisphenol A-haltige Babyflaschen und andere Produkte für Kinder verboten. Jochen Flasbarth: „Aus Sicht des Umweltbundesamtes bestehen zwar noch Datenlücken; doch die vorliegenden Kenntnisse sollten ausreichen, die Verwendung bestimmter Bisphenol A-haltiger Produkte aus Vorsorgegründen zu beschränken.“ Die europäische Chemikalienverordnung REACH ( R egistration, E valuation and A uthorisation of Ch emicals) stärkt die Eigenverantwortung der Chemieindustrie. Unternehmen, die Bisphenol A herstellen oder verwenden sind verantwortlich, die Risiken von Bisphenol A über den gesamten Lebenszyklus zu bewerten und eventuelle Risiken zu mindern. Das Ergebnis müssen Sie den europäischen Behörden in einem Registrierungsdossier bis zum 30.11.2010 darlegen. Das UBA wird dieses Dossier genau prüfen und dann entscheiden, welche zusätzlichen Maßnahmen zum Schutz von Mensch und Umwelt möglich und notwendig sind. Vorsorglich empfiehlt das UBA den Herstellern, Importeuren und Verwendern von Bisphenol A bereits heute Verwendungen die Mensch und Umwelt belasten durch gesundheits- und umweltfreundliche Alternativen zu ersetzen - als Beitrag zum vorsorglichen Schutz von Mensch und Umwelt.
Die Modellierung des Umweltprofils „Epoxidharz“ umfasst die Aufwendungen und Emissionen der Herstellung des flüssigen Harzes aus Epichlorhydrin und Bisphenol-A inklusive aller Vorprozesse. Sämtliche Daten basieren auf Ökoprofilen der europäischen Kunststoff-Industrie Import: 6726t Produktion: 303025t
technologyComment of epoxy resin production, liquid (RER): Commercial epoxy resin can be produced by reacting bisphenol-A and epichlorohydrin in presence of a base catalyst (here represented by sodium hydroxide) (Guichon Valves n.d. and Pham and Marks 2005). Epoxy resins are in liquid form if n is from 0 to 1. When n is larger than 1 the resin in solid (Licare and Swanson, 2011). As the product here representes epoxy resin in liquid form, n is set to 1. 2C15H16O2 + 3C3H5ClO + 3NaOH -> C39H44O7 + 3Na+ + 3Cl- + 3H2O Pham, H.Q. and Marks, M.J. 2005. Epoxy Resins. In Ullmann's Encyclopedia of Industrial Chemistry, Electronic Release, Vol.13, pp.155-244. Wiley-VCH, Weinheim. Guichon Valves, n.d. Epoxy resins – Manufacturing process of Epoxy resins. Retrieved from: http://guichon-valves.com/faqs/epoxy-resins-manufacturing-process-of-epoxy-resins/, accessed 13th February 2017 For more information on the model please refer to the dedicate ecoinvent report, access it in the Report section of ecoQuery (http://www.ecoinvent.org/login-databases.html) The process is carried out in a reactor where a solution of sodium hydroxide is added (20 to 40% concentration). The product is brought to boiling temperature and a solvent is added. Solvents are not included in the inventory as it is assumed that solvents are closed-loop recycled. The unreacted epichlorohydrin is collected and recycled back into the system. The epoxy resin in then washed; this gives the final product in liquid form. Epoxy resin can also be produced in solid form. To do so, curing with, for example secondary amines, is necessary. Epoxy resins can have different characteristics, these depend on additional products that can be added to the liquid resin. The required characteristics depend on the final use of the product (Guichon Valves n.d.) This inventory representing production of a particular chemical compound is at least partially based on a generic model on the production of chemicals. The data generated by this model have been improved by compound-specific data when available. The model on production of chemicals is using specific industry or literature data wherever possible and more generic data on chemical production processes to fill compound-specific data gaps when necessary. The basic principles of the model have been published in literature (Hischier 2005, Establishing Life Cycle Inventories of Chemicals Based on Differing Data Availability). The model has been updated and extended with newly available data from the chemical industry. In the model, unreacted fractions are treated in a waste treatment process, and emissions reported are after a waste treatment process that is included in the scope of this dataset. For volatile reactants, a small level of evaporation is assumed. Solvents and catalysts are mostly recycled in closed-loop systems within the scope of the dataset and reported flows are for losses from this system. The main source of information for the values for heat, electricity, water (process and cooling), nitrogen, chemical factory is industry data from Gendorf. The values are a 5-year average of data (2011 - 2015) published by the Gendorf factory (Gendorf, 2016, Umwelterklärung, www.gendorf.de), (Gendorf, 2015, Umwelterklärung, www.gendorf.de), (Gendorf, 2014, Umwelterklärung, www.gendorf.de). The Gendorf factory is based in Germany, it produces a wide range of chemical substances. The factory produced 1657400 tonnes of chemical substances in the year 2015 (Gendorf, 2016, Umwelterklärung, www.gendorf.de) and 740000 tonnes of intermediate products. Reference(s): Hischier, R. (2005) Establishing Life Cycle Inventories of Chemicals Based on Differing Data Availability (9 pp). The International Journal of Life Cycle Assessment, Volume 10, Issue 1, pp 59–67. 10.1065/lca2004.10.181.7 Gendorf (2016) Umwelterklärung 2015, Werk Gendorf Industriepark, www.gendorf.de Licari, J.J. and Swanson, D.W. 2011. Chemistry, Formulation, and Properties of Adhesives. In Adhesives Technology for Electronic Applications (Second Edition), 2011
Bisphenol A BPA 4 4'-Isopropylidendiphenol Formel: C15H16O2 CAS-Nummer: 80-05-7 Erläuterung: Wirtschaftlich wichtiger Ausgangsstoff für Kunststoffe wie Polycarbonate und Epoxydharze
The enhancing effect on mechanical properties of boehmite (y-AlOOH)nanoparticles (BNP) in epoxy-based nanocomposites on the macroscopic scaleencouraged recent research to investigate the micro- and nanoscopic proper-ties. Several studies presented different aspects relatable to an alteration of theepoxy polymer network formation by the BNP with need for further experi-ments to identify the mode of action. With FTIR-spectroscopic methods thisstudy identifies interactions of the BNP with the epoxy polymer matrix duringthe curing process as well as in the cured nanocomposite. The data reveals thatnot the BNP themselves, but the water released from them strongly influencesthe curing process by hydrolysis of the anhydride hardener or protonation ofthe amine accelerator. The changes of the curing processes are discussed indetail. The changes of the curing processes enable new explanation for thechanged material properties by BNP discussed in recent research like alowered glass transition temperature region (Tg) and an interphase formation. © Authors
Bisphenol A (BPA) is a high production volume chemical with a broad application spectrum. As an endocrine disrupting chemical, mainly by modulation of nuclear receptors (NRs), BPA has an adverse impact on organisms and is identified as a substance of very high concern under the European REACH regulation. Various BPA substitution candidates have been developed in recent years, however, information concerning the endocrine disrupting potential of these substances is still incomplete or missing. In this study, we intended to investigate the endocrine potential of BPA substitution candidates used in environmentally relevant applications such as thermal paper or epoxy resins. Based on an extensive literature and patent search, 33 environmentally relevant BPA substitution candidates were identified. In order to evaluate the endocrine potential of the BPA replacements, a screening cascade consisting of biochemical and cell-based assays was employed to investigate substance binding to the NRs estrogen receptor ÎÌ and Î2, as well as androgen receptor, co-activator recruitment and NR-mediated reporter gene activation. In addition, a computational docking approach for retrospective prediction of receptor binding was carried out. Our results show that some BPA substitution candidates, for which so far no or only very few data were available, possess a substantial endocrine disrupting potential (TDP, BPZ), while several substances (BPS, D-8, DD70, DMP-OH, TBSA, D4, CBDO, ISO, VITC, DPA, and DOPO) did not reveal any NR binding. © 2019 The Author(s).
Origin | Count |
---|---|
Bund | 154 |
Land | 4 |
Type | Count |
---|---|
Ereignis | 1 |
Förderprogramm | 132 |
Messwerte | 2 |
Text | 19 |
unbekannt | 5 |
License | Count |
---|---|
geschlossen | 22 |
offen | 134 |
unbekannt | 2 |
Language | Count |
---|---|
Deutsch | 153 |
Englisch | 15 |
Resource type | Count |
---|---|
Archiv | 2 |
Datei | 3 |
Dokument | 10 |
Keine | 81 |
Webseite | 71 |
Topic | Count |
---|---|
Boden | 127 |
Lebewesen & Lebensräume | 103 |
Luft | 83 |
Mensch & Umwelt | 158 |
Wasser | 63 |
Weitere | 158 |