API src

Found 171 results.

Related terms

Verschränkung der hochintegrierten Elektrochemischen Konversion von Kraftlignin mit biotechnologischen und chemischen Prozessen zu drop-in Chemikalien und Intermediaten für stoffliche Anwendungen, Teilvorhaben 6: Esterpolyole und Polyurethane

Das Gesamtziel von IntElek-to 2.0 ist die Entwicklung einer nachhaltigen Wertschöpfungskette zur Darstellung und stofflichen Nutzung monomerer und oligomerer Oxidationsprodukte des Kraftlignins, das bislang einer nahezu ausschließlichen thermischen Verwertung zugeführt wird. Dieses Projekt umfasst hierbei die Optimierung der elektrochemischen, anodischen und kathodischen, kontinuierlichen Verfahren und Prozesstechnologien zur Darstellung von o.g. monomeren und weiteren entschwefelten, funktionalen lignin-stämmigen Verbindungen, Pinacol-Kopplungsprodukten und anderen biphenylischen Intermediaten und oligomeren Verbindungen. Die Kopplung mit biotechnologischen Verfahren zur Funktionalisierung, mit nachhaltiger organischer Polymersynthesechemie (aromatische gesättigte und ungesättigte Polyester, NIPU, PU, PIR und Polyharnstoff, Epoxydharze) und konventioneller katalytischer Chemie zu Polymeranwendungen (Klebstoffe, Beschichtungen, additive Fertigung, Schäume, Abformmassen) erweitert die Wertschöpfungskette im Hinblick auf marktorientierte Anwendungen. Unter anderem wird der Einsatz der innovativen Bio-Monomere für bedeutende Massenmärkte wie die Herstellung von PUR/PIR Isolationsschäumen erforscht. PIR/PU Isolationsschäume mit einem Marktanteil von über 30% des weltweiten PU-Verbrauchs, leisten einen erheblichen Beitrag zur CO2-Minderung in der Bauindustrie. Dies soll durch eine Verschränkung der o.g. Sektoren (Elektrochemie, Biotechnologie, nachhaltige Synthese- und Polymersynthese-Chemie) zur stofflichen Nutzung des nachwachsenden Rohstoffes Kraftlignin erreicht werden.

Algenbasierte, warmumformbare Naturfaser-Matrix-Halbzeuge mit duromerem Eigenschaftsprofil, Teilvorhaben 2: Epoxidierung und Härterentwicklung

Epoxidharze finden vielfältige Anwendung in der industriellen Fertigung, und a. als duromere Matrixharze für FVK. Bisphenol A stellt dabei die Hauptchemikalie der Epoxidharzchemie dar; sie ist allerdings noch nicht biobasiert zugänglich. Zudem wurde die Verbindung als besonders besorgniserregend mit reproduktionstoxischen und endokrin schädigenden Eigenschaften eingestuft. Ein Verbot für Herstellung, Inverkehrbringen und Verwenden ist daher langfristig sehr wahrscheinlich und damit auch die Suche nach Bisphenol A-Substituten für die Reaktivharzindustrie alternativlos. Tannine (Polyphenole) sind in vielerlei Hinsicht gute Bisphenol A-Alternativen. Sie kommen in Landpflanzen, aber auch in Makroalgen vor, deren Feedstock-Potenzial in diesem Zusammenhang allerdings bei weitem nicht ausgeschöpft ist. AlgoForm setzt sich daher die Entwicklung eines duromeren Epoxidharzes auf Basis algenbasierter Phlorotannine zum Ziel. Das Harz soll ferner zur Herstellung faserverstärkter Kunststoffe im Resin Transfer Moulding zum Einsatz kommen, das Faserhalbzeug dabei auf Flachs beruhen. Die Matrix soll durch Wahl geeigneter Härter und Katalysatoren zusätzlich chemisch so gestaltet sein, dass sie nach Aushärtung als Vitrimer vorliegt, also als Duromer, welches in der Hitze aufgrund labiler kovalenter Bindungen trotzdem umgeformt werden kann. Auf diese Weise werden 'duromere Organobleche' zugänglich, die nicht nur eine ^der Herstellung nachgelagerte Umformung in die Endkontur erlauben, sondern der Prepregverarbeitung vergleichbare Möglichkeiten der FVK-Erzeugung: Da Vitrimere mit sich selbst wieder chemische Bindungen knüpfen können, kann das Schichten und das Ausrichten der FVK-Platten bzgl. einer konkreten Lasteinleitung ohne Zeitdruck bei Raumtemperatur erfolgen; die Konsolidierung findet dann erst unter Wärme und Druck statt. Dies ermöglicht in Summe die hochflexible Produktion hochperformanter Multimaterialsysteme aus nachhaltigen Rohstoffen.

Verschränkung der hochintegrierten Elektrochemischen Konversion von Kraftlignin mit biotechnologischen und chemischen Prozessen zu drop-in Chemikalien und Intermediaten für stoffliche Anwendungen, Teilvorhaben 3: Elektrochemische und chemische Hydroaminierung

Das Gesamtziel von IntElek-to 2.0 ist die Entwicklung einer nachhaltigen Wertschöpfungskette zur Darstellung und stofflichen Nutzung monomerer und oligomerer Oxidationsprodukte des Kraftlignins, das bislang einer nahezu ausschließlichen thermischen Verwertung zugeführt wird. Dieses Projekt umfasst hierbei die Optimierung der elektrochemischen, anodischen und kathodischen, kontinuierlichen Verfahren und Prozesstechnologien zur Darstellung von o.g. monomeren und weiteren entschwefelten, funktionalen lignin-stämmigen Verbindungen, Pinacol-Kopplungsprodukten und anderen biphenylischen Intermediaten und oligomeren Verbindungen. Die Kopplung mit biotechnologischen Verfahren zur Funktionalisierung, mit nachhaltiger organischer Polymersynthesechemie (aromatische gesättigte und ungesättigte Polyester, NIPU, PU, PIR und Polyharnstoff, Epoxydharze) und konventioneller katalytischer Chemie zu Polymeranwendungen (Klebstoffe, Beschichtungen, additive Fertigung, Schäume, Abformmassen) erweitert die Wertschöpfungskette im Hinblick auf marktorientierte Anwendungen. Unter anderem wird der Einsatz der innovativen Bio-Monomere für bedeutende Massenmärkte wie die Herstellung von PUR/PIR Isolationsschäumen erforscht. PIR/PU Isolationsschäume mit einem Marktanteil von über 30% des weltweiten PU-Verbrauchs, leisten einen erheblichen Beitrag zur CO2-Minderung in der Bauindustrie. Dies soll durch eine Verschränkung der o.g. Sektoren (Elektrochemie, Biotechnologie, nachhaltige Synthese- und Polymersynthese-Chemie) zur stofflichen Nutzung des nachwachsenden Rohstoffes Kraftlignin erreicht werden.

Verschränkung der hochintegrierten Elektrochemischen Konversion von Kraftlignin mit biotechnologischen und chemischen Prozessen zu drop-in Chemikalien und Intermediaten für stoffliche Anwendungen, Teilvorhaben 2: Anodische Ligninoxidation und Entschweflung sowie elektrokatalytische Aminierung

Das Gesamtziel von IntElek-to 2.0 ist die Entwicklung einer nachhaltigen Wertschöpfungskette zur Darstellung und stofflichen Nutzung monomerer und oligomerer Oxidationsprodukte des Kraftlignins, das bislang einer nahezu ausschließlichen thermischen Verwertung zugeführt wird. Dieses Projekt umfasst hierbei die Optimierung der elektrochemischen, anodischen und kathodischen, kontinuierlichen Verfahren und Prozesstechnologien zur Darstellung von o.g. monomeren und weiteren entschwefelten, funktionalen lignin-stämmigen Verbindungen, Pinacol-Kopplungsprodukten und anderen biphenylischen Intermediaten und oligomeren Verbindungen. Die Kopplung mit biotechnologischen Verfahren zur Funktionalisierung, mit nachhaltiger organischer Polymersynthesechemie (aromatische gesättigte und ungesättigte Polyester, NIPU, PU, PIR und Polyharnstoff, Epoxydharze) und konventioneller katalytischer Chemie zu Polymeranwendungen (Klebstoffe, Beschichtungen, additive Fertigung, Schäume, Abformmassen) erweitert die Wertschöpfungskette im Hinblick auf marktorientierte Anwendungen. Unter anderem wird der Einsatz der innovativen Bio-Monomere für bedeutende Massenmärkte wie die Herstellung von PUR/PIR Isolationsschäumen erforscht. PIR/PU Isolationsschäume mit einem Marktanteil von über 30% des weltweiten PU-Verbrauchs, leisten einen erheblichen Beitrag zur CO2-Minderung in der Bauindustrie. Dies soll durch eine Verschränkung der o.g. Sektoren (Elektrochemie, Biotechnologie, nachhaltige Synthese- und Polymersynthese-Chemie) zur stofflichen Nutzung des nachwachsenden Rohstoffes Kraftlignin erreicht werden.

Verschränkung der hochintegrierten Elektrochemischen Konversion von Kraftlignin mit biotechnologischen und chemischen Prozessen zu drop-in Chemikalien und Intermediaten für stoffliche Anwendungen, Teilvorhaben 4: Biotechnologische Konversionen

Das Gesamtziel von IntElek-to 2.0 ist die Entwicklung einer nachhaltigen Wertschöpfungskette zur Darstellung und stofflichen Nutzung monomerer und oligomerer Oxidationsprodukte des Kraftlignins, das bislang einer nahezu ausschließlichen thermischen Verwertung zugeführt wird. Dieses Projekt umfasst hierbei die Optimierung der elektrochemischen, anodischen und kathodischen, kontinuierlichen Verfahren und Prozesstechnologien zur Darstellung von o.g. monomeren und weiteren entschwefelten, funktionalen lignin-stämmigen Verbindungen, Pinacol-Kopplungsprodukten und anderen biphenylischen Intermediaten und oligomeren Verbindungen. Die Kopplung mit biotechnologischen Verfahren zur Funktionalisierung, mit nachhaltiger organischer Polymersynthesechemie (aromatische gesättigte und ungesättigte Polyester, NIPU, PU, PIR und Polyharnstoff, Epoxydharze) und konventioneller katalytischer Chemie zu Polymeranwendungen (Klebstoffe, Beschichtungen, additive Fertigung, Schäume, Abformmassen) erweitert die Wertschöpfungskette im Hinblick auf marktorientierte Anwendungen. Unter anderem wird der Einsatz der innovativen Bio-Monomere für bedeutende Massenmärkte wie die Herstellung von PUR/PIR Isolationsschäumen erforscht. PIR/PU Isolationsschäume mit einem Marktanteil von über 30% des weltweiten PU-Verbrauchs, leisten einen erheblichen Beitrag zur CO2-Minderung in der Bauindustrie. Dies soll durch eine Verschränkung der o.g. Sektoren (Elektrochemie, Biotechnologie, nachhaltige Synthese- und Polymersynthese-Chemie) zur stofflichen Nutzung des nachwachsenden Rohstoffes Kraftlignin erreicht werden.

Verschränkung der hochintegrierten Elektrochemischen Konversion von Kraftlignin mit biotechnologischen und chemischen Prozessen zu drop-in Chemikalien und Intermediaten für stoffliche Anwendungen, Teilvorhaben 1: Elektrochemische und chemische Konversionen

Das Gesamtziel von IntElek-to 2.0 ist die Entwicklung einer nachhaltigen Wertschöpfungskette zur Darstellung und stofflichen Nutzung monomerer und oligomerer Oxidationsprodukte des Kraftlignins, das bislang einer nahezu ausschließlichen thermischen Verwertung zugeführt wird. Dieses Teilprojekt umfasst hierbei die Optimierung der elektrochemischen, anodischen und kathodischen, kontinuierlichen Verfahren und Prozesstechnologien zur Darstellung von o.g. monomeren und weiteren entschwefelten, funktionalen lignin-stämmigen Verbindungen, Pinacol-Kopplungsprodukten und anderen biphenylischen Intermediaten und oligomeren Verbindungen. Die Kopplung mit biotechnologischen Verfahren zur Funktionalisierung, mit nachhaltiger organischer Polymersynthesechemie (aromatische gesättigte und ungesättigte Polyester, NIPU, PU, PIR und Polyharnstoff, Epoxydharze) und konventioneller katalytischer Chemie zu Polymeranwendungen (Klebstoffe, Beschichtungen, additive Fertigung, Schäume, Abformmassen) erweitert die Wertschöpfungskette im Hinblick auf marktorientierte Anwendungen. Unter anderem wird der Einsatz der innovativen Bio-Monomere für bedeutende Massenmärkte wie die Herstellung von PUR/PIR Isolationsschäumen erforscht. PIR/PU Isolationsschäume mit einem Marktanteil von über 30% des weltweiten PU-Verbrauchs, leisten einen erheblichen Beitrag zur CO2-Minderung in der Bauindustrie. Dies soll durch eine Verschränkung der o.g. Sektoren (Elektrochemie, Biotechnologie, nachhaltige Synthese- und Polymersynthese-Chemie) zur stofflichen Nutzung des nachwachsenden Rohstoffes Kraftlignin erreicht werden.

CO2-Einsparungen im Leichtbau - nachhaltiger und wirtschaftlicher durch trennmittelfreies Entformen in der industriellen Serienproduktion, Teilvorhaben: Werkzeug- und Prozesstechnologie

Sandsteinverfestigung mit Epoxid-Harzen

Entwicklung einer Impraegnierformulierung auf Epoxid-Harz-Basis fuer Sandsteine mit - hydrophobierender Wirkung - groesster Eindringtiefe - geringem Einfluss auf den Wasserhaushalt des Steines - mittlerer Verfestigung - hoher Bewitterungsstabilitaet - guter Haftung - geringerer Veraenderung der Optik des Steines.

Algenbasierte, warmumformbare Naturfaser-Matrix-Halbzeuge mit duromerem Eigenschaftsprofil

Epoxidharze finden vielfältige Anwendung in der industriellen Fertigung, und a. als duromere Matrixharze für FVK. Bisphenol A stellt dabei die Hauptchemikalie der Epoxidharzchemie dar; sie ist allerdings noch nicht biobasiert zugänglich. Zudem wurde die Verbindung als besonders besorgniserregend mit reproduktionstoxischen und endokrin schädigenden Eigenschaften eingestuft. Ein Verbot für Herstellung, Inverkehrbringen und Verwenden ist daher langfristig sehr wahrscheinlich und damit auch die Suche nach Bisphenol A-Substituten für die Reaktivharzindustrie alternativlos. Tannine (Polyphenole) sind in vielerlei Hinsicht gute Bisphenol A-Alternativen. Sie kommen in Landpflanzen, aber auch in Makroalgen vor, deren Feedstock-Potenzial in diesem Zusammenhang allerdings bei weitem nicht ausgeschöpft ist. AlgoForm setzt sich daher die Entwicklung eines duromeren Epoxidharzes auf Basis algenbasierter Phlorotannine zum Ziel. Das Harz soll ferner zur Herstellung faserverstärkter Kunststoffe im Resin Transfer Moulding zum Einsatz kommen, das Faserhalbzeug dabei auf Flachs beruhen. Die Matrix soll durch Wahl geeigneter Härter und Katalysatoren zusätzlich chemisch so gestaltet sein, dass sie nach Aushärtung als Vitrimer vorliegt, also als Duromer, welches in der Hitze aufgrund labiler kovalenter Bindungen trotzdem umgeformt werden kann. Auf diese Weise werden 'duromere Organobleche' zugänglich, die nicht nur eine ^der Herstellung nachgelagerte Umformung in die Endkontur erlauben, sondern der Prepregverarbeitung vergleichbare Möglichkeiten der FVK-Erzeugung: Da Vitrimere mit sich selbst wieder chemische Bindungen knüpfen können, kann das Schichten und das Ausrichten der FVK-Platten bzgl. einer konkreten Lasteinleitung ohne Zeitdruck bei Raumtemperatur erfolgen; die Konsolidierung findet dann erst unter Wärme und Druck statt. Dies ermöglicht in Summe die hochflexible Produktion hochperformanter Multimaterialsysteme aus nachhaltigen Rohstoffen.

Ökologisch und ökonomisch nachhaltige Materialien für die Kathoden- und Anodenbeschichtung in der Lithium-Ionen-Batterie, OekoMatBatt - Ökologisch und ökonomisch nachhaltige Materialien für die Kathoden- und Anodenbeschichtung in der Lithium-Ionen-Batterie

1 2 3 4 516 17 18