API src

Found 286 results.

Related terms

Untersuchung des Einflusses vulkanischer Eruptionen auf stratosphärische Aerosole und den Strahlungsantrieb

Das Projekt VolARC ist eines von fünf Projekten des Antrags für die zweite Phase der DFG Forschungsgruppe VolImpact (FOR 2820), deren erste Phase im Frühjahr 2019 begann. VolARC befasst sich mit wichtigen und offenen Fragen vulkanischer Effekte auf stratosphärische Aerosole und deren Einfluss auf die Strahlungsbilanz des Erdsystems. Basierend auf den Arbeiten der laufenden Phase I sollen in Phase II folgende drei Themen bearbeitet werden:(1) Konsolidierung des Verständnisses der Entwicklung stratosphärischer Aerosolparameter nach Vulkanausbrüchen und Untersuchung der Gründe für die verbleibenden Unterschiede zwischen beobachteten und modellierten stratosphärischen Aerosolparametern (Aerosolextinktionsprofile, optische Tiefe und insbesondere die Teilchengrößenverteilung stratosphärischer Aerosols), sowie Behebung der Ursachen für die Unterschiede. Insbesondere die zeitliche Entwicklung der Aerosolgrößenverteilung soll besser verstanden werden. (2) Untersuchung des Einflusses von Modellauflösung und Transport auf die Entwicklung vulkanischer Aerosolwolken in der Stratosphäre. In Phase II wird ein “Seamless Simulation”-Ansatz verwendet, der mittels mehrerer Nests eine konsistente Modellierung aller relevanten Prozesse auf den entsprechenden Skalen ermöglicht, von der initialen Entwicklung der Vulkanwolke bis hin zu globalen und längerfristigen Skalen. (3) Untersuchung der Fähigkeit von Limb- und Okkultationsinstrumenten, vulkanische Sulfataerosole in der Stratosphäre nach stärkeren Vulkanausbrüchen zu erfassen. Bereits bei relativ moderaten optischen Tiefen wird die Sichtlinie in Limb-Geometrie optisch dicht und eine robuste Bestimmung der Aerosolextinktion problematisch. Außerdem wird untersucht, ob aktuelle Satelliteninstrument in der Lage sind, eine im Rahmen von Geoengineering Aktivitäten künstliche verstärkte stratosphärische Aerosolschicht zu erfassen und zu überwachen. Diese Themen werden durch die Synergy globaler Satellitenbeobachtung stratosphärischer Aerosolparameter im optischen Spektralbereich und globaler Modellsimulationen mit expliziter Aerosolmikrophysik untersucht. Wir werden u.a. unsere eigenen Algorithmen verwenden um aus Messungen vergangener, aktueller und zukünftiger Satelliteninstrumente (bsp. OMPS-LP, SAGE III and SCIAMACHY) Aerosolparameter abzuleiten. Die Modellsimulationen werden hauptsächlich mit ICON-ART durchgeführt, aber auch MAECHAM-HAM-Simulationen werden zum Vergleich mit Messdaten und ICON-ART-Simulationen zum Einsatz kommen. Das VolARC-Projekt ist sehr gut mit den anderen vier VolImpact-Projekten vernetzt, insbesondere durch die definierten übergreifenden Forschungsthemen an denen jeweils mehrere VolImpact-Projekte beteiligt sind. Diese Themen sind: (1) die Aerosolteilchengrößenverteilung, (2) vulkanische H2O-Injektionen in die mittlere Atmosphäre und (3) Strahlungsantrieb durch vulkanische Effekte. Darüber hinaus wird VolARC alle Aktivitäten zur Seamless-Simulation in VolImpact koordinieren.

Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), Einfluss von Jet-Front Systemen in der oberen Troposphäre auf die mesoskalige Struktur der Tropopauseninversionsschicht und Stratosphären-Troposphären Austausch (MESO-TIL)

Der vorliegende Antrag ist der HALO Mission WISE zuzuordnen. Ein besonderes Augenmerk liegt dabei auf der Bildung der Tropopauseninversionsschicht (TIL) und deren Einfluss auf Stratosphären-Troposphären Austausch (STE) auf der Mesoskala. Diesem Projekt dienen idealisierte Studien der TIL in baroklinen Lebenszyklen als Grundlage. Die Hauptziele sind dabei die Überprüfung der Ergebnisse der idealisierten Studien zur TIL Bildung genauso wie ein erweitertes Verständnis der Prozesse, die zum STE auf der Mesoskala beitragen. Dabei soll auf drei wissenschaftliche Fragestellungen genauer eingegangen werden: (1) Wie stark schwankt die TIL in ihrem Auftreten über dem Nordatlantik, vor allem im Bereich barokliner Lebenszyklen und im Bereich von STE? (2) Welche Prozesse liefern den größten Beitrag zur TIL auf der Mesoskala und welchen Einfluss hat dies auf STE? (3) Wie groß ist der Beitrag von klein-skaligen Wellen in der unteren Stratosphäre auf die TIL Bildung und die Ausdehnung der extratropischen Mischungsschicht? Eine Kombination von Methoden wird verwendet werden um diese Fragen zu beantworten. Analysedaten des EZMW werden zusammen mit Lagrangeschen Methoden benutzt, um die TIL und STE über dem Nordatlantik zu untersuchen. Der Nordatlantik ist das Gebiet, das auch während WISE untersucht werden soll. Darüber hinaus sollen für WISE hoch aufgelöste Modellsimulationen mit dem neuen numerischen Wettervorhersagemodell ICON durchgeführt werden. Dabei sollen zum einen die Beiträge diverser Prozesse auf die Bildung der TIL am Beispiel von realen Zyklonen und Antizyklonen untersucht werden. Des Weiteren sollen die Modelldaten zusammen mit Beobachtungsdaten verwendet werden um den Einfluss der TIL und von klein-skaligen Wellen auf die vertikale Ausdehnung der extratropischen Mischungsschicht zu bestimmen.

Schwerpunktprogramm (SPP) 1788: Study of Earth system dynamics with a constellation of potential field missions, Kopplung der solaren und geomagnetischen Aktivität mit der räumlichen Verteilung von Trends in Treibhausgasen in der oberen Atmosphäre

Die Struktur und Zusammensetzung des Thermosphäre-Ionosphäre Systems (T-I) wird stark durch die solare EUV-Strahlung beeinflusst. Die andere wichtige externe Quelle von Variabilität in dieser Atmosphärenregion ist das geomagnetische Feld, das geladene Teilchen in die Atmosphäre leitet wo sie insbesondere um die Pole herum ihre Energie abgeben. Wie neue Daten zeigen, können auch interne Antriebsprozesse sowohl auf kurzen (Tage) als auch langen (Jahre) Zeitskalen die T-I Variabilität dominieren. Eine wesentliche Rolle wird dabei dem langsamen aber kontinuierlichen Anstieg von CO2 in der Mesosphäre und unteren Thermosphäre (MLT) zugeschrieben, der zu verstärkter Strahlungskühlung und damit einhergehender Kontraktion der Atmosphäre führt. Auch andere Treibhausgase können auf kürzeren Zeitskalen die T-I Variabilität stark modulieren, u.a. O3 und NO. Das Hauptziel dieses Projektes ist zu untersuchen, wie die räumliche Verteilung von Langzeittrends in MLT Treibhausgasen mit der T-I Langzeit Variabilität gekoppelt ist. Dabei sollen sowohl bodengebundene als auch Satellitendaten von CO2, O3, NO, H2O sowie Elektronendichten herangezogen werden. Durch Kombination von Daten der Satelliten CHAMP, GRACE, SWARM, COSMIC, GOMOS, ACE-FTS, MLS, SABER, MIPAS, HALOE und AIM soll eine nahezu globale Abdeckung über einen Zeitraum von 2 Sonnenzyklen erreicht werden. Aus diesen Daten soll eine globale Klimatologie erstellt werden als Grundlage für die Ableitung von Langzeittrends und ihrer Korrelation in Zeit, Raum und T-I Parametern, einschließlich der Untersuchung von möglichen zeitlichen Verzögerungen in der Variabilität. Ferner sollen chemische und dynamische Wirkmechanismen der T-I Reaktion auf diese Variabilität identifiziert sowie zum ersten Mal echte Abkühlungs- und Aufheizraten aus der globalen Klimatologie und ihre Korrelationen in der T-I Region berechnet werden. Diese können direkt in allgemeinen Zirkulationsmodellen anstatt der aus Volumenemissionsraten gewonnenen Abkühlraten verwendet werden.

Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), Messungen mit mini-DOAS Instrument während der HALO Phase II Missionen WISE, CAFE, EmerGe, and CoMet und Auswertung, Interpretation und Publikation der während früheren HALO Missionen gewonnenen Meßdaten

Mit dem vorliegenden Antrag sollen 2 Hauptziele verfolgt werden. Einerseits wird die Teilnahme des mini-DOAS Instruments an den, für die Mitte 2016 bis Mitte 2019 geplanten HALO Missionen WISE, CAFE, EmerGe, and CoMet beantragt, und andererseits sollen die mit dem Instrument bei früheren Missionen (TACTS/ESMVal, NarVal, Cirrus, Acridicon und OMO) gemessenen Daten und jener aus in Zukunft stattfindenden HALO Missionen bzgl. dreier wissenschaftlicher Hauptziele im Detail ausgewertet, interpretiert und publiziert werden. Die 3 wissenschaftlichen Hauptziele sind: 1. die Untersuchung der Quellen und Senken und die Photochemie der NOx und NOy Verbindungen in der Troposphäre und unteren Stratosphäre (UTLS) für unterschiedliche photochemische Regime (u.a. Reinluft und durch diverse NOx Quellen verschmutzte Luft), wobei hier das mini-DOAS Instrument mit den Messungen von NO2, (und evt. HONO) zusammen mit den Messungen anderer Instrumenten (z.B. AENEAS, AIMS, ..) zum Gesamtbudget von NOy beiträgt, 2. die Bedeutung der volatiler organischer Verbindungen für die atmosphärische Oxidationskapazität in reiner und verschmutzter Luft durch Messungen von CH2O (und C2H2O2) mit dem mini-DOAS Instrument, die die Schließung des Oxidationsmechanismus VOC größer als oder gleich CH2O größer als oder gleich CO erlauben. 3. Messungen zum Budget und zur Photochemie von Brom in der UTLS, wobei hier das Instrument besonders mit seinen Messungen von BrO zum anorganischen Brombudget beiträgt, das zusammen mit den Messungen der organischen Bromverbindungen (der Universität Frankfurt) das Gesamtbudget an Brom schließt. Alle diese Untersuchungen sollen auch zur Überprüfung der Vorhersagen globaler Chemietransportmodelle (CTMs) (EMAC, CLAMS, TOMCAT/SLIMCAT, ...) dienen.

Schwerpunktprogramm (SPP) 1788: Study of Earth system dynamics with a constellation of potential field missions, Auswirkungen des geomagnetischen Feldes auf die vertikale Kopplung durch Schwerewellen in der Thermosphäre/Ionosphäre

Schwerewellen (GW) stellen nicht nur den zentralen Kopplungsmechanismus zwischen der unteren Atmosphäre und dem Thermosphäre/Ionosphäre (TI) System dar, sondern haben auch einen wichtigen Einfluss auf das Erdklima. Ein Großteil der Schwerewellen hat ihren Ursprung in der Troposphäre. Durch ihre vertikale Ausbreitung übertragen sie Energie und Impuls zwischen den verschiedenen atmosphärischen Schichten. Ionenreibung und molekulare Viskosität sind die wichtigsten Dissipationsmechanismen der Schwerewellen in der TI. Magnetfeldschwankungen verändern die Brechungseigenschaften der Atmosphäre (großräumige Temperatur und Windfelder) und modulieren damit die Ionenreibung. Das Primärziel dieses Projektes ist die Erforschung und Quantifizierung der Einwirkungen der Magnetfeldvariationen auf die Ausbreitung und Wirkungsmechanismen der Schwerewellen, die aus der unteren Atmosphäre stammen, und die daraus resultierende dynamische Rückkopplung. Vor allem soll untersucht werden, ob Schwerewellen eine Verbindung zwischen dem Trend der Magnetfeldschwächung und der beobachteten starken Abkühlung der Thermosphäre herstellen können. Die Studie soll mit dem Coupled Middle Atmosphere Thermosphere-2 (CMAT2) genannten allgemeinen Zirkulationsmodell durchgeführt werden. Ein wichtiger Teil von CMAT2 ist die von uns entwickelte und implementierte state-of-the-art spektrale, nichtlineare GW Parametrisierung. Die Ergebnisse neuer numerischer Simulationen mit CMAT2 sollen mit schon vorhandenen und zukünftigen Beobachtungen, z.B. der SWARM Satelliten verglichen werden. Wir erwarten neben Fortschritten im fundamentalen Verständnis der Schwerewellenkopplung auch zu Verbesserungen von Weltraumwettervorhersagen beitragen zu können.

Aerosole aus dem asiatischen Monsun in der oberen Troposphäre: Quellen, Alterung, Auswirkungen

Die Asian Tropopause Aerosol Layer (ATAL), eine Schicht mit erhöhtem Aerosolgehalt, tritt jedes Jahr von Juni bis September in 14-18 km Höhe in einem Gebiet auf, das sich vom Mittelmeer bis zum westlichen Pazifik erstreckt. Hinsichtlich der Zusammensetzung der Partikel, sowie ihrer Bedeutung für die Strahlungsbilanz in dieser klimasensitiven Höhenregion bestehen große Unsicherheiten. Die bisher einzigen Flugzeugmessungen aus dem Zentrum der ATAL wurden 2017 im Rahmen der StratoClim Kampagne von Kathmandu aus gewonnen. Dabei entdeckten wir mit Hilfe des Infrarotspektrometers GLORIA auf dem Forschungsflugzeug Geophysica, dass feste Ammoniumnitrat (AN) â€Ì Partikel einen beträchtlichen Teil der Aerosolmasse ausmachen. Diese zählen zu den effizientesten Eiskeimen in der Atmosphäre. Zudem zeigte die gleichzeitige Messung von Ammoniakgas (NH3) durch GLORIA, dass dieses Vorläufergas durch starke Konvektion in die obere Troposphäre verfrachtet wird. Im Rahmen der PHILEAS-Kampagne schlagen wir eine gemeinsamen Betrachtung von atmosphärischen Modellsimulationen und Messungen vor, um die Zusammensetzung, Ursprung, Auswirkungen und Verbleib der ATAL-Partikel zu untersuchen â€Ì insbesondere im Hinblick auf ihre Prozessierung sowie ihren Einfluss auf die obere Troposphäre und die untere Stratosphäre der nördlichen Hemisphäre. Messungen von monsunbeeinflussten Luftmassen über dem östlichen Mittelmeer sowie über dem nördlichen Pazifik werden es uns erlauben, Luft mit gealtertem Aerosol- und Spurengasgehalt zu analysieren und damit die StratoClim-Beobachtungen aus dem Inneren des Monsuns zu komplementieren. Um dabei die wahrscheinlich geringeren Konzentrationen an Aerosol und Spurengasen zu quantifizieren, schlagen wir vor, die GLORIA-Datenerfassung von NH3 und AN u.a. durch die Verwendung neuartiger spektroskopischer Daten zu verbessern. Ferner werden wir die Analyse der GLORIA-Spektren auf Sulfataerosole sowie deren Vorläufergas SO2 auszudehnen. Auf der Modellseite werden wir das globale Wetter- und Klimamodellsystem ICON-ART weiterentwickeln, um die ATAL unter Einbeziehung verschiedener Aerosoltypen (Nitrat, Ammonium, Sulfat, organische Partikel, Staub) zu simulieren â€Ì unter Berücksichtigung der hohen Eiskeimfähigkeit von festem AN. Modellläufe werden durchgeführt, um einerseits einen globalen Überblick über die Entwicklung der ATAL 2023 zu gewinnen und zudem detaillierte, auf die relevanten Kampagnenperioden zugeschnittene, wolkenauflösende Informationen über die Aerosol-Wolken-Strahlungs-Wechselwirkungen zu erhalten. Über die direkte Analyse der PHILEAS-Kampagne hinausgehend wird diese Arbeit die Grundlage für eine verbesserte Analyse von Aerosolparametern aus GLORIA-Beobachtungen früherer und zukünftiger HALO-Kampagnen sowie aus Satellitenbeobachtungen legen. Darüber hinaus wird sie ICON-ART, einem der zentralen Klimamodellsysteme in Deutschland die Simulation von Aerosolprozessen sowie Aerosol/Wolken-Wechselwirkungen im Zusammenhang mit der ATAL ermöglichen.

Schwerpunktprogramm (SPP) 1788: Study of Earth system dynamics with a constellation of potential field missions, Globale Beobachtung von sporadischen E Schichten in der Ionosphäre und ihre Verbindung zu atmosphärischen und ionosphärischen Phänomenen

Kopplungsprozesse zwischen der Ionosphäre und der neutralen Atmosphäre spielen eine wichtige Rolle für die dynamischen Prozesse in der oberen Atmosphäre. Neue Fortschritte im Verständnis dieser Prozesse wurden erreicht seitdem Satelliten im erdnahen Orbit kontinuierlich hochgenaue Daten der thermosphärischen und ionosphärischen Parameter (z.B. Massendichten, zonale Winde und Elektronendichteprofile) bereitstellen. Mit diesem Projekt planen wir die Beobachtung der Auftretenshäufigkeit und Eigenschaften sporadischer E Schichten auf globaler Skala. Die Untersuchungen basieren auf GPS Radiookkultationen der Satelliten CHAMP, GRACE, TerraSAR-X, TanDEM-X und FORMOSAT-3/COSMIC. Seit dem Start des Satelliten CHAMP im Jahre 2001 wurden mehr als 5 Millionen der Radiookkultationsprofile aufgezeichnet, was ermöglicht, dass das Auftreten und die Eigenschaften der sporadischen E Schichten in hoher räumlicher Auflösung analysiert werden können. Weiterhin ermöglicht die Zeitreihe erste statistische Trendanalysen der genannten Parameter. Während der Durchführung des Projektes soll der momentan genutzt numerischer Algorithmus zur Detektion von sporadischen E Schichten um ein Modul erweitert werden, der ermöglichen wird auch Rückschlüsse auf die Eigenschaften der Schichten zu ziehen. Globale Beobachtungen der Intensitäten sporadischer E Schichten existieren aktuell nicht und werden von uns zum erstmalig bereitgestellt werden. Diese Datenbasis kann genutzt werden, um statistische Änderungen im Verhalten der sporadischen E Schichten zu Untersuchen. Ebenfalls werden wir untersuchen, ob Abhängigkeit der sporadische Eigenschaften von anderen geophysikalischen Parametern, wie beispielsweise die Abnahme des Erdmagnetfeldes, der Solarzyklus, atmosphärische Gezeiten, Meteoreinfall oder Plamadichteabnahmen in der Ionosphäre zu finden sind.

WarmWorld - Modul 1 Better, Teilprojekt 5: Partikelmodell und Landmodell

Astronomisch angetriebene Klimaveränderungen auf dem Saturnmond Titan

Diese Studie soll die Rolle der Kohlenwasserstoffseen bei astronomisch angetriebenen Klimavariationen auf dem Saturnmond Titan näher beleuchten. Seen auf Titan sind stark auf die nördliche Polarregion konzentriert, während die Becken in der südlichen Polarregion größtenteils nicht mit Flüssigkeiten gefüllt sind. Diese Beobachtung führte zu kontroversen Diskussionen darüber, ob die polaren Seen Gegenstücke zu den irdischen Eisschilden darstellen, die mit dem Croll-Milankovitch-Zyklus wachsen und schrumpfen. Ein regionales und globales numerisches Modell der Methanhydrologie soll benutzt werden, um den Einfluss der Orbitalparametervariationen auf die Seen und deren Rückkopplung auf das Klima zu untersuchen. Die Hauptarbeitshypothese der Studie ist, dass sich der mittlere Seespiegel aufgrund der Variation des Niederschlags, der Verdunstung und des globalen Methantransportes in der Atmosphäre in Zeitskalen der Apsidendrehung von Saturn ändert. Auf regionaler Ebene wird ein dreidimensionales Ozeanzirkulationsmodell der Titan-Seen angewandt, um den orbitalen Einfluss auf die Zirkulation und Schichtung in den Seen zu untersuchen. Diese beinhalten die insbesondere die windgetriebene und dichtegetriebene Zirkulation, die für die Variationen der Seeoberflächentemperatur, -zusammensetzung und Verdunstung wichtig sind. Die langjährige Seespiegelveränderung wird durch Extrapolation der jährlichen Seespiegelveränderungen berechnet, die durch eine Serie von Simulationen unter den Orbitalparametern ausgewählter Epochen in der Vergangenheit prognostiziert werden. Auf globaler Ebene wird ein dreidimensionales atmosphärisches Zirkulationsmodell mit einem eingebauten atmosphärischen Hydrologie-Modul und vereinfachten Ozeanmodell angewandt, um die langjährige Veränderung der globalen Seeverteilung zu simulieren. Das globale Modell beschäftigt sich insbesondere mit der Frage, ob polare Seen in einer Hemisphäre auf Kosten der Seen in der anderen Hemisphäre innerhalb eines Orbitalzyklus anwachsen können oder ob es aus geographischen oder astronomischen Gründen eine Neigung zur Anhäufung der Seen in einer der beiden Hemisphären geben könnte. Ferner soll die Rückkopplung der variablen oder nicht variablen Seeverteilung auf den atmosphärischen Teil des Klimas untersucht werden indem die Simulationsergebnisse mit denen der Kontrollsimulation ohne Seen verglichen werden.

Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), Luftmassenherkunft in der unteren Stratosphäre: HALO Messungen und CLaMS Simulationen (AMOS)

Direkte Transportwege von der Troposphäre in die untere Stratosphäre von Wasserdampf und troposphärischen Spurengasen(z.B. ozonzerstörender Substanzen, wie beispielsweise sehr kurzlebige halogenierte Spurenstoffe)beeinflussen die chemische Zusammensetzung der oberen Troposphäre und unteren Stratosphäre außerhalb der Tropen (ExUTLS). Sogar relativ kleine Änderungen in Ozon und Wasserdampf in dieser Region, haben große Auswirkungen auf das Klima an der Erdoberfläche. Verschiedene direkte Transportwege werden derzeit diskutiert, wie z. B. quasi-horizontaler Transport aus der tropischen Tropopausen Region, horizontaler Transport aus dem Gebieten des asiatischen Monsuns und durch Konvektion induzierte Einträge. Jedoch ist unser derzeitiges Verständnis für diese Transportprozesse und ihre relativen Beiträge unvollständig. Im Rahmen unseres Projekts AMOS, möchten wir die zugrunde liegenden Transportprozesse für verschiedene vergangene (TACTS/ESMVal) und zukünftige HALO-Kampagnen (PGS, WISE) identifizieren und quantifizieren unter Berücksichtigung ihrer jahreszeitlichen und jährlichen Variabilität. Der Schwerpunkt unseres Projekts ist die WISE-Kampagne, die Transportvorgänge, die die chemische Zusammensetzung in der ExUTLS bestimmen, untersuchen wird. Im Rahmen unseres Projekts werden HALO Messungen mit mehrere (Kurz- und Langzeit-) Simulationen mit dem Lagrangen Modell CLaMS kombiniert. Die Implementierung von künstlichen Markern in CLaMS, mit denen man die Herkunft der Luftmassen bestimmen kann, zusammen mit hochaufgelösten HALO-Messungen von verschiedenen Kampagnen ist ein einzigartiges Werkzeug, um die verschiedenen Transportwege und Mischungsprozesse zu identifizieren. Im Rahmen von AMOS können deshalb die Auswirkungen dieser verschiedenen Transportprozesse auf die chemischen Zusammensetzung der unteren Stratosphäre quantifiziert werden.

1 2 3 4 527 28 29