API src

Found 189 results.

Related terms

Erneuerbare Wärmenetze für die Dekarbonisierung der Wärmeversorgung ländlicher Siedlungen

Der ländliche Raum stellt eine besondere Herausforderung für die Wärmewende dar. Während in den Städten auf einen deutlichen Ausbau der Fernwärme gesetzt wird, findet regenerative Nahwärmenetze in ländlichen Siedlungen bisher zu wenig Berücksichtigung in den Studien für die Wärmewende. Hier setzt das Projekt ruralHeat an. Das Projektziel ist zum einen die wissenschaftliche Begleitung von Planung und Umsetzung der solaren Nahwärme in Bracht und Rüdigheim sowie zum anderen die Übertragbarkeit auf andere ländliche Siedlungen. Die Innovation in Bracht und Rüdigheim liegt darin, dass über 70% des Wärmebedarfs durch Solarwärme in Verbindung mit einem saisonalen Wärmespeicher gedeckt wird. Somit ist die Solarthermie nicht mehr ein 'fuel saver', sondern der Hauptwärmeerzeuger. Komplettiert wird das System mit einer Großwärmepumpe zur Speicherentladung und zwei Holzkesseln für die Spitzenlast. Das 100% regenerative Nahwärmekonzept ist zudem günstiger und wesentlich schneller umsetzbar als Maßnahmen an Einzelgebäuden (energetische Sanierung, Umstellung der Heizung). Die wissenschaftliche Begleitung unterstützt die beiden Bürgergenossenschaften bei Planung und Bau durch Simulationen zum Betrieb und Regelung der komplexen Anlage. Die Ergebnisse aus den beiden Demonstrationsanlagen sollen anhand von 10 Fallstudien auf die Übertragbarkeit auf andere ländliche Gebiete geprüft werden. Hierbei werden auch weitere technologische und energiewirtschaftliche Konzepte für 100% erneuerbare Nahwärmelösungen betrachtet und verglichen. Aus den Erkenntnissen wird ein webbasiertes Vorauslegungstool entwickelt, dass interessierten Kommunen oder Bürgerinitiativen bereits im frühen Stadium (d.h. mit wenig Inputdaten) eine Vorauswahl möglicher Nahwärmelösungen auf Basis erneuerbarer Wärme ermöglicht. Das Ziel des Vorauslegungstools ist somit eine Lenkungswirkung hin zur EE-Wärme und eine Hilfestellung für Kommunen, um den Aufwand für die Betrachtung möglicher Varianten zu reduzieren.

Sonnenkollektoren, Solarthermie

<p>Sonnenkollektoren: Klimafreundlich dank regenerativer Energiequelle</p><p>So erzeugen Sie Wärme aus Sonnenenergie für Ihr Zuhause</p><p><ul><li>Installieren Sie Sonnenkollektoren, wenn Sie Platz auf Ihrem Dach haben.</li><li>Nutzen Sie Förderprogramme und beachten Sie gesetzliche Vorgaben.</li></ul></p><p>Gewusst wie</p><p>Sonnenkollektoren (Solarthermie) erwärmen Brauchwasser und können zusätzlich zur Heizungsunterstützung genutzt werden. Das spart wertvolle Ressourcen (Öl und Gas) und vermeidet umwelt- und klimaschädliche Emissionen.</p><p><strong>Sonnenkollektoren installieren:</strong>&nbsp;In Frage kommen Dachausrichtungen von Ost über Süd bis West. Bei Ost- oder Westausrichtung wird mehr Kollektorfläche benötigt. Eine Anlage zur Warmwassererzeugung braucht pro Person 1 bis 1,5 m2&nbsp;Kollektorfläche und für vier Personen ca. 300 Liter Speicher. Sie liefert übers Jahr ca. 60&nbsp;% des benötigten Warmwassers. 6 m2&nbsp;Fläche erzeugen ca. 2.000 kWhth/Jahr. Dies spart ungefähr 495 kg Treibhausgase ein (⁠UBA⁠ 2019). Die Investitionskosten für eine Solarthermieanlage, die mittels Flachkollektoren die Brauchwassererwärmung unterstützt, liegen die Anlagenkosten zwischen ca. 4.000-6.000 EUR. Vakuumröhrenkollektoren liefern eine bessere Energieausbeute, dabei sind jedoch die Kollektoren teurer. Die Rentabilität der Anlage hängt von Gebäudezustand, derzeitigem Heizsystem und Brennstoffpreisen ab. Eine genaue individuelle Planung und eine Auswertung der Energieverbräuche ist unerlässlich. Sie umfasst die Themen:</p><p>Eine herstellerunabhängige Energieberatung bieten z.B. viele Verbraucherzentralen an. Hilfreiche Online-Beratungstools und einen Renditerechner finden Sie bei den Links.</p><p><strong>Förderprogramme und gesetzliche Verpflichtungen:</strong> In bestehenden Gebäuden sind kombinierte Solaranlagen zur Brauchwassererwärmung und Heizungsunterstützung im Rahmen der <a href="https://www.kfw.de/inlandsfoerderung/Heizungsf%C3%B6rderung/">Bundesförderung für effiziente Gebäude</a>&nbsp;förderfähig. Sonnenkollektoren sind eine Möglichkeit, die Verpflichtungen nach dem Gebäudeenergiegesetz zu erfüllen. Bei manchen Anlagengrößen und Gebäudearten gibt es Anzeige- oder Genehmigungspflichten. Daher sollte beim örtlichen Bauamt nachgefragt werden.</p><p><strong>Was Sie noch tun können:</strong></p><p>unten Photovoltaikmodule zur Stromerzeugung, oben Solarkollektoren zur Wärmeerzeugung</p><p>Hintergrund</p><p><strong>Umweltsituation:</strong>&nbsp;Der Anteil der Solarthermie an der Wärmebereitstellung aus erneuerbaren Energien in Deutschland betrug im Jahr 2022 ca. 5 %. Das entspricht einer solarthermisch erzeugten Wärmemenge von ca. 9.733 GWh. Damit wurden ca. 2,6 Millionen Tonnen Treibhausgase (CO2-Äquivalente) vermieden, wobei die Herstellung der Anlagen und Betriebsstoffe bereits berücksichtigt sind. Ebenso werden ca. 1.175 Tonnen versauernde Stoffe (SO2-Äquivalente) eingespart (⁠UBA⁠ 2023 &amp; 2018). Die Wärmeerzeugung durch Sonnenkollektoren hat aus Umweltsicht viele Vorteile gegenüber Biomasseverfeuerung: keine Flächenkonkurrenz zum Nahrungsmittelanbau und keine Abgase im Betrieb. Allerdings kann Solarwärme nur einen Teil des Energiebedarfs für Warmwasser und Raumwärme decken.</p><p><strong>Gesetzeslage:</strong>&nbsp;Das Gebäudeenergiegesetz schreibt den Einsatz von 65&nbsp;% erneuerbarer Energien ab 2024 im Neubau vor, ab Mitte 2026 sukzessive auch für Bestandsgebäude. Dafür eignet sich auch Solarthermie. Für Solarthermie-Hybridheizungen in Wohngebäuden mit höchstens zwei Wohnungen sind 0,07 m2&nbsp;Kollektorfläche pro m2&nbsp;beheizter Nutzfläche und für Gebäude mit mehr als zwei Wohnungen 0,06 m2 Kollektorfläche notwendig; die restliche Heizung muss dann mindestens 60 % erneuerbare Brennstoffe nutzen (GEG 2023: § 71h). Die Bundesländer können höhere Anteile vorschreiben. Über die <a href="https://www.kfw.de/inlandsfoerderung/Heizungsf%C3%B6rderung/">Bundesförderung für effiziente Gebäude</a>&nbsp;können Solaranlagen im Bestand gefördert werden. Allerdings nur, wenn die Sonnenkollektoren auch zur Heizungsunterstützung beitragen.</p><p><strong>Marktbeobachtung:</strong>&nbsp;Die neu installierte Kollektorfläche ist seit einigen Jahren rückläufig. Ihren Höhepunkt hatte sie im Jahr 2012, in dem ca,1,2 Mio. m2&nbsp;zugebaut wurden. Im Jahr 2022 wurden ca. 91.000 neue Solarthermieanlagen installiert, dieser Zubau entspricht ca. 710.000 m² damit wuchs in Deutschland die insgesamte installierte Solarkollektorfläche auf 22,1 Mio. m² an (BSW 2023). Der Endkundenumsatz lag 2022 bei ca. 930 Mio. Euro (nach einem Maximum in 2008 mit 1,7 Mrd. Euro) (⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>⁠ 2023).</p><p>Entsorgung von Solarthermiemodulen / Solarkollektoren</p><p><strong>Hinweis:</strong> Die Demontage und fachgerechte Entsorgung von Solarkollektoren wird in den allermeisten Fällen durch einen Handwerksbetrieb erfolgen. Andernfalls beachten Sie bitte das sich grundsätzlich die Vorschriften für die Entsorgung bestimmter Abfälle von Bundesland zu Bundesland und sogar von Kommune zu Kommune unterscheiden können.</p><p>Wir empfehlen Ihnen daher, sich an die örtliche Abfallbehörde bzw. Abfallbehörde des Bundeslandes zu wenden – auch für die Frage der fachgerechten Entsorgung in Ihrem Kreis / Ihrer Region.</p><p><strong>Solarthermiemodule / -kollektoren ohne elektrische Funktionen zur reinen Wärme / Warmwassererzeugung </strong>können z.B. bei den kommunalen Wertstoffhöfen der öffentlich-rechtlichen Entsorgungsträger entsorgt werden – eine Pflicht zur Rücknahme besteht allerdings nicht, auch können Gebühren für die Entsorgung anfallen. Auch manche Hersteller (oder Installateure) nehmen auf freiwilliger Basis alte Solarthermiemodule / -kollektoren zurück. Bei Solarthermiemodulen / -kollektoren, die den "Blauen Engel" als Umweltkennzeichen besitzen, verpflichten sich die Hersteller in der Regel zu Rücknahme und Entsorgung.</p><p><strong>Solarflüssigkeit:</strong>&nbsp;Bitte beachten Sie, dass in den Solarkollektoren noch Solarflüssigkeit (z.B. 1,2-Propylenglycol) enthalten sein kann. Diese ist oftmals ein ⁠Gemisch⁠ aus 1,2-Propylenglycol und Wasser und ggf. weiteren Inhaltsstoffen. Alte Solarflüssigkeit für Solarkollektoren darf nicht einfach über das Abwasser, die Kanalisation, noch sonst wie in der Umwelt entsorgt werden.<br>Solarflüssigkeit sollte vor der Entsorgung aus dem Kollektor entfernt werden und kann z.B. bei einer Schadstoffsammelstelle oder am kommunalen Wertstoffhof abgegeben werden.</p><p>Reine&nbsp;<strong>Photovoltaik-/ Solarmodule (PV-Module) die nur der Stromerzeugung dienen</strong>, sind Elektrogeräte und müssen nach den Vorgaben des ElektroG entsorgt werden. Das gilt auch für Hybridmodule bzw. Kombinationsmodule aus Photovoltaik und Solarthermie ("Solar-Hybridkollektor", "Hybridkollektor"), zur gleichzeitigen Strom- und Wärme- / Warmwassererzeugung. Mehr Informationen dazu auf der ⁠UBA⁠-Umwelttippseite zur <a href="https://www.umweltbundesamt.de/umwelttipps-fuer-den-alltag/elektrogeraete/alte-elektrogeraete-richtig-entsorgen">Entsorgung von Elektroaltgeräten</a>.</p><p>Weitere Informationen finden Sie auf unseren ⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>⁠-Themenseiten:</p><p>Quellen</p>

Energieverbrauch für fossile und erneuerbare Wärme

<p>Wärme macht mehr als 50 Prozent des gesamten deutschen Endenergieverbrauchs aus und wird vielfältig eingesetzt: als Raumwärme oder zur Klimatisierung, für Warmwasser und Prozesswärme oder zur Kälteerzeugung. Durch zunehmende Energieeffizienzmaßnahmen ist ihr Anteil am Endenergieverbrauch seit 1990 leicht rückläufig. Erneuerbare Energien spielen bei der Wärmebereitstellung eine zunehmende Rolle.</p><p>Wärmeverbrauch und -erzeugung nach Sektoren</p><p>Der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a>⁠ für Wärme und Kälte verursacht gut die Hälfte des gesamten Endenergieverbrauchs (EEV), wobei Wärme und Kälte für unterschiedliche Anwendungsbereiche benötigt werden. Allein die Raumwärme und die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozesswrme#alphabar">Prozesswärme</a>⁠ haben sektorübergreifend Anteile von rund 27 % bzw. 20 % am EEV. Mit großem Abstand folgen die Anwendungsbereiche Warmwasser und Kälteerzeugung (siehe Abb. „Anteil des Wärmeverbrauchs am Endenergieverbrauch 2008 und 2024“).</p><p>Wärme wird größtenteils in den drei Endverbrauchssektoren „Private Haushalte“, „Industrie“ sowie „Gewerbe, Handel und Dienstleistungen (GHD)“ direkt erzeugt und verbraucht. Darüber hinaus wird knapp ein Zehntel des Wärmebedarfs durch Fernwärme aus dem Umwandlungssektor der allgemeinen Versorgung gedeckt. Die Anteile der unterschiedlichen Energieträger an der Wärmebereitstellung haben sich in den letzten Jahren kaum verändert (siehe Abb. „Wärmeverbrauch nach Energieträgern“).</p><p>Die Aufschlüsselung des Wärmeverbrauchs nach Anwendungsbereichen zeigt, dass diese in den drei genannten Sektoren teils sehr unterschiedlich sind (siehe Abb. „Wärmeverbrauch nach Sektoren und Anwendungsbereichen“):</p><p>Bei der Fernwärmeerzeugung im <strong>Umwandlungssektor</strong> finden Gase (insbesondere Erdgas) die größte Verwendung, gefolgt von ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Biomasse#alphabar">Biomasse</a>⁠, deren Einsatz sich ebenso wie der von Abfall in den letzten Jahren stetig erhöht hat. Dies ist unter anderem darauf zurückzuführen, dass 2005 begonnen wurde, unbehandelte Siedlungsabfälle energetisch zu nutzen, statt sie auf Deponien abzulagern (siehe Abb. „Energieeinsatz zur Fernwärmeerzeugung in Kraftwerken der allgemeinen Versorgung“). Der größte Abnehmer von Fernwärme sind die Privathaushalte gefolgt von der Industrie und dem GHD-Sektor.</p><p>Wärmeerzeugung aus erneuerbaren Energien</p><p>Der Anteil erneuerbarer Energien zur Deckung des Wärmebedarfs in Deutschland steigt seit den 1990er Jahren nur relativ langsam an. Auch im Jahr 2024 kam es nur zu einem geringen Anstieg. Mit 17,8 % lag der Anteil 0,4 Prozentpunkte über dem Vorjahreswert von 17,4 % (siehe Abb. „Erneuerbare Energie für Wärme und Kälte - Anteil erneuerbarer Quellen am gesamten ⁠<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a>⁠ für Wärme und Kälte“). Zurückzuführen ist diese Entwicklung auf mehrere Effekte: Zwar wuchs die Menge der genutzten erneuerbaren Wärme leicht an, gleichzeitig nahm der 2022/23 krisenbedingt rückläufige Gesamtwärmebedarf jedoch wieder zu.</p><p>Hinsichtlich der einzelnen erneuerbaren Energieträger im Wärmesektor ergibt sich ein gemischtes Bild: Bei ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Biomasse#alphabar">Biomasse</a>⁠ und biogenem Abfall gab es nach derzeitigem Kenntnisstand einen leichten Rückgang. Gleichzeitig wuchs die Energiebereitstellung aus Geothermie und Umweltwärme deutlich. Die sonnenärmere ⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Witterung#alphabar">Witterung</a>⁠ hingegen beeinflusste die Wärmenutzung aus Solarthermieanlagen negativ, so dass hier zu einem Minus von kam.</p><p>Insgesamt wird der erneuerbare Wärmeverbrauch von der festen Biomasse dominiert, also vor allem Holz und Holzprodukte wie Pellets. Sie stellte 2024 etwa zwei Drittel der insgesamt aus erneuerbaren Energien gewonnenen Wärme bereit (siehe Abb. „Erneuerbare Energie für Wärme und Kälte im Jahr 2024“). Solarthermie, Geothermie und Umweltwärme stellten auch im Jahr 2024 noch immer weniger als 16 % der erneuerbaren Wärme zur Verfügung. (siehe Abb. „Erneuerbare Energie für Wärme und Kälte“).</p>

Wärmespeicher

Die Rolle von Wärmespeichern, ihre Potenziale und ihr Nutzen im zukünftigen Berliner Wärmeversorgungssystem wurden in 2024 durch das Reiner Lemoine Institut (RLI), das Institut für Klimaschutz, Energie und Mobilität (ikem) und das Institut für ökologische Wirtschaftsforschung (IÖW) im Auftrag der Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt (SenMVKU) untersucht. Die Ergebnisse zeigen, dass Wärmespeicher ein wichtiges Element in der klimaneutralen Wärmeversorgung in Berlin sind. Sie können die Effizienz des Energiesystems steigern, den Anteil erneuerbarer Energien an der Wärmeerzeugung erhöhen, die Stromnetze entlasten und die Abhängigkeit von importierten Energieträgern verringern. Die Potenzialerhebung unterscheidet dabei mehrere Anwendungsfälle für Wärmespeicher in Berlin, für die der Nutzen und das Potenzial von Wärmespeichern ermittelt wurde: Langzeit- und Kurzzeitwärmespeicher in den großen Berliner Fernwärmenetzen, Wärmespeicher als Element von neuen Wärmenetzen auf Quartiersebene und dezentrale Wärmespeicher in Gebäuden. Für das Berliner Fernwärmeverbundnetz der BEW Berliner Energie und Wärme zeigt eine Beispielrechnung: Bei einer Leistung von 700 MW an erneuerbarer Wärme und Abwärme könnten saisonale Wärmespeicher, z.B. Aquiferspeicher, mit einer theoretischen Speicherkapazität von 1.200 GWh dazu beitragen, diese Potenziale an erneuerbarer Wärme und Abwärme vollständig zu nutzen. Dies würde den Anteil an erneuerbaren Energien und Abwärme in der Wärmeerzeugung des Verbundnetzes über ein Jahr betrachtet um ca. 12 Prozent steigern. Restriktionen lassen eher eine Speicherkapazität von etwa einem Drittel bis zu der Hälfte dieses Wertes realistisch erscheinen, da geeignete Standorte für Aquiferspeicher gefunden, erschlossen und enorme Investitionen getätigt müssen. Kurzzeitwärmespeicher, z.B. Behälterspeicher, sind bereits heute an einigen Standorten in Berlin im Einsatz. Sie erlauben eine flexible Fahrweise von Kraft-Wärme-Kopplungsanlagen, Power-to-Heat-Anlagen bzw. Elektroheizern und Wärmepumpen. Sie können das Stromnetz stabilisieren und Lastspitzen abfedern. In neuen Wärmenetzen auf Quartiersebene können Aquiferwärmespeicher zukünftig ebenfalls eine wichtige Rolle spielen. Typische urbane Wärmequellen für neue Wärmenetze sind Rechenzentren, Abwasserwärme, Flusswasserwärme und industrielle Abwärme, die ganzjährig anfallen und im Sommer häufig einen Überschuss an Wärme aufweisen. Wärmespeicher können hier zu einer vollständigen Nutzbarmachung der Wärmequellen beitragen. Zudem können sie das Stromnetz entlasten und bei zukünftig steigenden Energiepreisen die verbrauchsgebundenen Kosten senken. Somit gewinnen sie zukünftig an Bedeutung und können perspektivisch auch wirtschaftlich vorteilhaft sein. Oberirdische Wärmespeicher wie Behälterspeicher oder auch Erdbeckenspeicher stoßen im urbanen Raum mit seiner geringen Flächenverfügbarkeit schnell an Grenzen. Unterirdische Speicher, vor allem Aquiferwärmespeicher, sind wegen ihres geringen oberirdischen Flächenbedarfs besonders für Berlin geeignet. Allerdings fehlen noch flächendeckende Kenntnisse über die geologischen Bedingungen des Berliner Untergrunds und somit auch über dessen Eignung für die saisonale Wärmespeicherung. Vielversprechende Aquifersysteme werden in den Horizonten oberer Hettang, unterer Sinemur, Obersinemur und Oberer Pliensbach erwartet, wobei genaue Kenntnisse zur Lage und Mächtigkeit geeigneter Schichten derzeit nur punktuell vorliegen. Die vom Senat beschlossene Roadmap Geothermie soll diese Wissenslücken schließen. Neben dem Schließen von Wissenslücken werden weitere Maßnahmen empfohlen, um das Potenzial von Wärmespeichern besser ausschöpfen zu können. Hierzu zählen u.a. die Optimierung und Verstetigung der betroffenen Verwaltungsprozesse sowie eine Schärfung des ihnen zugrundeliegenden Verwaltungsrechts. In weiteren Maßnahmenvorschlägen wurden mehrere Informationsmaterialien für unterschiedliche Interessensgruppen, ein Umsetzungsprojekt und ein wissenschaftliches Gutachten vorgeschlagen.

Thermische Energiespeicherung und Digitalisierung in der Fernwärme, für die Transformation zu erneuerbaren und ressourceneffizienten Energiesystemen, Teilvorhaben: Entwicklung und Implementierung eines intelligenten Gebäude-Energiemanagementsystems

Thermische Energiespeicherung und Digitalisierung in der Fernwärme, für die Transformation zu erneuerbaren und ressourceneffizienten Energiesystemen, Teilvorhaben: Implementierung und wissenschaftliche Begleitung des übergreifenden Energiemanagementsystems

Integration eines Hochtemperatur-Aquiferwärmespeichers mit Wärmepumpensystem in ein Fernwärmenetz, Teilvorhaben: Anlagenkonzepte und Inbetriebnahmemonitoring des Aquiferspeicher-Wärmepumpen-Kälte-Systems

Integration eines Hochtemperatur-Aquiferwärmespeichers mit Wärmepumpensystem in ein Fernwärmenetz, Teilvorhaben: Bau und Betrieb des Aquiferspeicher-Wärmpumpen-Kälte-Systems

Integration und Entwicklung eines skalierbaren thermochemischen Energiespeichers zur ganzjährigen Versorgung von Quartieren mit erneuerbarer Wärme, TVH: Speichersystem (EEW - Speichersystem)

Die ganzjährige Versorgung mit erneuerbarer thermischer Energie stellt eine zentrale Herausforderung der Energiewende dar. Die Gründe sind die saisonalen Zyklen des Energiebedarfs und die eingeschränkte Möglichkeit des Transports thermischer Energie. Das Projekt 'EEW' verfolgt das Ziel einer dezentralen, ganzheitlichen Sektorenkopplung auf Quartiersebene, die ganzjährig die Versorgung mit erneuerbarer Wärme sicherstellen kann. Die Grundlage für das Projekt bilden zwei vom Projektpartner GP Joule mitentwickelte Modellregionen - eine dominiert durch PV-Strom die andere durch Wind-Strom. Für diese Modellregionen wird der vom Projektpartner DLR entwickelte thermochemische Energiespeicher auf Basis von gebranntem Kalk und Wasser weiterentwickelt. Die Vorteile des Speichers liegen im denkbar günstigen und weltweit verfügbaren Speichermaterial 'Kalk' sowie in einer verlustfreien Speicherung. Die zentrale Herausforderung der Speichertechnologie liegt in der effizienten Reaktionsführung der Be- bzw. Entladungsreaktion die im Rahmen des Projekts auf Basis der Pflugscharmischer-Technologie des Projektpartners Lödige optimiert werden soll. Das Projektziel ist daher eine kostengünstige, ressourcenschonende und effizienten Speichertechnologie zur Kopplung des Strom- und Wärmesektors für die regenerative Wärmebereitstellung in der Nahwärmeversorgung von Wohnquartieren zu entwickeln. Das Projekt verfolgt dabei einen ganzheitlichen Lösungsansatz: Die Systemintegration, die experimentelle Hardwareentwicklung als auch die industrielle Skalierung und wirtschaftliche Verwertungsmöglichkeiten aus Hersteller- und Nutzersicht. Mit Abschluss des Projekts liegt ein Integrations- und Betriebskonzept für das Speichersystems in einem realen Nahwärmenetz vor und ist anhand belastbarer Betriebsdaten techno-ökonomisch bewertet. Damit kann im Anschluss an das Projekt die Technologie direkt im Feld demonstriert und von den Partnern wirtschaftlich verwertet werden.

Integration und Entwicklung eines skalierbaren thermochemischen Energiespeichers zur ganzjährigen Versorgung von Quartieren mit erneuerbarer Wärme

Die ganzjährige Versorgung mit erneuerbarer thermischer Energie stellt eine zentrale Herausforderung der Energiewende dar. Die Gründe sind die saisonalen Zyklen des Energiebedarfs und die eingeschränkte Möglichkeit des Transports thermischer Energie. Das Projekt 'EEW' verfolgt das Ziel einer dezentralen, ganzheitlichen Sektorenkopplung auf Quartiersebene, die ganzjährig die Versorgung mit erneuerbarer Wärme sicherstellen kann. Die Grundlage für das Projekt bilden zwei vom Projektpartner GP Joule mitentwickelte Modellregionen - eine dominiert durch PV-Strom die andere durch Wind-Strom. Für diese Modellregionen wird der vom Projektpartner DLR entwickelte thermochemische Energiespeicher auf Basis von gebranntem Kalk und Wasser weiterentwickelt. Die Vorteile des Speichers liegen im denkbar günstigen und weltweit verfügbaren Speichermaterial 'Kalk' sowie in einer verlustfreien Speicherung. Die zentrale Herausforderung der Speichertechnologie liegt in der effizienten Reaktionsführung der Be- bzw. Entladungsreaktion die im Rahmen des Projekts auf Basis der Pflugscharmischer-Technologie des Projektpartners Lödige optimiert werden soll. Das Projektziel ist daher eine kostengünstige, ressourcenschonende und effizienten Speichertechnologie zur Kopplung des Strom- und Wärmesektors für die regenerative Wärmebereitstellung in der Nahwärmeversorgung von Wohnquartieren zu entwickeln. Das Projekt verfolgt dabei einen ganzheitlichen Lösungsansatz: Die Systemintegration, die experimentelle Hardwareentwicklung als auch die industrielle Skalierung und wirtschaftliche Verwertungsmöglichkeiten aus Hersteller- und Nutzersicht. Mit Abschluss des Projekts liegt ein Integrations- und Betriebskonzept für das Speichersystems in einem realen Nahwärmenetz vor und ist anhand belastbarer Betriebsdaten techno-ökonomisch bewertet. Damit kann im Anschluss an das Projekt die Technologie direkt im Feld demonstriert und von den Partnern wirtschaftlich verwertet werden.

1 2 3 4 517 18 19