Löß ist ein einzigartiges Archiv pleistozäner Umweltbedingungen. Seine weite Verbreitung und seine oft quasi-kontinuierliche Sedimentation ermöglichen zeitlich und räumlich hoch aufgelöste Rekonstruktionen der Paläoumwelt. Darüber hinaus sind besonders die mittel- und jungwürmzeitlichen Löße hervorragende archäologische Archive. In Zentral- und in SE-Europa findet sich eine große Zahl bedeutender jungpaläolithischer Fundplätze eingebettet in mächtige Lößabfolgen. Löß kann, wie auch andere Sedimente, die zeitlichen Variationen des Erdmagnetfeldes auf Skalen von Jahrhunderten bis Jahrhunderttausenden aufzeichnen. Untersucht der Umweltmagnetismus die magnetischen Eigenschaften des 'Tonbandes' (hier Löß), so ist die möglichst genaue Rekonstruktion der darauf gespeicherte 'Musik' der Erdmagnetfeldvariationen Gegenstand des Paläomagnetismus. Ist die zeitliche Variabilität des Erdmagnetfeldes bekannt, so kann das in einem konkreten Profil erkannte Variationsmuster zur indirekten Datierung des Profils herangezogen werden. Seit September 2005 werden Grabungsprofile in der Wachau und in den rumänischen Ostkarpaten paläo- und umweltmagnetisch bearbeitet. Ziel der Untersuchungen ist -neben einer unabhängigen zeitlichen Einstufung- die Rekonstruktion des Paläoklimas zur Zeit der paläolithischen 'Besiedlung'.
Vier der größten Massenaussterben im Phanerozoikum (Ende Guadalupian, Perm-Trias, Ende Trias und Ende Kreide) sowie mehrere kleinere Aussterbeereignisse treten gleichzeitig mit kontinentalem Flutbasaltvulkanismus auf. Daher wird angenommen, dass der massive Vulkanismus globale Umweltänderungen mit schneller und signifikanter Erderwärmung und mariner Anoxia verursacht, wodurch die Massenaussterben ausgelöst werden. Allerdings bleibt die Zusammensetzung der klimaändernden Gase (CO2, SO2, CH4 oder Halogene) sowie deren Quelle (Magmenentgasung, Kontaktmetamorphose von Sedimenten, recykeltes Krustenmaterial im Mantel) umstritten. Die Ursachen der Umweltänderungen können besser bestimmt werden, wenn die Zeitpunkte und die Dauer der vulkanischen Eruptionen und der klimatischen und biologischen Ereignisse relativ zueinander bekannt sind. Allerdings treten diese Prozesse in Zeitspannen von weniger als 10^6 Jahren und vermutlich sogar weniger als 10^4 bis 10^5 Jahren auf (vergleichbar mit der aktuellen anthropogenen Treibhausgasemission), d.h. außerhalb der zeitlichen Auflösung von radiometrischen Datierungsmethoden. Daher wollen wir neue Spurenelementproxies für massive vulkanische Eruptionen in Sedimenten entwickeln, mit denen wir die relative Dauer der Ereignisse des Vulkanismus, der Klimaänderung und der Aussterbeprozesse in sedimentären Abfolgen bestimmen können. Volatile Spurenelemente wie Hg, Tl, In, Pb, Bi, Cd, Te, Se, Sn, Cs, Sb und As werden bei vulkanischen Eruptionen in großen Mengen freigesetzt und wurden in vulkanischen Gasen und Sublimaten an aktiven Vulkanen gemessen. Während massiver Eruptionen können sehr große Mengen dieser Elemente in die Atmosphäre gelangen und weit verbreitet in Sedimenten abgelagert werden. Die relative Konzentration von Hg wurde bereits als Proxy für vulkanische Eruptionen in Sedimenten genutzt, wobei allerdings Hg auch in organischem Material in Sedimenten angereichert wird. Das Verhalten der meisten volatilen Elemente wurde bisher nur unzureichend untersucht und daher wollen wir die Konzentrationen aller volatiler Elemente in Sedimentabfolgen der Grenzen des Changhsingian-Induan (Perm-Trias) und Pliensbach-Toarc bestimmen, um die zeitliche Entwicklung des Klimas und der Organismen mit den Eruptionen der Sibirischen und Karoo Flutbasalte zu vergleichen. Die Sedimentabfolgen lassen möglicherweise eine zeitliche Auflösung von weniger als 10^4 Jahren zu. Mit diesen Ergebnissen können wir die Zeitskalen der Effekte von Flutbasalteruptionen auf die Entwicklung des Klimas und des Lebens auf der Erde sowie die Quellen und Zusammensetzung der klimarelevanten Gase bestimmen.
Klimaschwankungen des Quartärs sind anhand von Tiefsee- und Eisbohrkernen sehr detailliert erforscht und bekannt. Reaktionen des terrestrischen Systems auf diese Klimaänderungen sind bis heute hingegen nur vage definiert. Diese besser zu verstehen ist jedoch von entscheidender Bedeutung, da der Mensch auf der Erdoberfläche lebt, und die Steuerungsfaktoren sowie Rückkopplungen zwischen Erdoberfläche und Atmosphäre sich anders als in Tiefseesedimenten oder Eisbohrkernen niederschlagen. Hauptziel des TERRACLIME-Projekts ist es, die Reaktionen des terrestrischen Systems auf Klimaänderungen der Nordhemisphäre während des letztglazialen Zyklus (LGZ) anhand neuer Löss-Paläoboden-Sequenzen (LPS) aus Remagen-Schwalbenberg (Mittelrheintal, Deutschland) zu rekonstruieren. Der im Zuge der Projektvorarbeiten gewonnene Pilotkern REM 3A beinhaltet die mächtigste und womöglich vollständigste für den LGZ in West- und Mitteleuropa bekannte Sequenz, die eine umfassende Rekonstruktion der Landschaftsgeschichte und Paläoumweltbedingungen ermöglicht. Der neue Kern ist länger und vollständiger als Aufschlüsse und Profile früherer Studien. Letzteren fehlen zudem hochauflösende Paläoklimarekonstruktionen mittels neuer Methoden sowie ein hochauflösender chronologischer Rahmen. Die systematische geophysikalische Prospektion des gesamten Schwalbenbergs bildet die Basis zur Detektion bestmöglicher Bohrpunkte an Stellen maximaler Lössmächtigkeit, um neben einem weiteren, hoch auflösenden Kern gezielte Testsondierungen durchzuführen. Durch diesen Catena-Ansatz wird es möglich sein, die Reaktionen von Löss auf Klimaänderungen zu erfassen sowie archiv-intrinsische Variabilitäten zur Differenzierung zwischen lokal, regional und überregional gesteuerten Prozessen zu nutzen. Neben etablierten Methoden (Sedimentologie, Mineralogie, Umweltmagnetismus) wird sich das Projekt auch neuartiger, innovativer Ansätze bedienen (anorganische und stabile Isotopen-Geochemie, Biomarker-Analysen). Dadurch werden neue Erkenntnisse zu paläoklimatischen Bedingungen, Sedimentationsprozessen, post-sedimentären Veränderungen sowie zur Vegetationsgeschichte generiert. Geochemische Daten werden außerdem herangezogen, um mögliche Änderungen der Sedimentherkunft zu erfassen. Hochauflösende Lumineszenz-Datierungen zur Erstellung eines unabhängigen und verlässlichen Altersmodells spielen im Rahmen des Projektes eine entscheidende Rolle. Ein Altersmodell, das auf der Kopplung von OSL an Quarzen mit pIR-IRSL an polymineralischen Präparaten basiert, fehlt bislang für den Schwalbenberg. Im Vergleich mit anderen lokalen, regionalen und überregionalen Paläoklimaarchiven wird es damit möglich sein, Reaktionen des terrestrischen Systems auf atmosphärische Klimaänderungen im Nordatlantik innerhalb des LGZ zu entschlüsseln. Die Erfassung synchron und asynchron verlaufender Veränderungen wird unser Verständnis von der Verknüpfung mariner, eisbasierter und terrestrischer Klimaarchive deutlich verbessern.
Unser Projekt erforscht das Paläoklima-Archive der Bändertone, die in einem ehemaligen fjordähnlichen See im österreichischen Inntal entstanden sind. Solche Ablagerungen sind eine große Seltenheit in den Alpen und dokumentieren eine Periode gewaltiger Klima-Instabilität zwischen 59.000 und 28.000 Jahre vor heute, deren Spuren - unter dem Namen Dansgaard-Oeschger Ereignisse - im grönlandischen Eis und in Sedimentproben des Atlantiks detektiert wurden. Ihr Impakt auf das damalige Klima und die Umwelt in den Alpen ist jedoch kaum bekannt und bildet das Hauptziel dieses Forschungsprojektes. Herzstück der Untersuchungen ist ein vor kurzem erbohrter 150 m langer Sedimentkern der Bändertone sowie zwei geplante benachbarte Kerne, mit denen die gesamte ehemalige Seefüllung erfasst werden kann. Diese Proben werden mit hochmodernen Methoden analysiert, um zeitlich gut datierte qualitative wie quantitative Proxy-Daten der Temperatur, Primärproduktion, Vegetation und Hydrologie dieses Sees und seines Einzugsgebietes mit jährlicher und z.T. sogar jahreszeitlicher Auflösung zu erheben. Diese Informationen stellen entscheidende Fakten dar um regionale Modelle dieser abrupten Klimaänderungen zu validieren, und den Einfluss von Änderungen der Tiefenwasserströmungen im Atlantik auf das Alpenklima zu erfassen.
Störungen des Kohlenstoffkreislaufs, sowohl natürlichen als auch anthropogenen Ursprungs, führen zu globale Erwärmung, Ozeanversauerung (OA) und Sauerstoffzehrung des Tiefenwassers. Natürliche Störungen des Kohlenstoffkreislaufs sind als Hauptursache von mindestens 4 von 5 Massensterben in der Erdgeschichte identifiziert wurden (z.B. Hönisch et al, 2009, Bijma et al.., 2013).Anthropogene Aktivitäten setzten CO2 zehnmal schneller frei als jedes andere Ereignis in den letzten 65 Mio. Jahren - vielleicht sogar während der letzten 300 Mio Jahren. Dies macht den heutigen CO2 Ausstoß zu einer der größten gesellschaftlichen Herausforderungen. Um die Auswirkungen der anthropogenen Störungen vorhersagen zu können, ist es zwingend erforderlich, die natürlichen Speicher und Dynamik des Kohlenstoffsystems zu verstehen. Dies erfordert die genaue Rekonstruktion der marinen Karbonatchemie für Zeiträume mit natürlichen Änderungen. In diesem Projekt wollen wir Veränderlichkeit am Übergang Glazial/Interglazial untersuchen weil die Änderungen der Karbonatchemie in der gleichen Größenordnung wie heute lagen. Da das Reservoir an anorganischem Kohlenstoff im Ozean ungefähr 60 mal größer ist als das der Atmosphäre, sind Rekonstruktionen der Veränderungen der Kohlenstoffsenke/-speicherung in der Tiefsee ein Schlüssel, um die glazialen/interglazialen Schwankungen im atmosphärischen CO2 - wie sie in Eisbohrkernen beobachtet werden - zu erklären. Prozesse im Südozean, wo der Großteil des Tiefenwassers ventiliert wird, spielen hierbei vermutlich eine zentrale Rolle. Man vermutet, dass der träge glaziale Süd Ozean mehr Kohlenstoff einlagern konnte, die Biologische Pumpe effektiver war und dass eine höhere Wassermassen-Stratifizierung das Entweichen von CO2 in die Atmosphäre verringert hat. Nach dem glazialen Maximum wird mit dem Rückzug des Meereises die Tiefsee Kohlenstoff - Pumpe wieder mit der Atmosphäre verbunden und führt zu einer erhöhten CO2-Freisetzung. Bislang ist dies, wenn auch von Indizienbeweisen unterstützt, nur eine Hypothese, zum Beweis bedarf es der Rekonstruktionen der glazialen/interglazialen variierenden Karbonatchemie. Dies ist das übergreifende Ziel unseres Antrags. Auf dem Weg zur Rekonstruktion des glazialen/interglazialen Kohlenstoffpools liegen 3 Zwischenziele: 1) Rekonstruktion von Oberflächenwasser-Tiefsee- CO2-Gradienten, glaziale Kohlenstoffspeicherung und deglaziale Entgasung mittels Bor-Isotopen und B/Ca fossiler Foraminiferen als Hauptvariablen. 2) Erstellen der ersten Kalibrationen von Bor-Isotopen und B/Ca Ratio für Cibicides wuellerstorfi (Tiefseeforaminifere) unter in-situ Druck. 3) Entwicklung von analytischen Methoden, welche die Analyse von einzelnen Foraminiferen Schalen erlauben.
Während des frühen bis mittleren Devon (ca. 418-383 Mio. Jahre) herrschten Treibhausverhältnisse auf der Erde. Die Klimaentwicklung zu jener Zeit führte schließlich zu einem Höhepunkt an Diversität, Größe und Verbreitung von Riffen im mittleren Devon (Eifelium und Givetium). Doch auch während des Klimax im Mittel-Devon kam es vermehrt zu Klimaschwankungen, die in mehr oder weniger schweren biotischen Krisen resultierten. Eine dieser Krisenzeiten entspricht dem Kacak-Event während des späten Eifelium, der als Schwarzschiefer und Hornstein-Horizont in marinen Sedimenten global nachgewiesen ist. Das mehrphasige dysoxische/anoxische Ereignisintervall beschränkt sich auf die kockelianus und ensensis Biozone (Conodontenzonierung) und entspricht in etwa einer Dauer von 200+-10 Tausend Jahren. Der Event ist geprägt von markanten Faunenwechsel, die mit signifikanten Exkursionen im geochemischen und geophysikalischen Signal gekoppelt sind. Bisher durchgeführte Untersuchungen haben gezeigt, dass vor allem benthische Organismen aus tiefer marinen Ablagerungen auf die veränderten Umweltbedingungen reagiert haben. Neuere Erkenntnisse über diesen Event basieren vor allem auf Conodonten-Stratigraphie, sowie der Studie von stabilen Isotopen und Untersuchungen zur Magneto-Suszeptibilität von Sedimenten. Im Rahmen des vorgeschlagenen Projektes sollen Veränderungen in tropischen Korallen-Vergesellschaftungen (im speziellen von rugosen Korallen) während der Kacak-Krise untersucht werden. Die Lokalitäten der ausgewählten Gebiete (Karnische Alpen, Grazer Paläozoikum, Barrandium und Mähren) befanden sich zur damaligen Zeit, als Teile des Kontinentalschelfs von Nord-Gondwana, an unterschiedlichen Positionen in den niederen Breiten. Vor allem aus dem Mittel-Devon der Karnischen Alpen und des Grazer Paläozoikums sind fossile Kollektionen bekannt, die eine reiche und vielfältige rugose Korallenfauna beinhalten. Neben einer Menge an nicht bearbeitetem Material, welches sich in den Sammlungen wieder findet, gibt es unter den beschriebenen Korallen auch Arten, die Unstimmigkeiten hinsichtlich ihrer taxonomischen Stellung sowie der stratigraphischen Reichweite aufzeigen. Dazu kommt noch umfangreiches Material an rugosen Korallen aus Mähren, welches bis heute noch keiner detaillierten Bearbeitung unterzogen werden konnte. Ziel dieses Projektes ist es, einen Überblick über die rugosen Korallen geben zu können, die vom Kacak-Event betroffen waren. Dadurch sollen Fragen zur Resonanz von Klima empfindlichen Organismen auf sich verändernden Umweltbedingungen geklärt werden. Zusätzlich soll die Berechnung von Meerwasser Temperaturen aus unterschiedlich niederen Breiten und die Anwendung von geochemischen und geophysikalischen Methoden dazu beitragen, Ursachen die für den Kacak-Event verantwortlich waren, heraus zu finden. usw.
Geotope sind erdgeschichtliche Bildungen der unbelebten Natur, die Erkenntnisse über die Entwicklung der Erde und des Lebens vermitteln. Sie umfassen Aufschlüsse von Gesteinen, Böden, Mineralien und Fossilien sowie einzelne Naturschöpfungen und natürliche Landschaftsteile.“ „Schutzwürdig sind die Geotope, die sich durch ihre besondere erdgeschichtliche Bedeutung, Seltenheit, Eigenart oder Schönheit auszeichnen. Für Wissenschaft, Forschung und Lehre sowie für Natur- und Heimatkunde sind sie Dokumente von besonderem Wert. Sie können insbesondere dann, wenn sie gefährdet sind und vergleichbare Geotope zum Ausgleich nicht zur Verfügung stehen, eines rechtlichen Schutzes bedürfen.“ „Geotopschutz ist der Bereich des Naturschutzes, der sich mit der Erhaltung und Pflege schutzwürdiger Geotope befasst. Die fachlichen Aufgaben der Erfassung und Bewertung von Geotopen sowie die Begründung von Vorschlägen für Schutz-, Pflege- und Erhaltungsmaßnahmen für schutzwürdige Geotope werden von den Geologischen Diensten der Länder wahrgenommen. Der Vollzug erfolgt durch die zuständigen Naturschutzbehörden.“ (Quelle der drei Zitate: Ad-hoc-AG Geotopschutz, 1996) Die Geologischen Dienste der Länder einigten sich auf ein einheitliches Vorgehen. In der Arbeitsanleitung Geotopschutz in Deutschland sind die Ergebnisse und Definitionen veröffentlicht. Das Landesamt für Bergbau, Energie und Geologie stellt in Niedersachsen die Liste der schutzwürdigen Geotope auf und berät die Naturschutzbehörden in Fragen des Geotopschutzes. Sinn dieser Bemühungen ist es, auch in Niedersachsen die wichtigsten Dokumente der Erdgeschichte langfristig zu sichern.
GEOTOP ist ein Projekt, in dessen Ablauf 'Geotope' als für Forschung und Lehre wichtige steinerne Zeugen der Erdgeschichte erfasst, beschrieben, bewertet und ggf. unter Schutz gestellt werden.
Die Entstehung und das Wachstum der Archaischen Kerne von Kontinenten und die zeitliche und örtliche Entwicklung von Prozessen im subkratonischen Erdmantel und der darüber liegenden Kruste sind wichtige Eckpfeiler zum Verständnis der Stabilisierung von langlebigen kontinentalen Blöcken durch einen auftriebsfähigen Erdmantel. In einem vorherrschenden Modell wird der subkratonische Erdmantel als Restit von partiellem Schmelzen bei niedrigem Druck betrachtet, der durch Subduktion in Granatperidotit umgewandelt wurde. Eklogite und Granatperidotite des subkontinantalen lithosphärischen Mantels sind dementsprechend die subduzierten Schmelzprodukte. Um die Zeitlichkeit der partiellen Schmelzprozesse und von Wiederanreicherungsprozessen des Erdmantels unterhalb des Kaapvaalkratons einzugrenzen, haben wir bereits früher einzelne Körner von harzburgitischen, subkalzischen Granaten analysiert. Damit erhielten wir das Alter von definierten Ereignissen, die mit krustalen Ereignissen übereinstimmen und kein Kontinuum, wie es von Re Os Modellaltern angezeigt wird. Eklogite und Granatpyroxenite werden wie Peridotitxenolithe ebenfalls von Kimberliten durch die Archaische Kruste an die Erdoberfläche gefördert. Sie sind wegen ihrer möglichen sehr unterschiedlichen Entstehung und möglicher späteren Überprägungen sehr heterogen. Quälende Fragen sind die Art der Protolithe, deren Alter und das Alter der Eklogitisierung und der Bezug zu den Peridotiten. Wir fanden durch unsere Untersuchungen von Eklogiten und Granatpyroxeniten von Bellsbank (Kaapvaalkraton), dass eine Anzahl davon chemisch fast nicht modifizierte Teile subduzierter ozeanischer Kruste darstellen (= fast unveränderte Schmelz-zusammensetzungen, Plagioklas- und Klinopyroxenreiche Kumulate). Deren rekonstruierte Gesamtgesteinszusammensetzungen bilden eine Aufreihung in einem Lu Hf Isochronendiagramm. Drei Proben ergeben ein Alter von 4.12 +- 0.06 Ga mit eHfi = 3 (+-7), d.h. dem Verhältnis des Erdmantels zu dieser Zeit. Ein so hohes Alter findet man bisher nicht in der Kruste oder als Re Modellverarmungs-alter im Erdmantel. Lu Hf Modellalter von Granaten sind Minimumalter. Sie ergeben aber bereits Alter bis zu 3,5 Mrd. Jahre, was die hohen Alter bestätigt. Wir wollen unsere Arbeiten an subkalzischen Granaten auf weitere Lokalitäten des Kaapvaalkratons ausdehnen, um die detaillierte Geschichte des subkratonischen Erdmantels weiter zu erforschen, d.h. die Unterscheidung verschiedener Schmelz-regime, deren Zeitlichkeit und die Zeit der Modifikation des Erdmantels durch Metasomatose. Ein zweites Ziel ist die Verifizierung der 4.1 Mrd. Jahre Eklogitisochrone mit weiteren Proben aus Bellsbank. Wenn sie sich als richtig erweist, würde sie das höchste Alter darstellen, das jemals von einer Eklogitserie erhalten wurde. Dies hätte großen Einfluss auf Modelle zur Entstehung hadäischer Kruste und ihrer Erhaltung im lithosphärischen Erdmantel.
Die Bearbeitung erfolgt unter Nutzung der Ergebnisse des BMBF-Projektes SASO II und in Fortsetzung des DFG-Projektes VPSS I. Im Rahmen dieser Projekte wurden mit einem gezielten Reprocessing industrieseismischer Felddaten gravierende Qualitätsverbesserungen erreicht und durch eine detaillierte digitale Interpretation in grundsätzlich neue geologische Aussagen umgesetzt. Mit dem Projekt VPSS I wurde in einem 5 km schmalen Streifen die zwischen dem landseismischen DEKORP- Hauptprofil BASIN 9601 und dessen seewärtiger Fortsetzung PQ 2-004 klaffende Lücke bis in den Tiefenbereich der Grundgebirgsoberfläche vorerst nur zweidimensional geschlossen. Hauptaufgabe des Forschungsvorhabens VPSS II ist es, diese Lücke zu schließen. Das wird durch eine digitale geologische Interpretation von 1000 km zu reprozessierender CDP-seismischer Felddaten des Industrieprofilnetzes (ca. 3 km/km2) erreicht und gleichzeitig die geologisch-geophysikalische Datenbasis ergänzt. Dadurch wird eine integrierte dreidimensionale geologische Modellierung des oberpermisch-mesozoischen Strukturbaus (Vorpommern-Störungsystem) und der TRANSEUROPEAN FAULT bis in den Tiefenbereich der Grundgebirgsoberfläche gestützt. Die Bearbeitung erfolgt in ständiger enger Abstimmung mit der DEKORP-Arbeitsgruppe am GFZ Potsdam.
Origin | Count |
---|---|
Bund | 481 |
Kommune | 1 |
Land | 54 |
Wissenschaft | 24 |
Type | Count |
---|---|
Ereignis | 3 |
Förderprogramm | 457 |
Lehrmaterial | 2 |
Text | 38 |
unbekannt | 20 |
License | Count |
---|---|
geschlossen | 43 |
offen | 475 |
unbekannt | 2 |
Language | Count |
---|---|
Deutsch | 435 |
Englisch | 161 |
Resource type | Count |
---|---|
Bild | 5 |
Datei | 3 |
Dokument | 25 |
Keine | 304 |
Webdienst | 3 |
Webseite | 203 |
Topic | Count |
---|---|
Boden | 482 |
Lebewesen & Lebensräume | 463 |
Luft | 323 |
Mensch & Umwelt | 520 |
Wasser | 362 |
Weitere | 509 |