Beschreibung der bekannten Erdbeben in Hamburg.
Das Projekt "Überprüfung der Auslegung des Betriebsteils MOX-Verarbeitung des Siemens-Brennelementewerks in Hanau gegen die Störfälle Brand und Erdbeben" wird/wurde gefördert durch: Hessisches Ministerium für Umwelt, Energie und Bundesangelegenheiten. Es wird/wurde ausgeführt durch: Öko-Institut. Institut für angewandte Ökologie e.V..
Das Projekt "Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - Integrated Ocean Drilling Program/Ocean Drilling Program (IODP/ODP), Teilprojekt: Deformationsmechanismen in Sedimenten kurz vor Eintritt in einen Subduktionskomplex zu flachen seismischen Bewegung" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: RWTH Aachen University, Fachgruppe für Geowissenschaften und Geographie, Lehr- und Forschungsgebiet für Neotektonik und Georisiken.Erdbeben vorherzusagen ist enorm schwierig, jedoch sind solche Vorhersagen für unsere Gesellschaft wichtig, um die Risiken abzuschwächen, die von Erdbeben ausgehen. Durch immer besseres Erkennen der großen Vielfalt seismischer Ereignisse, die von massiven, zerstörerischen Beben wie etwa dem 2004 Sumatra Beben, bis zu langsamen Beben reicht, erhöht sich der Anspruch die geologischen Ursachen hinter Erdbeben zu verstehen. Deshalb wurde in der IODP Expedition 362 die Bengal/Nicobar Fächersequenz bis in die ozeanische Kruste erbohrt und beprobt, um die Materialien zu untersuchen, die in die Subduktionszone gelangen und dort zu extremen Beben beitragen werden. Das Sumatrabeben ist von spezieller Bedeutung, da es näher als vermutet am Tiefseegraben auftrat, was zu einem besonders starken Beben und Tsunami beitrug. Ein kürzlich veröffentlichter Artikel argumentiert, dass das flache Beben im Offshore-Bereich Sumatras durch diagenetisches Verfestigen von tief versenkten störungsbildenden Sedimenten verursacht wurde. Dieses Verfestigen wird mit kompletter Entwässerung der Silikate vor der Subduktion in Verbindung gebracht, was konventionellen Modellen widerspricht. Um zum besseren Verständnis dieser atypischen flachen seismischen Bewegung beizutragen, schlagen wir vor, die Mirko- und Poren-Strukturen von Kernproben, die während der Expedition in LN2 gefroren wurden, zu charakterisieren um (1) Anomalien in den Mikrostrukturen zu erkennen, die in Kombination mit Daten zu seismischen und physikalischen Eigenschaften, auf Horizonte zukünftiger Störungslokalisierung und Bildung von Abscherflächen hinweisen und (2) Deformationsmechanismen während der Versenkung und kleinmaßstäbliche Faltung zu erkennen, die helfen werden, die mechanischen Eigenschaften der Gesteine von ihrer derzeitigen Position in den Sumatra-Subduktions-Komplex zu extrapolieren. Um diese Zielvorgaben zu erreichen, werden wir zunehmend verfestigte und wenig deformierte Proben, die vor Ort unter kryogenen Bedingungen genommen wurden (d.h. keine Veränderung der Struktur durch Austrocknen des Probenwassers) und mehrere langsam getrocknete Proben mit (kryogenem) Broad Ion Beam Polieren und (kryogener) Rasterelektronenmikroskopie untersuchen. Wir werden diese Ergebnisse mit Mikrostrukturen von Kernproben vergleichen, für die die Spannungs-Verformungs-Kurve im Labor gemessen wird, um Hypothesen zu testen, wie die Sedimentsäule auf zusätzliche Versenkung oder Scherung reagiert, die sie in der Subduktionszone erfährt.
Das Projekt "Modellierung und Analyse von Erdbebenschwärmen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Potsdam, Institut für Geowissenschaften.Seismizität kann regional und zeitlich in stark unterschiedlicher, komplexer Weise auftreten. Die dafür verantwortlichen Mechanismen und strukturellen Bedingungen sind zum großen Teil noch unbekannt. Insbesondere gilt dies für Erdbebenschwärme, über die in diesem Projekt durch vergleichende Analysen realer und modellierter Seismizitätsdaten neue Erkenntnisse gewonnen werden sollen. Die Modellbildung soll dabei auf dem kürzlich entwickelten Model von Hainzl et al. (1999a) basieren, welches sich zur Beschreibung typischer tektonischer Seismizitätsmuster bewährt hat. Im Rahmen dieses Projektes sollen die Bedingungen für episodisch auftretende Erdbebenschwärme erforscht werden. Alternativ zu diesen selbstorganisiert kritischen Modellsystemen soll auch die Hypothese einer regionalen Porendruckerhöhung als Ursache von Erdbebenschwärmen anhand numerischer Experimente untersucht werden. Parallel dazu ist die Analyse realer Daten vorgesehen. Spezielles Interesse gilt dabei den Erdbebenschwärmen aus der Vogtland-Region, aber auch Schwärmen aus anderen Regionen und induzierter Seismizität. Mit Hilfe neuer Analysemethoden der nichtlinearen Dynamik sollen sowohl die verschiedenen Modellannahmen verifiziert bzw. falsifiziert werden, als auch allgemein gültige und regional spezifische Gesetzmäßigkeiten extrahiert werden. Letztere sollen mit Hilfe von weiterentwickelten, an regionale Bedingungen angepassten Modellsystemen verstanden werden.
Das Projekt "Eine neuartige Beschreibung des Wärmetransports zwischen Flüssigkeiten und rauen Rissflächen in porösen Gesteinen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bochum, Institut für Geologie, Mineralogie und Geophysik, Arbeitsgruppe Hydrogeologie.Wärmetransfer in geklüfteten porösen Medien ist ein essentieller Prozess im Erdinnern. Er ist Triebkraft für zahlreiche Naturphänomene, wie Geysire, hydrothermische und vulkanische Systeme, als auch für Naturgefahren wie Gesteinsbrüche und Erdbeben. Er bildet die Grundlage für industrielle Anwendungen, etwa im Bereich Geothermie. Die Fließbewegung in Risssystemen kann recht gut beschrieben werden. Es existiert eine breite Auswahl an Ansätzen, u. a. aus der Kontinuumsmechanik, multiple Medien und die explizite Beschreibung von Klüften. Allerdings haben existierende Modelle für den Wärmetransfer zwei große Schwachpunkte: Oft wird ein thermisches Gleichgewicht zwischen Gestein und Fluid vorausgesetzt und die Rolle der Risse vernachlässigt. Beides ist eng miteinander verbunden, da Risse mit hohen Fließgeschwindigkeiten eine Ursache für ein thermisches Ungleichgewicht sind und eine passende Beschreibung des Wärmetransfers in Rissen fehlt. In diesem Projekt wird ein neuartiges Modell entwickelt, um Wärmetransfer in Klüften unter Berücksichtigung mikroskopischer Rissoberflächenmorphologie zu beschreiben. Aktuelle Laborexperimente erlauben eine Analyse dieser Prozesse in bisher unbekannter Genauigkeit und ermöglichen einen tief gehenden Vergleich mit theoretischen Modellen. Oberflächenrauhigkeit, Öffnungsweite und Kontaktfläche beeinflussen Fließfeld wie Wärmetransfer. Gleichzeitig verändert Temperatur die Fluideigenschaften, und Risscharakteristiken hängen vom Spannungsfeld ab, welches wiederum von Temperatur und Fluiddruck abhängt. Ein passendes Wärmemodell muss daher auch hydraulische und mechanische Prozesse berücksichtigen, was in einem vollständig gekoppelten thermisch-hydraulisch-mechanischen Modell resultiert. Die theoretische Modellentwicklung beginnt mit einfachen Geometrien, um gute Vergleichbarkeit mit Laborergebnissen von externen Projektpartnern im Centimeterbereich zu ermöglichen. Daran schließt sich die Erweiterung auf komplexe Kluftnetzwerke an. Um auch für Anwendungen mit hunderten Metern Ausdehnung geeignet zu sein, wird das Modell mit statistischen Methoden skaliert und durch andere Parameter beschrieben, wie der Rissdichte. Anwendung auf Feldskala und Vergleich mit Messungen dienen zur Evaluation. Eine Einbindung des entwickelten Modells in eine Auswahl an wissenschaftlichen Softwareprogrammen ist geplant. Dieser innovative Ansatz kann in unterschiedlichen Modellen unabhängig von der gewählten Rissrepräsentation verwendet werden. Das vorgeschlagene Projekt schließt die lang existierende Lücke einer über die Skalen konsistenten Beschreibung des Wärmetransfers in geklüfteten porösen Medien unter Berücksichtigung statischer wie dynamischer Größen. Erstmals wird es möglich sein den Einfluss und die Interaktion einzelner Bedingungen und Gegebenheiten auf den Wärmetransfer und -transport im Detail zu untersuchen. Die Bestimmung der transferierten Wärme in natürlichen und industriellen Anwendungen wird sich dadurch signifikant verbessern.
Das Projekt "Schwerpunktprogramm (SPP) 1006: Bereich Infrastruktur - Internationales Kontinentales Bohrprogramm (ICDP); International Continental Drilling Program (ICDP), Teilprojekt: Koordinationsfonds" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Christian-Albrechts-Universität zu Kiel Institut für Geowissenschaften, Arbeitsgruppe Marine Geophysik und Hydroakustik.Das internationale ICDP (International Continental Scientific Drilling Program) ist das Programm zur Realisierung von wissenschaftlichen Bohrprojekten auf den Kontinenten. Zentrale Fragstellungen beinhalten i) aktive Störungen und Erdbeben, ii) globale Zyklen und Änderungen der Umweltbedingungen, iii) Wärme- und Masse-Transfer, iv) die tiefe Biosphäre, und v) katastrophale Ereignisse - Impakt Krater und Prozesse. Deutsche Wissenschaftler/innen sind an ca. 75% aller ICDP Bohrung als Pis oder Co-Pis beteiligt. Die Finanzierung im Rahmen des DFG Infrastrukturschwerpunktprogramms 'SPP 1006 - ICDP Deutschland' stellt die Grundlage für die zentrale Rolle von deutschen Wissenschaftlern/innen in diesen Bohrprojekten dar. Die Zielsetzung dieses Antrages ist die Fortsetzung der Arbeiten des nationalen ICDP Koordinationsbüros. Es sollen auf nationaler Ebene Initiativen und Projekte koordiniert, die Kommunikation auf nationaler und internationaler Ebene intensiviert (z.B. Bekanntmachung und Unterstützung von Workshops und wissenschaftlichen Treffen), sowie deutsche Wissenschaftler/innen bei der Erarbeitung neuer internationaler Initiativen unterstützt werden. Das Koordinationsbüro dokumentiert ebenfalls den Verlauf von laufenden nationalen und internationalen ICDP Aktivitäten mit deutscher Beteiligung. Die weitere Vertiefung der Zusammenarbeit mit dem IODP Koordinationsbüro ist ein zentrales Anliegen in der kommenden Förderphase.
Das Projekt "Erstellung einer jährlichen und langzeitigen Zeitreihe von Bergstürzen und Hangerosion in den NW Argentinischen Anden" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Potsdam, Institut für Erd- und Umweltwissenschaften.Dieses deutsch-argentinische Gemeinschaftsprojekt fokussiert auf den Ursachen der räumlichen Verteilung von großen Massenbewegungen in den Anden von NW Argentinien, einer durch zahlreiche Bergsturzablagerungen charakterisierten Region mit ausgeprägten E-W und N-S-Gradienten hinsichtlich Topographie, Relief, Niederschlag und Vegetationsbedeckung. Das Arbeitsgebiet ist außerdem seismisch aktiv und wurde von 2 großen Erdbeben in den letzten 6 Jahren erfasst (M6.3 in 2010 and M5.8 in 2015) und bietet somit die einmalige Gelegenheit, verschiedene Steuerungsfaktoren von Bergstürzen durch eine Kombination von Feld- und fernerkundlichen Arbeiten zu erkunden. Die Landschaftsentwicklung von Hochgebirgsregionen wird oft sehr stark durch Bergsturzaktivität geprägt, allerdings werden die Auslösemechanismen z.T. kontrovers diskutiert. Bisherige Studien zeigen, dass Bergsturzcluster durch seismische und/oder klimatisch gesteuerte Prozesse ausgelöst werden können, allerdings spielen lithologische und strukturelle Parameter, aber auch die klimagesteuerte Vegetationsbedeckung eine Rolle. Aus diesem Grunde fokussiert dieser Antrag auf zwei, miteinander verbundenen Arbeitshypothesen: Wir wollen erstens testen, ob die Verbreitung von Bergsturzablagerungen und rezenten Massenbewegungen in den nordwest-argentinischen Anden vor allem auch durch strukturell-lithologische und vegetationsbedingte Faktoren bestimmt ist. Zweitens soll geprüft werden, ob kosmogene Nukliddatierungen dazu beitragen können, sub-rezente sowie Bergsturzereignisse auf Zeitskalen von mehreren hundert bis tausend Jahren zu evaluieren und somit Bereiche wiederholter Bergsturzaktivität zu dechiffrieren. Diese Charakterisierung von Bergstürzen und Hanginstabilitäten auf verschiedenen räumlichen und zeitlichen Skalen sind für die Bewertung von klimatischen und seismischen Extremereignissen und damit verbundenen kaskadierenden Effekten von großer Wichtigkeit. Diese Arbeiten zu Massenbewegungen sollen mit Hilfe einer Kombination von Geländebegehungen, optischen und Radar-Fernerkundungsdaten (Luftphotos, ENVISAT, TerraSAR-X, Sentinel, ALOS) für eine Zeitreihe von 2001 bis heute erarbeitet werden. Weiterhin werden geochemische Analysen an detritischem Quarz aus verschiedenen Einzugsgebieten durchgeführt, um Erosionsraten der letzten hundert bis tausend Jahre zu erfassen und somit die möglichen Auslösemechanismen zu bestimmen und die räumliche Bergsturzverteilung auf unterschiedlichen Zeitskalen zu bewerten.
Das Projekt "Untersuchungen kuenstlich induzierter seismischer Aktivitaet" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Karlsruhe (TH), Geophysikalisches Institut.Verschiedentlich Feststellung von Erdbeben im Zusammenhang mit kuenstlichen Stauseen; Klaerung durch Beobachtungen an Grosstauseen in den Alpen.
Das Projekt "Priority program (SPP) 1897: Calm, Smooth and Smart - Novel Approaches for Influencing Vibrations by Means of Deliberately Introduced Dissipation, Granulare Mischungen mit maßgeschneiderten Dämpfungseigenschaften" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Stuttgart, Institut für Mechanik (Bauwesen), Lehrstuhl II (Kontinuumsmechanik).Lärm und unkontrollierte Vibrationen sind in vielen industriellen und geotechnischen Anwendungen problematisch. Akustische Wellen auf Straßen und Schiene, oder verursacht durch Erdbeben, pflanzen sich durch die typischerweise granularen Strukturen im Boden, in Beton, oder in Asphalt mit einer ganz eigenen Charakteristik fort, wobei das Material die Geschwindigkeit, die Dämpfung und den Frequenzbereich der transmittierten Wellen beeinflusst. In unserem innovativen Projekt wollen wir granulare Materialien in 'granulare Dämpfer' verwandeln indem wir sowohl Teilcheneigenschaften als auch die Mischungszusammensetzung der weichen bzw. steifen Teilchen einer granularen Mischung in weiten Bereichen variieren. Das Ziel ist, effektive Materialeigenschaften wie Dämpfung oder Dispersion zu optimieren, und Frequenzfilterung durch Bandlücken optimal auszunutzen. Um dieses Ziel zu erreichen werden wir das Projekt von zwei Seiten aufrollen: Einerseits werden wir physikalische Experimente durchführen in denen wir Materialien mit unterschiedlichsten dämpfenden und elastischen Eigenschaften in allen Mischverhältnissen kombinieren. Andererseits werden wir dazu komplementär auch direkte Teilchen-Simulationen (DEM) durchführen um die mikromechanischen Mechanismen abzubilden und die effektiven Eigenschaften der Mischung quantitativ zu modellieren und zu verstehen. Nach sorgfältigster Analyse werden sowohl die experimentellen als auch die numerischen Daten dazu verwendet um ein stochastisches makroskopisches Modell weiterzuentwickeln das den Transport von Energie zwischen verschiedenen Frequenzbändern mit einer Master-Gleichung beschreibt. Dies kann schlussendlich dazu verwendet werden um in vielen Anwendungen neue, bessere Materialeigenschaften zu erzielen. Vorarbeiten: In den letzten Jahren habe wir bereits Wellenausbreitung und Dämpfung in granularen Mischungen von weichen und harten Teilchen unter verschiedenen hydrostatischen Kompressionsdrücken untersucht. Bisher konzentrierten wir uns auf mono-disperse Glas-Gummi Mischungen um das Zusammenspiel von Komposition und Spannungszustand zu verstehen. Ein überraschendes Ergebnis ist dabei, dass wir leichtere Packungen mit 15-20% Gummi herstellen konnten die bessere elastische und viel bessere Dämpfungseigenschaften hatten. Arbeitsplan: Zuerst wollen wir den kombinierten Einfluss von verschieden großen weichen und harten Teilchen in Mischungen untersuchen. Nach sorgfältiger Analyse im Frequenz-Raum werden wir die komplexe Wechselwirkung zwischen Teilchen- und System-Eigenschaften, sowie zwischen Energie-Absorption und -Propagation benutzen um ein stochastisches Model reduzierter Ordnung zu formulieren, das die Fortpflanzung von Wellen für alle Frequenzen in Raum und Zeit vorhersagen kann. Innovativ ist, dass wir nicht nur die niedrigeren Eigenfrequenzen modellieren, sondern alle Frequenzen, da insbesondere die hohen Frequenzen am wichtigsten für die Dämpfungseigenschaften in der Anwendung sind.
Das Projekt "Schwerpunktprogramm (SPP) 1006: Bereich Infrastruktur - Internationales Kontinentales Bohrprogramm (ICDP); International Continental Drilling Program (ICDP), Schwerpunktprogramm (SPP) 1006: Bereich Infrastruktur - Internationales Kontinentales Bohrprogramm (ICDP)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Christian-Albrechts-Universität zu Kiel Institut für Geowissenschaften, Arbeitsgruppe Marine Geophysik und Hydroakustik.Das internationale ICDP (International Continental Scientific Drilling Program) ist das Programm zur Realisierung von wissenschaftlichen Bohrprojekten auf den Kontinenten. Zentrale Fragstellungen beinhalten i) aktive Störungen und Erdbeben, ii) globale Zyklen und Änderungen der Umweltbedingungen, iii) Wärme- und Masse-Transfer, iv) die tiefe Biosphäre, und v) katastrophale Ereignisse - Impakt Krater und Prozesse. Deutsche Wissenschaftler/innen sind an ca. 75% aller ICDP Bohrung als Pis oder Co-Pis beteiligt. Die Finanzierung im Rahmen des DFG Infrastrukturschwerpunktprogramms 'SPP 1006 - ICDP Deutschland' stellt die Grundlage für die zentrale Rolle von deutschen Wissenschaftlern/innen in diesen Bohrprojekten dar. Die Zielsetzung dieses Antrages ist die Fortsetzung der Arbeiten des nationalen ICDP Koordinationsbüros. Es sollen auf nationaler Ebene Initiativen und Projekte koordiniert, die Kommunikation auf nationaler und internationaler Ebene intensiviert (z.B. Bekanntmachung und Unterstützung von Workshops und wissenschaftlichen Treffen), sowie deutsche Wissenschaftler/innen bei der Erarbeitung neuer internationaler Initiativen unterstützt werden. Das Koordinationsbüro dokumentiert ebenfalls den Verlauf von laufenden nationalen und internationalen ICDP Aktivitäten mit deutscher Beteiligung. Die Zusammenarbeit mit dem IODP soll vertieft werden. Ein Schwerpunkt der Arbeiten in der kommenden Förderperiode wird die weitere Verbesserung eines informativen Web-basierten Informations-System für das deutsche ICDP sein. Dieses System ist die Basis für die Informationen, die über die ICDP Deutschland Webseite verteilt wird.
Origin | Count |
---|---|
Bund | 510 |
Land | 84 |
Wissenschaft | 22 |
Type | Count |
---|---|
Ereignis | 11 |
Förderprogramm | 393 |
Messwerte | 1 |
Text | 83 |
unbekannt | 103 |
License | Count |
---|---|
geschlossen | 121 |
offen | 440 |
unbekannt | 30 |
Language | Count |
---|---|
Deutsch | 461 |
Englisch | 172 |
Resource type | Count |
---|---|
Archiv | 5 |
Bild | 4 |
Datei | 12 |
Dokument | 33 |
Keine | 299 |
Multimedia | 1 |
Webdienst | 25 |
Webseite | 259 |
Topic | Count |
---|---|
Boden | 524 |
Lebewesen & Lebensräume | 365 |
Luft | 300 |
Mensch & Umwelt | 591 |
Wasser | 314 |
Weitere | 570 |