API src

Found 84 results.

Related terms

Wärmeleitfähigkeit bei Feldkapazität (FK) - im Frühjahr

Diese Karte stellt die mittlere Wärmeleitfähigkeit als gewichtetes Mittel bis 2m Tiefe mit Wassergehalten bei Feldkapazität (pF 1,8) dar. Sie entspricht den standortabhängigen, im Jahresverlauf höchsten Wärmeleitfähigkeiten wie sie im Frühjahr nach den Winterniederschlägen zu erwarten sind. Grundwasserstände wurden bei der Berechnung berücksichtigt. Die Wärmeleitfähigkeit (λ) bestimmt die Eigenschaft des Bodens, thermische Energie durch Konduktion zu transportieren. Sie ist die entscheidende Kenngröße für die Nutzung des Bodens als Wärmequelle und -speicher und muss u.a. bei der Anwendung oberflächennaher Geothermie (Erdwärmekollektoren) oder beim Bau erdverlegter Stromkabel berücksichtigt werden.

Differenz der Wärmeleitfähigkeit bei Feldkapazität (FK) - Permanentem Welkepunkt (PWP)

Diese Karte stellt die mittlere Wärmeleitfähigkeit mit Wassergehalten als Differenz aus Feldkapazität (FK) und Permanentem Welkepunkt (pF 4,2) dar. Sie veranschaulicht die wassergehaltsabhängigen Unterschiede zwischen saisonal höchster und niedrigster Wärmeleitfähigkeit und vermittelt einen Eindruck der zu erwartenden jahreszeitlichen Dynamik der Wärmeleitfähigkeit an einem Standort. Die Differenzen werden in folgende Klassen unterteilt: Differenz λFK - λPWP [W/m*K] sehr gering ≤ 0,2 gering 0,21 - 0,40 mittel 0,41 - 0,65 hoch 0,66 - 0,91 sehr hoch 0,92 - 1,20 Die Wärmeleitfähigkeit (λ) bestimmt die Eigenschaft des Bodens, thermische Energie durch Konduktion zu transportieren. Sie ist die entscheidende Kenngröße für die Nutzung des Bodens als Wärmequelle und -speicher und muss u.a. bei der Anwendung oberflächennaher Geothermie (Erdwärmekollektoren) oder beim Bau erdverlegter Stromkabel berücksichtigt werden.

Mittlere Wärmeleitfähigkeit Brandenburg

Diese Karten basieren auf den Legendeneinheiten der Bodenübersichtskarte (BÜK300) mit entsprechender Zuordnung von parametrisierten Flächenbodenformen. Diese stellen je Legendeneinheit eine Bodenformengesellschaft dar. Die einzelnen Flächenbodenformen (FBF) wurden mit bodenphysikalischen Kennwerten belegt, die durch Gelände-und Laboruntersuchungen bestimmt wurden. Dazu wurden für gleiche Horizont-Substrat-Kombinationen (HSK) die Kennwerte Bodenart Trockenrohdichte, Gesamtporenvolumen, Wassergehalt bei Feldkapazität (FK) und Permanentem Welkepunkt (PWP), Humusgehalt statistisch abgeleitet (i.d.R. Medianwerte). Die Wärmeleitfähigkeit (λ) bestimmt die Eigenschaft des Bodens, thermische Energie durch Konduktion zu transportieren. Sie ist die entscheidende Kenngröße für die Nutzung des Bodens als Wärmequelle und -speicher und muss u.a. bei der Anwendung oberflächennaher Geothermie (Erdwärmekollektoren) oder beim Bau erdverlegter Stromkabel berücksichtigt werden. Zur Berechnung der Wärmeleitfähigkeit wurde die Pedotransferfunktion (PTF) nach Markert et al. (2017) unter Berücksichtigung der oben genannten Kennwerte verwendet. Diese PTF basiert auf umfangreichen Messungen der Wärmeleitfähigkeit für ein weites Spektrum der in Brandenburg vorkommenden Böden. Für jede HSK ist die Wärmeleitfähigkeit für die Wassergehalte bei FK und PWP bis in eine Tiefe von 2m berechnet worden. Bei HSK im Einflussbereich des Grundwassers (Gr-Horizonte) wurde die Wärmeleitfähigkeit für volle Wassersättigung veranschlagt. Auf Grund der Parametrisierung der PTF für ausschließlich mineralische Böden wurden folgende Anpassungen vorgenommen: für organische HSK (Torfe) wurde mit einer Wärmeleitfähigkeit von λFK = 0,4 W/m*K und λPWP = 0,2 W/m*K gerechnet (Vgl. Messwerte von Markert et al. 2017; VKR 1.32 AG Boden 2010), für tonige Böden sind auf Grund der geringen Datenlage die Parameter der lehmigen Böden verwendet worden, der Humusgehalt wurde durch λhumos = λmineralisch – Humusgehalt*0,05 berücksichtigt. Für HSK mit anthropogenem Ausgangsgestein war auf Grund unzureichender Messwerte und fehlender Angaben in der Literatur keine Berechnung der Wärmeleitfähigkeit möglich. Die Wärmeleitfähigkeit je Flächenbodenform ist in diesem Fall als gewichtetes harmonisches Mittel unter Berücksichtigung der Mächtigkeit aller Horizonte ermittelt worden. Zur besseren Übersichtlichkeit und Interpretierbarkeit der Ergebnisse wurden die gewichteten harmonischen Mittelwerte der Wärmeleitfähigkeiten in die folgenden 6 Klassen eingeteilt: Wärmeleitfähigkeit [W/m*K] extrem gering ≤ 0,4 sehr gering 0,41 - 0,90 gering 0,91 - 1,40 mittel 1,41 - 1,90 hoch 1,91 - 2,40 sehr hoch 2,41 - 2,90 Für die grafische Darstellung als Karte wurden je Legendeneinheit (LE) die Flächenbodenformen mit gleicher Wärmeleitfähigkeitsklasse zusammengefasst, deren Flächenanteile nach Tab. 66 (AG Boden 2005) je LE addiert und als eine aggregierte dominante, sowie eine aggregiert subdominante λ-FBF ausgewiesen. Bei einigen wenigen Flächen mit sehr heterogener Zusammensetzung der Flächenbodenformen sind drei λ-FBF angegeben.

IS GT DS - Informationssystem Geothermie von Nordrhein-Westfalen - Datensatz

Der Datensatz stellt Informationen hinsichtlich oberflächennaher, mitteltiefer und tiefer Geothermie bereit. Die oberflächennahe Geothermie betrachtet die Wärmeleitfähigkeit der Gesteine für Erdwärmesonden bis in 100 Meter Tiefe sowie die geothermische Ergiebigkeit für Erdwärmekollektoren. Hinsichtlich mitteltiefer Geothermie liefert der Datensatz Informationen zur Planung von geothermischen Anlagen bis in 1.000 Meter Tiefe, derzeit für das Rheinland, das zentrale Münsterland sowie den Nordrand des Rheinischen Schiefergebirges. Für die Planung von tiefen geothermischen Anlagen (Dubletten) bis in mehr als 5.000 Meter Tiefe werden geologische Informationen über die als Zielhorizonte in Frage kommenden Kalksteinschichten zur Verfügung gestellt. Der Datensatz liefert damit wertvolle Eckdaten bezüglich der Nutzungsmöglichkeiten von Erdwärme; beispielsweise zum Beheizen oder Klimatisieren von Gebäuden aller Art. Verfügbare Kartenthemen: Wärmeentzugsleistung für Erdwärmekollektoren; Wärmeleitfähigkeit für oberflächennahe Geothermie in 40, 60, 80, 100 Meter Tiefe; Übersichtsdarstellung hydrogeologisch sensibler Bereiche; Bereich erhöhter Fließgeschwindigkeit; Wärmeleitfähigkeit für mitteltiefe Geothermie in 250, 500, 750, 1.000 Meter Tiefe; offene Wärmespeicher (ATES); Dublette; oberkreidezeitliche, unterkarbonzeitliche sowie devonzeitliche Karbonate als Zielhorizonte (Top, Mächtigkeit, Temperatur, Faziesverteilung).

INSPIRE Soil / Geothermisches Potential BB

Der interoperable INSPIRE-Datensatz beinhaltet Daten vom LBGR über den Flächenbedarf von Erdkollektoren zur Nutzung von oberflächennaher Geothermie in Brandenburg, transformiert in das INSPIRE-Zielschema Boden. Der Datensatz wird über je einen interoperablen Darstellungs- und Downloaddienst bereitgestellt. --- The compliant INSPIRE data set contains data about the area demand of geothermal collectors for the use of near-surface geothermal energy in the State of Brandenburg from the LBGR, transformed into the INSPIRE annex schema Soil. The data set is provided via compliant view and download services.

INSPIRE Soil / Potenzielle Standorteignung für Erdwärmekollektoren BB

Der interoperable INSPIRE-Datensatz beinhaltet Daten vom LBGR über die potenzielle Standorteignung für Erdwärmekollektoren Brandenburg, transformiert in das INSPIRE-Zielschema Boden. Der Datensatz wird über je einen interoperablen Darstellungs- und Downloaddienst bereitgestellt. --- The compliant INSPIRE data set contains data about the suitability of the location for geothermal collectors in the State of Brandenburg from the LBGR, transformed into the INSPIRE annex schema Soil. The data set is provided via compliant view and download services.

Potenzielle Standorteignung für Erdwärmekollektoren - Landesmethode: Permanenter Welkepunkt (PWP)

Die im Boden / oberflächennahen Untergrund gespeicherte Wärmeenergie kann über Wärmetauscher (sog. Erdwärmekollektoren) gewonnen und von Wärmepumpen für Heizzwecke genutzt werden (Boden-Geothermie). In der Karte zur potentiellen Standorteignung für Erdwärmekollektoren wird die Eignung des natürlich gelagerten, abgesetzten Bodens für diese Form der oberflächennahen, geothermischen Nutzung bewertet.

Potenzielle Standorteignung für Erdwärmekollektoren - Landesmethode: Feldkapazität (FK)

Die im Boden / oberflächennahen Untergrund gespeicherte Wärmeenergie kann über Wärmetauscher (sog. Erdwärmekollektoren) gewonnen und von Wärmepumpen für Heizzwecke genutzt werden (Boden-Geothermie). In der Karte zur potentiellen Standorteignung für Erdwärmekollektoren wird die Eignung des natürlich gelagerten, abgesetzten Bodens für diese Form der oberflächennahen, geothermischen Nutzung bewertet.

Potenzielle Standorteignung für Erdwärmekollektoren

Die im Boden / oberflächennahen Untergrund gespeicherte Wärmeenergie kann über Wärmetauscher (sog. Erdwärmekollektoren) gewonnen und von Wärmepumpen für Heizzwecke genutzt werden (Boden-Geothermie). In der Karte zur potentiellen Standorteignung für Erdwärmekollektoren wird die Eignung des natürlich gelagerten, abgesetzten Bodens für diese Form der oberflächennahen, geothermischen Nutzung bewertet.

Potenzielle Standorteignung für Erdwärmekollektoren - Bundesmethode: Permanenter Welkepunkt (PWP)

Die im Boden / oberflächennahen Untergrund gespeicherte Wärmeenergie kann über Wärmetauscher (sog. Erdwärmekollektoren) gewonnen und von Wärmepumpen für Heizzwecke genutzt werden (Boden-Geothermie). In der Karte zur potentiellen Standorteignung für Erdwärmekollektoren wird die Eignung des natürlich gelagerten, abgesetzten Bodens für diese Form der oberflächennahen, geothermischen Nutzung bewertet.

1 2 3 4 57 8 9