<p>Alle Wirtschaftsbereiche zusammen verbrauchen fast drei Viertel der in Deutschland benötigten Primärenergie. Der Anteil des verarbeitenden Gewerbes am Primärenergieverbrauch aller Produktionsbereiche lag 2022 bei rund 46 Prozent. Der Energiebedarf dieses Gewerbes blieb im Zeitraum 2010 bis 2022 etwa konstant, der spezifische Energieverbrauch pro Tonne Stahl, Glas oder Chemikalien ging aber zurück.</p><p>Der Energiebedarf Deutschlands</p><p>Der gesamte Primärenergiebedarf Deutschlands betrug im Jahr 2022 nach dem Inländerkonzept rund 11.854 Petajoule (PJ). Dabei wird der Verbrauch inländischer Wirtschaftseinheiten in der übrigen Welt in die Berechnung des Gesamtverbrauchs einbezogen, während der Verbrauch gebietsfremder Einheiten im Inland unberücksichtigt bleibt. Die privaten Haushalte in Deutschland verbrauchten rund 30 % der <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergie#alphabar">Primärenergie</a>. Die Wirtschaft mit ihren vielen Produktionsbereichen benötigte die übrigen 70 %. Zu diesen Bereichen zählen das Herstellen von Waren, das Versorgen mit Energie und der Warentransport. All diese Produktionsbereiche verbrauchten im Jahr 2022 zusammen mehr als 8.170 PJ Primärenergie (siehe Abb. „Primärenergieverbrauch 2022 (Inländerkonzept)“).</p><p>Zur Begriffsklärung: Mit der Präposition „primär“ betonen Fachleute, dass der <a href="https://www.umweltbundesamt.de/daten/energie/primaerenergiegewinnung-importe">“Primär“-Energiebedarf</a> sowohl den realen Energiebedarf bei Energieverbrauchern erfasst als auch die Energieverluste, die bei der Bereitstellung und beim Transport von Energie entstehen. Und diese Verluste sind hoch: Mehr als ein Drittel aller Primärenergie geht bei der Bereitstellung und beim Transport von Energie verloren <a href="https://www.destatis.de/GPStatistik/receive/DEMonografie_monografie_00003790">(Statistisches Bundesamt 2006)</a>.</p><p>Der Energiebedarf des verarbeitenden Gewerbes</p><p>Die Firmen, die Waren herstellen, werden als „verarbeitendes Gewerbe“ bezeichnet. Sie hatten von allen Produktionsbereichen im Jahr 2022 mit circa 3.768 PJ den größten Primärenergiebedarf. Das ist ein Anteil von rund 46 % am Energieverbrauch aller Produktionsbereiche. Der nächstgrößte Energieverbraucher war die Energieversorgung mit 1.594 PJ (oder 19,5 % Anteil am <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a>), gefolgt vom Verkehr mit 1.121 PJ (oder 13,7 % Anteil am Primärenergieverbrauch) (siehe Abb. „Anteil wirtschaftlicher Aktivitäten am Primärenergieverbrauch aller Produktionsbereiche 2022“).</p><p>Primärenergienutzung des verarbeitenden Gewerbes</p><p>Die Primärenergienutzung innerhalb des verarbeitenden Gewerbes verteilt sich auf verschiedene Produktionssektoren (siehe Abb. „Anteile der Sektoren am <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a> des verarbeitenden Gewerbes 2022“). Ein wichtiger Sektor ist dabei die Chemieindustrie. Sie benötigte im Jahr 2022 mit rund 1.592 PJ von allen Sektoren am meisten <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergie#alphabar">Primärenergie</a> zur Herstellung ihrer Erzeugnisse. Das ist ein Anteil von 42,3 % am Energieverbrauch im <a href="https://www.umweltbundesamt.de/service/glossar/v?tag=verarbeitenden_Gewerbe#alphabar">verarbeitenden Gewerbe</a>. Weitere wichtige Energienutzer sind die Metallindustrie mit einem Anteil von 14,7 % sowie die Hersteller von Glas, Glaswaren, Keramik, verarbeiteten Steinen und Erden mit 7,3 % am Energieverbrauch im verarbeitenden Gewerbe.</p><p>Die Energie wird Unternehmen dabei als elektrischer Strom, als Wärme (etwa als Dampf oder Thermoöl) sowie direkt in Form von Brennstoffen (wie Erdgas, Kohle oder <a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Biomasse#alphabar">Biomasse</a>) zur Verfügung gestellt.</p><p>Gleichbleibender Primärenergieverbrauch</p><p>Seit dem Jahr 2010 blieb der <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a> in fast allen Produktionssektoren relativ konstant (siehe Abb. „Primärenergieverbrauch ausgewählter Sektoren des verarbeitenden Gewerbes“).</p><p>Gesunkene und gestiegene Primärenergieintensität </p><p>Die Primärenergieintensität beschreibt, wie viel <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergie#alphabar">Primärenergie</a> bezogen auf die erzielte Bruttowertschöpfung eines Produktionsbereichs oder Wirtschaftszweigs verbraucht wird. Die Entwicklung dieser Energieintensität über mehrere Jahre kann einen Hinweis darauf geben, ob in einem Wirtschaftszweig energieeffizient gearbeitet wird.</p><p>Die Primärenergieintensität einzelner Wirtschaftszweige entwickelte sich im Zeitraum 2010 bis 2021 unterschiedlich (siehe Abb. „Primärenergieintensität ausgewählter Sektoren des verarbeitenden Gewerbes“):</p><p>Begrenzte Aussagekraft der Primärenergieintensität</p><p>Schwankende Preise für Rohstoffe und Produkte sowie andere äußere Wirtschaftsfaktoren oder ggf. auch die Auswirkungen der weltweiten Corona-Pandemie beeinflussen zwar die Bruttowertschöpfung, nicht aber die Energieeffizienz eines Prozesses. Die Primärenergieintensität eignet sich daher nur eingeschränkt, um die Entwicklung der Energieeffizienz in den jeweiligen Herstellungsprozessen zu beschreiben. Dies ist unter anderem deutlich bei den Kokerei- und Mineralölerzeugnissen zu sehen.</p>
<p>Die privaten Haushalte benötigten im Jahr 2023 etwa gleich viel Energie wie im Jahr 1990 und damit gut ein Viertel des gesamten Endenergieverbrauchs in Deutschland. Sie verwendeten mehr als zwei Drittel ihres Endenergieverbrauchs, um Räume zu heizen.</p><p>Endenergieverbrauch der privaten Haushalte</p><p>Private Haushalte verbrauchten im Jahr 2023 632 Terawattstunden (<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=TWh#alphabar">TWh</a>) Energie, das sind 632 Milliarden Kilowattstunden (Mrd. kWh). Dies entsprach einem Anteil von gut einem Viertel am gesamten <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a>. </p><p>Im Zeitraum von 1990 bis 2023 fiel der Endenergieverbrauch in den Haushalten – ohne Kraftstoffverbrauch, da dieser dem Sektor Verkehr zugeordnet ist – um 3,5 % (siehe Abb. „Entwicklung des Endenergieverbrauchs der privaten Haushalte“). Dabei herrschten in den Jahren 1996, 2001 und 2010 sehr kalte Winter, die zu einem erhöhten Brennstoffverbrauch für Raumwärme führten. So lag der Energieverbrauch im sehr kalten Jahr 2010 etwa 12 % über dem Wert des eher warmen Jahres 1990.</p><p>Höchster Anteil am Energieverbrauch zum Heizen</p><p>Die privaten Haushalte benötigen mehr als zwei Drittel ihres Endenergieverbrauchs, um Räume zu heizen (siehe Abb. „Anteile der Anwendungsbereiche am <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a> der privaten Haushalte 2008 und 2023“). Sie nutzen zurzeit dafür hauptsächlich Erdgas und Mineralöl. An dritter Stelle folgt die Gruppe der erneuerbaren Energien, an vierter die Fernwärme. Zu geringen Anteilen werden auch Strom und Kohle eingesetzt. Mit großem Abstand zur Raumwärme folgen die Energieverbräuche für die Anwendungsbereiche Warmwasser sowie sonstige <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozesswrme#alphabar">Prozesswärme</a> (Kochen, Waschen etc.) bzw. <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozessklte#alphabar">Prozesskälte</a> (Kühlen, Gefrieren etc.).</p><p>Mehr Haushalte, größere Wohnflächen – Energieverbrauch pro Wohnfläche sinkt</p><p>Der Trend zu mehr Haushalten, größeren Wohnflächen und weniger Mitgliedern pro Haushalt (siehe „<a href="https://www.umweltbundesamt.de/daten/private-haushalte-konsum/strukturdaten-privater-haushalte/bevoelkerungsentwicklung-struktur-privater">Bevölkerungsentwicklung und Struktur privater Haushalte</a>“) führt tendenziell zu einem höheren Verbrauch. Diesem Trend wirken jedoch der immer bessere energetische Standard bei Neubauten und die Sanierung der Altbauten teilweise entgegen. So sank der spezifische <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a> (Energieverbrauch pro Wohnfläche) für Raumwärme seit 2008 um 20 % (siehe Abb. „Endenergieverbrauch und -intensität für Raumwärme – Private Haushalte (witterungsbereinigt“)).</p><p>Stromverbrauch mit einem Anteil von rund einem Fünftel</p><p>Der Energieträger Strom hat einen Anteil von rund einem Fünftel am <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a> der privaten Haushalte. Hauptanwendungsbereiche sind die <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozesswrme#alphabar">Prozesswärme</a> (Waschen, Kochen etc.) und die <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozessklte#alphabar">Prozesskälte</a> (Kühlen, Gefrieren etc.), die zusammen rund die Hälfte des Stromverbrauchs ausmachen. Mit jeweiligem Abstand folgen die Anwendungsbereiche Informations- und Kommunikationstechnik, Warmwasser und Beleuchtung (siehe Abb. „Anteile der Anwendungsbereiche am Netto-Stromverbrauch der privaten Haushalte 2008 und 2023“).</p><p>Direkte Treibhausgas-Emissionen privater Haushalte sinken</p><p>Der Energieträgermix verschob sich seit 1990 bis heute zugunsten von Brennstoffen mit geringeren Kohlendioxid-Emissionen und erneuerbaren Energien. Das verringerte auch die durch die privaten Haushalte verursachten direkten Kohlendioxid-Emissionen (d.h. ohne Strom und Fernwärme) (siehe Abb. „Direkte Kohlendioxid-Emissionen von Feuerungsanlagen der privaten Haushalte“).</p>
Nicht-konventionelle KW (INSPIRE) presents the results of the NiKo project according to data specifications Energy Resources (D2.8.III.20) und Geology (D2.8.II.4_v3.0). NiKo stands for „unconventional hydrocarbons“, „Nicht-konventionelle Kohlenwasserstoffe“ in German. In the NiKo project the Federal Institute for Geosciences and Natural Resources (BGR) has investigated the potential resources for shale oil and shale gas in Germany. The study was published in 2016 as a report titled „Schieferöl und Schiefergas in Deutschland – Ressourcen und Umweltaspekte“ (available in German only). The colloquial terms shale oil and shale gas refer to oil and natural gas resources in sedimentary shale rock formations, with high organic matter content. In the study, seven formations were identified to have a shale oil and/or gas potential in Germany and their distribution has been mapped in small scale. For each of the formations the organic-rich facies distribution is provided and, if appropriate, the regional potential resource distribution: Fischschiefer (Oligocene), Blättertone (Barremium - Lower-Aptian), Wealden (Berriasium), Posidonienschiefer (Lower-Toarcium), Middel-Rhaetium (Oberkeuper), Permokarbon (Stefanium - Rotliegend) und Lower Carboniferous (Upper Alaunschiefer (Kulm-Facies) + Kohlenkalk-Facies). Corresponding to the overview maps in the report two GML-files for these layers are provided, omitting however the sub-category “possible potential regions”. Bituminous facies distribution (0-5000 m Tiefe) – data specification Geology: GeologicUnit.Distribution_of_bituminous_facies.gml Distribution shale oil and shale gas – potential resources (1000 - 5000 m Tiefe) – data specification Energy Resources: FossilFuelRessource_Potential_resource_regions.gml The distribution maps of the potential resources for shale oil and gas are based on geoscientific criteria. Further non-geoscientific limiting criteria, e.g. exclusion areas, have not been taken into account for the assessment. These assessments are based on appraisements of input parameters naturally with large uncertainties for the potential resources and their distribution in the deep underground. Based on the incipient exploration status of unconventionals in Germany, these resources are considered as undiscovered. The assessed shale oil and gas resources for Germany, represent the order of magnitude of potential resources. Reference: BGR 2016 - Schieferöl und Schieferöl in Deutschland- Potenziale und Umweltaspekte https://www.bgr.bund.de/DE/Themen/Energie/Downloads/Abschlussbericht_13MB_Schieferoelgaspotenzial_Deutschland_2016.html
Im beantragten Forschungsvorhaben wird der natürliche Austritt von Kohlenstoffdioxid (CO2) aus Mofetten im Eyachtal zwischen Horb und Rottenburg untersucht. CO2 kann sich in der bodennahen Atmosphäre ansammeln und in entsprechender Konzentration für Mensch und Tier gefährlich werden. Die im Eyachtal austretenden Mengen wurden bislang nicht zuverlässig quantifiziert. Darüber hinaus ist CO2 ein Treibhausgas und steht im Zusammenhang mit dem weltweiten Klimawandel. Ähnliche und auch größere Quellgebiete existieren an verschiedenen Orten der Welt. Der quantitative Einfluss dieser natürlichen geologischen Gasquellen auf den Gashaushalt der Erde ist unbekannt, da auch die Menge des ausströmenden CO2 nicht bekannt ist.Ziel des Vorhabens ist die Überwachung der natürlichen CO2 Austrittsquellen sowie der umgebenden Atmosphäre im Eyachtal. Die Messdaten dienen der Bilanzierung der Austrittsmengen sowie die Ermittlung der horizontalen und vertikalen Flüsse im Versuchsgebiet. Hierbei wird auch die zeitliche Veränderung dieser Austritte erfasst.Zu diesem Zweck soll ein mikro-meteorologisches Messsystem (Eddy-Covariance Station) in Kombination mit einem verteilten Netzwerk aus vielen kostengünstigen CO2 Sensoren installiert werden. Ein solches Netzwerk kann die inhomogene Verteilung der Austritte sowohl zeitlich als auch räumlich erfassen. Die Verwendung von kostengünstigen Sensoren erlaubt den Betrieb einer größeren Anzahl von Sensoren und damit verbunden eine größere räumliche Abdeckung.In den letzten Jahren hat die Arbeitsgruppe Umweltphysik der Universität Tübingen eine neue Methode entwickelt, CO2 mit günstigen Sensoren in Bodennähe zu messen. Ein Nachteil der kostengünstigen Sensoren liegt in der (im Vergleich zu hochwertigen Sensoren) geringeren absoluten Messgenauigkeit. Die EC Station dient daher als Referenz, um die erreichbare Genauigkeit und Langzeitstabilität des Sensornetzes zu bewerten, die günstigen Sensoren zu kalibrieren und den turbulenten Transport des CO2 zumindest an einer Stelle direkt zu messen. Für ein vollständiges Netzwerk müssen die CO2 Sensoren noch mit geeigneten Feuchte- und Temperatursensoren ergänzt werden. Die entsprechende Hardware muss beschafft und schrittweise aufgebaut werden.Im Projekt soll ein Netzwerk aus z.B. 64 Sensoren aufgebaut werden, das die räumliche und zeitliche Verteilung des CO2 im Untersuchungsgebiet experimentell bestimmt. Die Beschaffung der Geräte ist bereits von der Alfred-Teufel Stiftung finanziert. Die Messungen werden über eine Datenbank mit Internet Schnittstelle auch der wissenschaftlichen Öffentlichkeit zur Verfügung gestellt.Das Vorhaben gliedert sich in zwei Projektphasen von je drei Jahren Dauer, beantragt wird die erste Phase. In der 2. Phase ist die numerische Simulation der CO2 Ausbreitung und die Übertragung der Methode auf andere Regionen vorgesehen.
Zur beschleunigten Einfuehrung zukunftsorientierter Fahrzeugtechniken und deren generellen Einsatz in sensiblen Gebieten (z.B. Innenstaedte, Kurorte) werden die Einsatzreife und die Umweltvorteile von serienmaessig monovalent gasbetriebenen(komprimiertes Erdgas, Fluessiggas) Nutzfahrzeugen in laermarmer Ausfuehrung in einem Grossversuch getestet.Bei diesem Vorhaben wird 1 Tankstelle gefoerdert.
Untersuchung der NOx-Belastung in Glasblaesereien, insbesondere Messungen bei der erfolgten Umstellung von Kokerei- auf Erdgas.
Im Rahmen eines Forschungsvorhabens zur rationellen Verringerung der Schadstoffemission wurde ein das 'Magerkonzept' realisierender Einzylinder-Ottomotor (Epsilon=13) mit Benzin bzw. Erdgas als Kraftstoff untersucht. Die Ergebnisse wurden mit dem auf Dieselbetrieb (Epsilon=20) mit direkter Einspritzung rueckgeruesteten Motor verglichen. Ein Vergleich der Betriebsarten zeigt die Ueberlegenheit des Gasmotors gegenueber dem Benzin- und Dieselmotor im Hinblick auf die NO2- und CO-Emission. Die erhoehte CH-Emission im Abgas des Erdgasmotors ist in Anbetracht der niedrigen Toxizitaet der Kohlenwasserstoffe von untergeordneter Bedeutung. Ein Vergleich der effektiven Wirkungsgrade ergibt fuer den Dieselmotor den hoechsten Wert. Abgasverbessernde Massnahmen, wie spaetere Zuendung im Ottobetrieb bzw. spaeterer Foerderbeginn im Dieselbetrieb einerseits sowie gesteuerte Abgasrueckfuehrung andererseits, ergeben bezueglich der problematischen Stickoxidemission gravierende Verminderungen. Auch hinsichtlich der CH-Emission sind die Verbesserungen bedeutsam. Diese Verbesserung der Schadstoffemission wird durch einen geringfuegigen Anstieg des spezifischen Brennstoffwaermeverbrauchs (maximal 2 v.H.) erkauft. Die Vermutung, dass die Toxizitaet der emittierten Kohlenwasserstoffe im Gasbetrieb erheblich geringer ist als bei Benzin- oder Dieselbetrieb, konnte durch Bestimmung der Menge an benzolloeslichen Produkten im Abgas bestaetigt werden. Das Hauptproblem des Dieselbetriebs ist die vergleichsweise sehr hohe Particulare-Matter-Emission.
Forschungsschwerpunkt: - Entwicklung differenzierter Materialien und E-Learning-Konzeptionen zur Qualifizierung von Zielgruppen, die in energiebezogenen Bereichen tätig sind bzw. entsprechende Qualifikationen anstreben - systematische mediendidaktische Fortentwicklung bestehender Blended-Learning-Konzeptionen. Ziele: - Vermittlung grundlegende energiewirtschaftliche Zusammenhänge für Nicht-Ökonomen, die in der Energiebranche tätig sind bzw. entsprechende Qualifikationen anstreben - Ziel ist das Erlangen vertiefter Einsichten in die verschiedenen Facetten der Energieversorgung und -nutzung, um ein breiteres Verständnis für die vielschichtigen Aufgaben und Anforderungen an Unternehmen in der Branche. Beschreibung: - Im Rahmen der ersten Projektphase wurde ein internetgestützter Qualifizierungsbaustein 'Energy Economics' entwickelt und eine internetgestützte Lehreinheit konzipiert. Diese wurde im Wintersemester 2013/2014 im Studiengang 'Engineering Physics' erprobt und evaluiert. Das Feedback der Teilnehmer fiel sehr positiv aus. - In der zweiten Projektphase (2014) ein weiterer internetgestützter Qualifizierungsbaustein entwickelt, auf dessen Basis ebenfalls eine Veranstaltung konzipiert, durchgeführt und evaluiert wird. Im Mittelpunkt steht darin die Auseinandersetzung mit den erneuerbaren Energien, insbesondere im Hinblick auf ihren Einsatz in Entwicklungs- und Schwellenländern. Die Lehrveranstaltung wird ausschließlich onlinebasiert durchgeführt werden. Ergebnisse/Materialien: Qualifizierungsbaustein 'Energy Economics', der sich thematisch mit den Schwerpunkten - grundlegende Strukturen internationaler Energiemärkte (insb. Erdöl, Erdgas, Kohle), - Besonderheiten der Märkte für leitungsgebundene Energieversorgung, - Bedeutung energiepolitischer Rahmensetzung auf den Märkten sowie - Förderung erneuerbarer Energien und ihrer Wirkung auf Märkten auseinandersetzt.
| Origin | Count |
|---|---|
| Bund | 2351 |
| Kommune | 2 |
| Land | 434 |
| Wissenschaft | 6 |
| Zivilgesellschaft | 23 |
| Type | Count |
|---|---|
| Chemische Verbindung | 75 |
| Daten und Messstellen | 11 |
| Ereignis | 13 |
| Förderprogramm | 1348 |
| Gesetzestext | 26 |
| Lehrmaterial | 1 |
| Text | 934 |
| Umweltprüfung | 259 |
| unbekannt | 141 |
| License | Count |
|---|---|
| geschlossen | 690 |
| offen | 1412 |
| unbekannt | 681 |
| Language | Count |
|---|---|
| Deutsch | 2677 |
| Englisch | 272 |
| Resource type | Count |
|---|---|
| Archiv | 665 |
| Bild | 3 |
| Datei | 702 |
| Dokument | 1075 |
| Keine | 1121 |
| Unbekannt | 5 |
| Webdienst | 39 |
| Webseite | 676 |
| Topic | Count |
|---|---|
| Boden | 2783 |
| Lebewesen und Lebensräume | 1742 |
| Luft | 1545 |
| Mensch und Umwelt | 2783 |
| Wasser | 1442 |
| Weitere | 2582 |