Die Daten verdeutlichen die auch im Kraftwerksbereich in den letzten Jahren vorgenommenen Angleichungen beim Energieträgereinsatz in der Stadt. Das "Rückrat" des Energieträgereinsatzes in den Berliner Kraftwerken stellen Steinkohle und Erdgas.
<p>Alle Wirtschaftsbereiche zusammen verbrauchen fast drei Viertel der in Deutschland benötigten Primärenergie. Der Anteil des verarbeitenden Gewerbes am Primärenergieverbrauch aller Produktionsbereiche lag 2022 bei rund 46 Prozent. Der Energiebedarf dieses Gewerbes blieb im Zeitraum 2010 bis 2022 etwa konstant, der spezifische Energieverbrauch pro Tonne Stahl, Glas oder Chemikalien ging aber zurück.</p><p>Der Energiebedarf Deutschlands</p><p>Der gesamte Primärenergiebedarf Deutschlands betrug im Jahr 2022 nach dem Inländerkonzept rund 11.854 Petajoule (PJ). Dabei wird der Verbrauch inländischer Wirtschaftseinheiten in der übrigen Welt in die Berechnung des Gesamtverbrauchs einbezogen, während der Verbrauch gebietsfremder Einheiten im Inland unberücksichtigt bleibt. Die privaten Haushalte in Deutschland verbrauchten rund 30 % der <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergie#alphabar">Primärenergie</a>. Die Wirtschaft mit ihren vielen Produktionsbereichen benötigte die übrigen 70 %. Zu diesen Bereichen zählen das Herstellen von Waren, das Versorgen mit Energie und der Warentransport. All diese Produktionsbereiche verbrauchten im Jahr 2022 zusammen mehr als 8.170 PJ Primärenergie (siehe Abb. „Primärenergieverbrauch 2022 (Inländerkonzept)“).</p><p>Zur Begriffsklärung: Mit der Präposition „primär“ betonen Fachleute, dass der <a href="https://www.umweltbundesamt.de/daten/energie/primaerenergiegewinnung-importe">“Primär“-Energiebedarf</a> sowohl den realen Energiebedarf bei Energieverbrauchern erfasst als auch die Energieverluste, die bei der Bereitstellung und beim Transport von Energie entstehen. Und diese Verluste sind hoch: Mehr als ein Drittel aller Primärenergie geht bei der Bereitstellung und beim Transport von Energie verloren <a href="https://www.destatis.de/GPStatistik/receive/DEMonografie_monografie_00003790">(Statistisches Bundesamt 2006)</a>.</p><p>Der Energiebedarf des verarbeitenden Gewerbes</p><p>Die Firmen, die Waren herstellen, werden als „verarbeitendes Gewerbe“ bezeichnet. Sie hatten von allen Produktionsbereichen im Jahr 2022 mit circa 3.768 PJ den größten Primärenergiebedarf. Das ist ein Anteil von rund 46 % am Energieverbrauch aller Produktionsbereiche. Der nächstgrößte Energieverbraucher war die Energieversorgung mit 1.594 PJ (oder 19,5 % Anteil am <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a>), gefolgt vom Verkehr mit 1.121 PJ (oder 13,7 % Anteil am Primärenergieverbrauch) (siehe Abb. „Anteil wirtschaftlicher Aktivitäten am Primärenergieverbrauch aller Produktionsbereiche 2022“).</p><p>Primärenergienutzung des verarbeitenden Gewerbes</p><p>Die Primärenergienutzung innerhalb des verarbeitenden Gewerbes verteilt sich auf verschiedene Produktionssektoren (siehe Abb. „Anteile der Sektoren am <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a> des verarbeitenden Gewerbes 2022“). Ein wichtiger Sektor ist dabei die Chemieindustrie. Sie benötigte im Jahr 2022 mit rund 1.592 PJ von allen Sektoren am meisten <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergie#alphabar">Primärenergie</a> zur Herstellung ihrer Erzeugnisse. Das ist ein Anteil von 42,3 % am Energieverbrauch im <a href="https://www.umweltbundesamt.de/service/glossar/v?tag=verarbeitenden_Gewerbe#alphabar">verarbeitenden Gewerbe</a>. Weitere wichtige Energienutzer sind die Metallindustrie mit einem Anteil von 14,7 % sowie die Hersteller von Glas, Glaswaren, Keramik, verarbeiteten Steinen und Erden mit 7,3 % am Energieverbrauch im verarbeitenden Gewerbe.</p><p>Die Energie wird Unternehmen dabei als elektrischer Strom, als Wärme (etwa als Dampf oder Thermoöl) sowie direkt in Form von Brennstoffen (wie Erdgas, Kohle oder <a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Biomasse#alphabar">Biomasse</a>) zur Verfügung gestellt.</p><p>Gleichbleibender Primärenergieverbrauch</p><p>Seit dem Jahr 2010 blieb der <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a> in fast allen Produktionssektoren relativ konstant (siehe Abb. „Primärenergieverbrauch ausgewählter Sektoren des verarbeitenden Gewerbes“).</p><p>Gesunkene und gestiegene Primärenergieintensität </p><p>Die Primärenergieintensität beschreibt, wie viel <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergie#alphabar">Primärenergie</a> bezogen auf die erzielte Bruttowertschöpfung eines Produktionsbereichs oder Wirtschaftszweigs verbraucht wird. Die Entwicklung dieser Energieintensität über mehrere Jahre kann einen Hinweis darauf geben, ob in einem Wirtschaftszweig energieeffizient gearbeitet wird.</p><p>Die Primärenergieintensität einzelner Wirtschaftszweige entwickelte sich im Zeitraum 2010 bis 2021 unterschiedlich (siehe Abb. „Primärenergieintensität ausgewählter Sektoren des verarbeitenden Gewerbes“):</p><p>Begrenzte Aussagekraft der Primärenergieintensität</p><p>Schwankende Preise für Rohstoffe und Produkte sowie andere äußere Wirtschaftsfaktoren oder ggf. auch die Auswirkungen der weltweiten Corona-Pandemie beeinflussen zwar die Bruttowertschöpfung, nicht aber die Energieeffizienz eines Prozesses. Die Primärenergieintensität eignet sich daher nur eingeschränkt, um die Entwicklung der Energieeffizienz in den jeweiligen Herstellungsprozessen zu beschreiben. Dies ist unter anderem deutlich bei den Kokerei- und Mineralölerzeugnissen zu sehen.</p>
<p>Kraftwerke: konventionelle und erneuerbare Energieträger </p><p>Die Energiewende ändert die Zusammensetzung des deutschen Kraftwerksparks. Die Anzahl an Kraftwerken zur Nutzung erneuerbarer Energien nimmt deutlich zu. Kraftwerke mit hohen Treibhausgas-Emissionen werden vom Netz genommen. Gleichzeitig muss eine sichere regionale und zeitliche Verfügbarkeit der Stromerzeugung zur Deckung der Stromnachfrage gewährleistet sein.</p><p>Kraftwerkstandorte in Deutschland</p><p>Die Bereitstellung von Strom aus konventionellen Energieträgern verteilt sich unterschiedlich über die gesamte Bundesrepublik. Das <a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a> stellt verschiedene Karten mit Informationen zu Kraftwerken in Deutschland zur Verfügung.</p><p>Kraftwerke und Verbundnetze in Deutschland, Stand August 2025.<br> Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.</p><p>Kraftwerke mit Kraft-Wärme-Kopplung (KWK) in Deutschland, Stand August 2025<br> Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.</p><p>Karte Kraftwerke und Windleistung in Deutschland, Stand Juni 2025<br> Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.</p><p>Karte Kraftwerke und Photovoltaikleistung in Deutschland, Stand Juni 2025<br> Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.</p><p>Installierte Kraftwerksleistung in Deutschland 2024 (Stand: Januar 2025)<br> Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.</p><p>Kraftwerke auf Basis konventioneller Energieträger</p><p>Der deutsche Kraftwerkspark beruhte vor der Energiewende vor allem auf konventionellen Erzeugungsanlagen auf Grundlage eines breiten, regional diversifizierten, überwiegend fossilen Energieträgermixes (Stein- und Braunkohlen, Kernenergie, Erdgas, Mineralölprodukte, Wasserkraft etc.). Die gesamte in Deutschland installierte Brutto-Leistung konventioneller Kraftwerke ist basierend auf Daten des Umweltbundesamtes in der Abbildung „Installierte elektrische Leistung von konventionellen Kraftwerken ab 10 Megawatt nach Energieträgern“ dargestellt. Die aktuelle regionale Verteilung der Kraftwerkskapazitäten ist in der Abbildung „Kraftwerksleistung aus konventionellen Energieträgern ab 10 Megawatt nach Bundesländern“ dargestellt.</p><p>In den letzten Jahrzehnten hat sich die Energiebereitstellung aus erneuerbaren Energien sehr dynamisch entwickelt. Gleichzeitig wurden mit dem im Jahr 2023 erfolgten gesetzlichen Ausstieg Deutschlands aus der Nutzung der Kernenergie und dem fortschreitenden Ausstieg aus der Braun- und Steinkohle konkrete Zeitpläne zur Reduktion konventioneller Kraftwerkskapazitäten festgelegt (siehe Abb. „Installierte Leistung zur Stromerzeugung aus konventionellen Kraftwerken). Unabhängig davon übt der <a href="https://www.umweltbundesamt.de/service/glossar/c?tag=CO2#alphabar">CO2</a>-Preis einen wesentlichen Einfluss auf die Rentabilität und insofern den Einsatz fossiler Kraftwerke aus.</p><p>Kraftwerke auf Basis erneuerbarer Energien</p><p>Im Jahr 2024 erreichte der Ausbau der erneuerbaren Energien in Deutschland einen neuen Höchststand: In diesem Jahr wurden über 21 Gigawatt (GW) an erneuerbarer Kraftwerkskapazität zugebaut. Dieser Zubau liegt damit nochmals höher als die vorherige Ausbaurekord aus dem Jahr 2023. Insgesamt stieg damit die Erzeugungskapazität erneuerbarer Kraftwerke auf knapp 191 GW (siehe Abb. „Installierte Leistung zur Stromerzeugung aus erneuerbaren Energien“).</p><p>Getragen wurde der Erneuerbaren-Zubau in den vergangenen Jahren vor allem von einem starken Ausbau der <strong>Photovoltaik</strong> (PV). Seit Anfang 2020 wurden mehr als 53 GW PV-Leistung zugebaut, damit hat sich die installierte Leistung in den letzten fünf Jahren mehr als verdoppelt. Mit einem Zubau von über 18 GW wurde im Jahr 2024 darüber hinaus ein neuer Zubaurekord erreicht. Nach den Ausbaustarken Jahren 2011 und 2012 war der Photovoltaikausbau zunächst stark eingebrochen, seit etwa 10 Jahren wächst der Zubau aber kontinuierlich mit einer deutlichen Beschleunigung innerhalb der letzten fünf Jahre. Um das im EEG 2023 formulierte PV-Ausbauziel von 215 GW im Jahr 2030 zu erreichen, wurde ein Ausbaupfad festgelegt. Das Zwischenziel von 89 GW zum Ende des Jahres 2024 wurde deutlich übertroffen. In den Folgejahren bis 2030 bleibt allerdings ein weiterer Zubau von jährlich fast 20 GW zur Zielerreichung notwendig.</p><p>Auch wenn das Ausbautempo bei <strong>Windenergie</strong> zuletzt wieder zugelegt hat, sind die aktuelle zugebauten Anlagenleistungen weit von den hohen Zubauraten früherer Jahre entfernt. Im Jahr 2024 wurden 3,3 GW neue Windenergie-Leistung zugebaut (2023: 3,2 GW; 2022: 2,4 GW). In den Jahren 2014 bis 2017 waren es im Schnitt allerdings 5,5 GW. Insgesamt lag die am Ende des Jahres 2024 installierte Anlagenleistung von Windenergieanlagen an Land und auf See bei 72,7 GW. Um die im EEG 2023 festgelegte Ausbauziele von 115 GW (an Land) und 30 GW (auf See) im Jahr 2030 zu erreichen, ist jeweils eine deutliche Beschleunigung des Ausbautempos notwendig.</p><p>Durch die Abhängigkeit vom natürlichen Energiedargebot unterscheidet sich die Stromerzeugung der erneuerbaren Erzeugungsanlagen teilweise beträchtlich. So kann eine Windenergieanlage die vielfache Menge Strom erzeugen wie eine PV-Anlage gleicher Leistung. Ein einfacher Vergleich der installierten Leistungen lässt deshalb noch keinen Schluss über die jeweils erzeugten Strommengen zu. Neben Photovoltaik- und Windenergieanlagen mit stark witterungsabhängiger Stromerzeugung liefern Wasserkraftwerke langfristig konstant planbaren erneuerbaren Strom, sowie Biomassekraftwerke flexibel steuerbare Strommengen. Beide Energieträger haben in Deutschland aber nur ein begrenztes weiteres Ausbaupotential.</p><p>Weitere Informationen und Daten zu erneuerbaren Energien finden Sie auf der <a href="https://www.umweltbundesamt.de/themen/klima-energie/erneuerbare-energien/erneuerbare-energien-in-zahlen">Themenseite „Erneuerbare Energien in Zahlen“</a>.</p><p>Wirkungsgrade fossiler Kraftwerke</p><p>Beim <a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Brutto-Wirkungsgrad#alphabar">Brutto-Wirkungsgrad</a> ist im Vergleich zum Netto-Wirkungsgrad der Eigenverbrauch der Kraftwerke enthalten. Insgesamt verbesserte sich der durchschnittliche Brutto-Wirkungsgrad des eingesetzten deutschen Kraftwerksparks seit 1990 um einige Prozentpunkte (siehe Abb. „Durchschnittlicher Brutto-Wirkungsgrad des eingesetzten fossilen Kraftwerksparks“). Diese Entwicklung spiegelt nicht zuletzt die kontinuierliche Modernisierung des Kraftwerksparks und die damit verbundene Außerbetriebnahme alter Kraftwerke wider.</p><p>Der Brennstoffausnutzungsgrad von Kraftwerken kann durch eine gleichzeitige Nutzung von Strom und Wärme (Kraft-Wärme-Kopplung, KWK) gesteigert werden. Dies kann bei Großkraftwerken zur Wärmebereitstellung in Industrie und Fernwärme, aber auch bei dezentralen kleinen Kraftwerken wie Blockheizkraftwerken lokal erfolgen. Dabei müssen neue Kraftwerke allerdings auch den geänderten Flexibilitätsanforderungen an die Strombereitstellung genügen, dies kann beispielsweise über die Kombination mit einem thermischen Speicher erfolgen.</p><p>Obwohl bei konventionellen Kraftwerken in den letzten Jahren technisch eine Steigerung der Wirkungsgrade erreicht werden konnte, werden die dadurch erzielbaren Brennstoffeinsparungen nicht ausreichen, um die erforderliche Treibhausgasreduktion im Kraftwerkssektor für die Einhaltung der Klimaschutzziele zu erreichen. Dafür ist ein weiterer Ausbau der erneuerbaren Stromerzeugung notwendig.</p><p>Kohlendioxid-Emissionen</p><p>Folgende Aussagen können zum Kohlendioxid-Ausstoß von Großkraftwerken für die Stromerzeugung getroffen werden:</p><p>Weitere Entwicklung des deutschen Kraftwerksparks</p><p>Um die Klimaschutzziele zu erreichen, ist ein weiterer Ausbau der erneuerbaren Kraftwerkskapazitäten notwendig (siehe Tab. "Genehmigte oder im Genehmigungsverfahren befindliche konventionelle Kraftwerksprojekte").</p><p>Um den Herausforderungen der Energiewende begegnen zu können, wird es außerdem einen zunehmenden Fokus auf Flexibilisierungsmaßnahmen brauchen. Dabei handelt es sich um einen Ausbau von Speichern (etwa Pumpspeicher, elektro-chemische Speicher, thermische Speicher) sowie um den Ausbau der Strominfrastruktur (Netzausbau, Außenhandelskapazitäten) und Anreize zur Flexibilisierung des Stromverbrauchs („Demand Side Management").</p>
Sanierungsrahmenpläne sind eine besondere Form der Braunkohlenpläne im Freistaat Sachsen, welche für jeden stillgelegten oder noch stillzulegenden Tagebau aufzustellen sind. Der Sanierungsrahmenplan enthält Festlegungen zu den Grundzügen der Wiedernutzbarmachung der Oberfläche, zu der anzustrebenden Landschaftsentwicklung sowie zur Wiederherstellung der Infrastruktur. Mit der deutschen Einheit am 3. Oktober 1990 änderten sich die politischen und wirtschaftlichen Rahmenbedingungen für die ostdeutsche Braunkohlenindustrie grundlegend. Der Zusammenbruch der DDR-Wirtschaft, die Modernisierung aller Haushalte und die allgemeine Verfügbarkeit anderer Energieträger (insbesondere Erdöl und Erdgas) führten zu einem starken Absatzrückgang der heimischen Braunkohle. Kraftwerke, Veredlungsanlagen und Tagebaubetriebe erfüllten zudem nicht die bundesdeutschen Umweltstandards. Zahlreiche Tagebaue mussten stillgelegt werden. Die forcierte Entwicklung der Braunkohlenindustrie in der DDR war mit der Zerstörung des Lebensraumes der Menschen und mit erheblichen Eingriffen in Natur und Landschaft verbunden. Ökologische und soziale Belange spielten eine untergeordnete Rolle. Beträchtliche, in einzelnen Tagebauen auf bis zu 20 Jahre geschätzte Rekultivierungsrückstände, Sand-und Staubauswehungen, ein gestörter Wasserhaushalt und Altlasten waren die Hinterlassenschaften des Braunkohlenbergbaus in der Lausitz. Hinzu kamen kilometerlange ungesicherte Tagebauböschungen sowie riesige ungesicherte Tagebaukippen, die eine Gefahr für die öffentliche Sicherheit darstellten. In dieser besonderen Situation und angesichts des Umfangs der notwendigen Sanierungsarbeiten und des allgemeinen öffentlichen Interesses mussten in transparenten, förmlichen Verfahren Braunkohlenpläne mit inhaltlichen Vorgaben für eine geordnete Sanierung erarbeitet und Konflikte aufgelöst werden. Dies wird in der Regional- und Sanierungsrahmenplanung im Freistaat Sachsen insbesondere über die kommunale Mitwirkung sichergestellt.
Kalte Gase oder Aerosolwolken in der Atmosphaere koennen schwerer als die Umgebungsluft sein. Die entstehende Bewegung entlang des Bodens soll untersucht werden. Von speziellem Interesse sind die Ausbreitungsgeschwindigkeit sowie die Verduennung der Wolke durch die Vermischung mit der umgebenden Luft (Entrainment). Das Problem stellt sich bei der Verdampfung von verfluessigten Gasen (z.B. Erdgas) oder bei Unfaellen in chemischen Anlagen (z.B.Seveso). Staublawinen und Sandsturmfronten haben aehnliche Ausbreitungscharakteristiken. Am Institut wird ein Kanal aufgebaut (2.0 x 1.6 x 22.0 m), in dem die eindimensionale Ausbreitung ueber einer isolierten Unterlage gemessen werden wird. Damit werden theoretische Modelle ueberprueft und empirische Groessen bestimmt.
Leitstellen für die Überwachung radioaktiver Stoffe in der Umwelt Die radioaktiven Stoffe in der Umwelt werden zum einen von den Ländern, zum anderen von Einrichtungen des Bundes überwacht. In diesem Zusammenhang wurden Leitstellen eingerichtet, die jeweils für die Überwachung bestimmter Umweltbereiche verantwortlich sind. Die Aufgaben der Leitstellen sind im Strahlenschutzgesetz bzw. der IMIS -Zuständigkeitsverordnung, der Allgemeinen Verwaltungsvorschrift zum Integrierten Mess- und Informationssystem zur Überwachung radioaktiver Stoffe in der Umwelt ( AVV - IMIS ) und in der Strahlenschutzverordnung festgeschrieben. Der radioaktive Fallout durch die atmosphärischen Kernwaffenversuche in den 1950er und 1960er Jahren machte eine Überwachung der Belastung von Mensch und Umwelt durch Radioaktivität erforderlich. Wegen der Verpflichtungen durch den Artikel 35 des EURATOM -Vertrages von 1957 und der großtechnischen Nutzung der Kernenergie zur Energieproduktion wurde die Überwachung ausgeweitet und gesetzlich geregelt. Die radioaktiven Stoffe in der Umwelt werden zum einen von den Ländern, zum anderen von Einrichtungen des Bundes überwacht. Leitstellen: Einrichtungen des Bundes Gleichzeitig mit der amtlichen Überwachung wurden Leitstellen eingerichtet, die für bestimmte Umweltbereiche verantwortlich sind. Diese Leitstellen sind eingerichtet beim Bundesamt für Strahlenschutz , beim Deutschen Wetterdienst, bei der Bundesanstalt für Gewässerkunde, beim Max-Rubner-Institut, beim Bundesamt für Schifffahrt und Hydrographie, beim Thünen-Institut. Die Aufgaben Die Aufgaben der Leitstellen sind im Strahlenschutzgesetz ( StrlSchG ) mit der IMIS -Zuständigkeitsverordnung ( IMIS -ZustV) und in der Strahlenschutzverordnung ( StrlSchV ) festgeschrieben. Dies sind unter anderem: Überprüfung der Messdaten, die im Rahmen der Umweltüberwachung ( AVV - IMIS ) nach StrlSchG sowie im Rahmen der Emissions- und Immissionsüberwachung ( REI ) nach StrlSchV erhoben werden (Datenerzeuger sind unter anderem die amtlichen Messstellen der Länder, Bundesinstitute sowie die unabhängigen Messstellen zur Überwachung kerntechnischer Einrichtungen und die Betreiber kerntechnischer Einrichtungen), Zusammenfassung und Dokumentation der Daten der Umweltüberwachung nach StrlSchG sowie der Emissions- und Immissionsüberwachung, Überprüfung, Weiterentwicklung und Dokumentation von Probenahme- und Analyseverfahren (Messanleitungen) , Vergleichsanalysen zur externen Qualitätskontrolle (Ringversuche, Messvergleiche), Beratung der zuständigen Ministerien des Bundes und der Länder in fachlichen Fragen. Das BfS nimmt die Funktion einer Leitstelle in folgenden Bereichen wahr: Die Leitstellen des BfS Leitstelle Gesetzliche Grundlage Bemerkungen Leitstelle für Bodenoberflächen (In-situ-Gammaspektrometrie), Ortsdosis und Ortsdosisleistung ( ODL ) StrlSchG , IMIS -ZustV, AVV - IMIS , StrlSchV , REI ODL -Messnetz Leitstelle für Spurenanalyse StrlSchG , IMIS -ZustV, AVV - IMIS Spurenanalyse von radioaktiven Edelgasen (Krypton, Xenon) und luftstaubgebundenen Radionukliden Leitstelle für Trinkwasser, Grundwasser, Abwasser, Klärschlamm, Abfälle und Abwasser aus kerntechnischen Anlagen StrlSchG , IMIS -ZustV, AVV - IMIS , StrlSchV , REI Leitstelle für Arzneimittel und deren Ausgangsstoffe sowie Bedarfsgegenstände StrlSchG , IMIS -ZustV Leitstelle für Fortluft aus kerntechnischen Anlagen StrlSchG , IMIS -ZustV, REI Leitstelle für Fragen der Radioaktivitätsüberwachung bei erhöhter natürlicher Radioaktivität (ENORM) StrlSchG , IMIS -ZustV, StrlSchV Natürliche Radioaktivität in Umweltmedien, wie zum Beispiel Böden, Baustoffen sowie in industriellen Rückständen (zum Beispiel bei der Gewinnung von Erdgas) Qualitätssicherung von Messergebnissen durch die Leitstellen Die Leitstellen prüfen die Messergebnisse auf ihre Plausibilität und übernehmen die Qualitätssicherung der Daten. Korrekte Messergebnisse sind eine maßgebliche Voraussetzung, um in einem nuklearen Ereignisfall mögliche radiologische Auswirkungen richtig einschätzen zu können und die richtigen Maßnahmen zum Schutz der Bevölkerung zu treffen. Die Leitstellen entwickeln die anzuwendenden Probenahme- und Analyseverfahren, prüfen die Messdaten auf Plausibilität, führen Maßnahmen zur Qualitätssicherung durch, bereiten die verfügbaren Daten auf und erstatten Bericht an entscheidungsbefugte Stellen. Ringversuche und Laborvergleichsanalysen und -messungen als externe Qualitätskontrolle Die Leitstellen organisieren regelmäßig Ringversuche bzw. Laborvergleichsuntersuchungen zur externen Qualitätskontrolle. Dazu versendet die verantwortliche Leitstelle standardisierte Proben mit bekannter Zusammensetzung an die teilnehmenden Institutionen. Die Proben werden von den Teilnehmern mit den von ihnen üblicherweise verwendeten Verfahren analysiert. Ergebnisse: Vergleich liefert Informationen über Qualität von Analyse- und Auswertungsmethoden In Fachgesprächen und Workshops werden die angewendeten Methoden und Verfahren sowie die Ergebnisse von Ringversuchen bzw. Laborvergleichsanalysen und -messungen mit den Teilnehmern diskutiert. Im Bedarfsfall unterstützt die jeweilige Leitstelle teilnehmende Institutionen bei der Einführung neuer Mess- oder Analyseverfahren. Internationale Zusammenarbeit Die Mitwirkung der Leitstellen des BfS in internationalen Arbeitsgruppen dient dem Erfahrungsaustausch, der Harmonisierung von Analyse- und Messverfahren im internationalen Rahmen, der Qualitätssicherung der verfügbaren Daten. Die internationale Zusammenarbeit beim Fukushima-Unfall hat gezeigt, wie wichtig qualitätsgesicherte Daten auch auf internationaler Ebene sind. Durch das internationale Messnetz der CTBTO konnte sowohl die Ausbreitung der freigesetzten Radioaktivität als auch ihre Abschwächung bei der Verteilung in der Atmosphäre genau beobachtet werden. Die Entscheider erhielten so frühzeitig zutreffende Prognosen auf zu erwartende radiologische Auswirkungen im jeweiligen Land – eine wichtige Voraussetzung, um über mögliche nationale Schutzmaßnahmen zu entscheiden. Stand: 05.08.2025
Heavy machinery used for the construction or transport gas pipelines can cause severe and persistent subsoil compaction of agricultural land, depending on various factors among which soil wetness plays a key role. In this project, several field experiments were carried out to investigate the stress propagation under heavy construction machines (40 t and more) during operation on selected plot areas under controlled moisture conditions, to assess the resulting mechanical deformation of the subsoil and to investigate changes of soil properties in particular infiltration patterns of a dye tracer analyzed by computer image analysis. In the laboratory , oedometric compressibility and other properties, in particular bulk density and coarse porosity, of soil samples taken before and after the impact by the machines were determined and compared to measurements of control samples. Furthermore, we investigated the moisture-dependence of the precompression stress by a series of oedometer tests and also performed some shear tests for the purpose of model parameter estimation. Using only a priori parameter values determined from such independent soil tests or just best estimates, the critical-state soil-mechanical model CRISP was used to interpret the results. As far as field observations were available they agreed well with the model simulations. The results lend support to the hypothesis that preconsolidation stress provides a suitable criterion to protect soils against overloading. However, the moisture-dependence of this parameter needs to be better known. Given that homogeneity of the experimental field sites had been a prime criterion of selection, spatial variability between trafficked and untrafficked test plots was still surprisingly large and limiting the detectability of compaction effects more than anticipated.
| Origin | Count |
|---|---|
| Bund | 2283 |
| Kommune | 1 |
| Land | 433 |
| Wissenschaft | 7 |
| Zivilgesellschaft | 23 |
| Type | Count |
|---|---|
| Chemische Verbindung | 75 |
| Daten und Messstellen | 11 |
| Ereignis | 13 |
| Förderprogramm | 1279 |
| Gesetzestext | 26 |
| Lehrmaterial | 1 |
| Text | 934 |
| Umweltprüfung | 260 |
| unbekannt | 142 |
| License | Count |
|---|---|
| geschlossen | 693 |
| offen | 1342 |
| unbekannt | 681 |
| Language | Count |
|---|---|
| Deutsch | 2618 |
| Englisch | 258 |
| Resource type | Count |
|---|---|
| Archiv | 665 |
| Bild | 4 |
| Datei | 702 |
| Dokument | 1074 |
| Keine | 1089 |
| Unbekannt | 5 |
| Webdienst | 38 |
| Webseite | 640 |
| Topic | Count |
|---|---|
| Boden | 2716 |
| Lebewesen und Lebensräume | 1695 |
| Luft | 1500 |
| Mensch und Umwelt | 2716 |
| Wasser | 1397 |
| Weitere | 2515 |