API src

Found 1510 results.

Related terms

Dynamisches Belichtungssystem und nachhaltige Energielösungen für die smarte Pflanzenkultivierung, Teilvorhaben: Sensorbasierter Regelkreis & Entscheidungsfindung

Neue EnergieNetzStruktURen für die Energiewende, Teilvorhaben Karlsruher Institut für Technologie (KIT)

Erneuerbare Energien Stadtwerke Uelzen

Die Stadtwerke Uelzen GmbH ist ein modernes Energieversorgungsunternehmen im Herzen der Lüneburger Heide und bietet Ihnen alle Services rund um das Thema Energie aus einer Hand. Unter der Marke mycity versorgt das Unternehmen die Stadt Uelzen neben Erdgas und Wasser mit 100 % Ökostrom. Hier wird das Energieerzeugungsnetz digital geführt, es werden alle Photovoltaikanlagen sowie die Einspeisungen von Wind- und Biogasanlagen dargestellt. Die Daten werden fortlaufend aktualisiert. Die Daten können von berechtigten Personen eingesehen werden.

Entwicklung druckloser Wärmespeicher für die effiziente Nutzung industrieller Abwärme

Bioenergieanlagen (Landkreis Göttingen)

Standorte der vorhandenen Bioenergieanlagen im Landkreis Göttingen. Es handelt sich um Anlagen zur Erzeugung regenerativer Energien (Biogas) aus Biomasse durch Vergärung. Biogas stellt eine wichtige und vielseitige Form der Bioenergie aus der Landwirtschaft dar. Die neuen Anlagen setzen fast ausnahmslos nachwachsende Rohstoffe (NaWaRo) wie Mais, Getreide, Hirse, Zuckerrüben, Sonnenblumen und teilweise Aufwuchs von Grünland mit oder ohne Gülle ein. Biogas wird derzeit überwiegend dezentral produziert und als Strom- und Wärmelieferant genutzt. Aufgrund dieser Dezentralität der Anlagen, die dadurch begründet ist, dass das primäre Ausgangsmaterial für die Biogaserzeugung wie Gülle oder Energiepflanzen aufgrund der niedrigen Energiedichte aus ökonomischen Gründen in der Regel nicht über längere Distanzen transportiert werden kann, ist die Integration guter Wärmenutzungskonzepte nicht immer möglich.

Windenergieanlagen (Landkreis Göttingen)

Windenergieanlagen werden als sichere und umweltfreundliche Energieversorgung angesehen. Sie sollen die Versorgung mit erneuerbaren Energien unterstützen und dazu beitragen, die CO2-Emissionen zu senken. Damit soll ein Beitrag geleistet werden, um eine Erderwärmung um mehr als zwei Grad gegenüber der Vorindustrialisierung Mitte des 18. Jahrhunderts noch zu verhindern. Der Datensatz beinhaltet die Standorte der vorhandenen Windenergieanlagen (WEA) im Landkreis Göttingen.

Weiterentwicklung des Campus Lichtwiese Energiesystems mit Integration erneuerbarer Energiequellen und Abwärme, Weiterentwicklung des Campus Lichtwiese Energiesystems mit Integration erneuerbarer Energiequellen und Abwärme

Die TU Darmstadt strebt eine drastische und zeitnahe Reduktion der Treibhausgasemissionen an. Zu diesem Ziel wurden im Rahmen der Vorgängerprojekte EnEff Campus Lichtwiese I und II Maßnahmen theoretisch und praktisch untersucht und umgesetzt. Nachdem in Phase II bereits Einzelmaßnahmen umgesetzt und hinsichtlich ihres Einflusses auf die effiziente Energieversorgung des Campus bewertet wurden, erfolgt in Phase III die physische und digitale Integration dieser und weiterer Maßnahmen, die aufbauend auf den Erkenntnissen der Phase II geplant werden, in das Energiesystem des Quartiers. Der Fokus liegt dabei auf der Integration CO2-freier Energiequellen und wird aus drei verschiedenen Perspektiven untersucht. Durch die Umsetzung einer elektrischen Energiezelle wird eine PV-Anlage mit Flexibilitäten und einem Batteriespeicher kombiniert um deren Erzeugung effektiv in einem Subquartier und im gesamten Campus zu integrieren. In einem weiteren Subquartier steht der Verbund von Abwärme aus mehreren Quellen, Solarthermie und einem geothermischen Speicher zur Nutzung in Bestandsgebäuden im Fokus. Dabei wird auch bewertet, wie geringinvasive Maßnahmen im Gebäudebestand umgesetzt werden können, um Wärme aus CO2-freien Quellen dort nutzbar zu machen. Durch den aktiven Digitalen Zwilling werden einzelne Komponenten anhand einer mathematisch optimalen Betriebsstrategie automatisiert gesteuert. Neben der Integration der genannten Energiespeicher werden auch bereits vorhandene thermische und elektrische Flexibilitäten regelungstechnisch nutzbar gemacht. Alle Umsetzungsmaßnahmen und ihre Interaktion werden im realen Betrieb erprobt und auf ihr Skalierungspotential hin untersucht. Das Projekt wird von einem interdisziplinären Forschungsteam aus vier Fachrichtungen sowie dem Baudezernat bearbeitet. Durch die Beteiligung des Baudezernats ist die dauerhafte Nutzung der Projektergebnisse gewährleistet. Damit wird das Projekt die TU Darmstadt auf dem Weg zur Klimaneutralität unterstützen.

Weiterentwicklung des Campus Lichtwiese Energiesystems mit Integration erneuerbarer Energiequellen und Abwärme

Die TU Darmstadt strebt eine drastische und zeitnahe Reduktion der Treibhausgasemissionen an. Zu diesem Ziel wurden im Rahmen der Vorgängerprojekte EnEff Campus Lichtwiese I und II Maßnahmen theoretisch und praktisch untersucht und umgesetzt. Nachdem in Phase II bereits Einzelmaßnahmen umgesetzt und hinsichtlich ihres Einflusses auf die effiziente Energieversorgung des Campus bewertet wurden, erfolgt in Phase III die physische und digitale Integration dieser und weiterer Maßnahmen, die aufbauend auf den Erkenntnissen der Phase II geplant werden, in das Energiesystem des Quartiers. Der Fokus liegt dabei auf der Integration CO2-freier Energiequellen und wird aus drei verschiedenen Perspektiven untersucht. Durch die Umsetzung einer elektrischen Energiezelle wird eine PV-Anlage mit Flexibilitäten und einem Batteriespeicher kombiniert um deren Erzeugung effektiv in einem Subquartier und im gesamten Campus zu integrieren. In einem weiteren Subquartier steht der Verbund von Abwärme aus mehreren Quellen, Solarthermie und einem geothermischen Speicher zur Nutzung in Bestandsgebäuden im Fokus. Dabei wird auch bewertet, wie geringinvasive Maßnahmen im Gebäudebestand umgesetzt werden können, um Wärme aus CO2-freien Quellen dort nutzbar zu machen. Durch den aktiven Digitalen Zwilling werden einzelne Komponenten anhand einer mathematisch optimalen Betriebsstrategie automatisiert gesteuert. Neben der Integration der genannten Energiespeicher werden auch bereits vorhandene thermische und elektrische Flexibilitäten regelungstechnisch nutzbar gemacht. Alle Umsetzungsmaßnahmen und ihre Interaktion werden im realen Betrieb erprobt und auf ihr Skalierungspotential hin untersucht. Das Projekt wird von einem interdisziplinären Forschungsteam aus vier Fachrichtungen sowie dem Baudezernat bearbeitet. Durch die Beteiligung des Baudezernats ist die dauerhafte Nutzung der Projektergebnisse gewährleistet. Damit wird das Projekt die TU Darmstadt auf dem Weg zur Klimaneutralität unterstützen.

Geothermie für die Wärmewende: Flankierung des Rollouts der Mitteltiefen Geothermie in Deutschland, Teilvorhaben: Kostenverteilung und regionalökonomische Effekte

Erdwärme kann als erneuerbare Energiequelle fossile Energieträger mehr und mehr ersetzen und damit zum Klimaschutz beitragen und Wertschöpfung vor Ort schaffen. Trotz großer Potenziale ist der Anteil der Wärme aus tiefer Geothermie noch sehr gering. Ziel der Bundesregierung ist es, diesen Anteil in den nächsten Jahren deutlich zu erhöhen. Ein zentrales Hemmnis zum bundesweiten Ausrollen der tiefen Geothermie für die kommunale oder gewerbliche Wärmeversorgung ist das ungünstige Verhältnis hoher Anfangsinvestitionen gegenüber den späteren moderaten Betriebskosten. So ist für die Planung und erfolgreiche Umsetzung eines Geothermieprojekts eine geowissenschaftlich fundierte Datenbasis unerlässlich. Weitere wichtige Hemmnisse für die Umsetzung von Projekten sind das Fündigkeitsrisiko, die Finanzierung von Projekten und die Akzeptanz von Netzbetreibern, Kommunen sowie der Bevölkerung vor Ort. Zentrales Ziel des Projekts Warm-UP ist es, den Roll-Out der Mitteltiefen, hydrothermalen Geothermie im Bereich der Wärmenutzung zu unterstützen. Das Teilvorhaben des IÖW zielt hierbei insbesondere darauf ab, sozioökonomische Hemmnisse und Erfolgsfaktoren herauszuarbeiten, um darauf aufbauend Empfehlungen zur lokalen Ausgestaltung für einen wirtschaftliche Integration der Mitteltiefen Geothermie unter Akzeptanz der lokalen Stakeholder abzuleiten. Die Ergebnisse fließen ein in die Weiterentwicklung obertägiger Bewertungskriterien für Explorationskampagnen.

KI unterstützte Kommunikationstechnologien zur dynamischen Optimierung von Mobilität und Energiespeichern zur Frequenzstabilisierung und Energieversorgung, Teilvorhaben CampusGenius: Automated Integration with the 5G-Core

Das Ökosystem der Stromnetze ist auf dem Weg zu einem dezentralisierten Energieversorgungs- und Verteilungssystem. Haushalte können mit erneuerbaren Energiequellen wie Sonnenkollektoren oder Windgeneratoren, als verteilte Energieressourcen (DERs - Distributed Energy Resources) bezeichnet, unabhängig von den Stromanbietern operieren und Energie zurück an das Hauptnetz verkaufen. Für die Realisierung dieser Transformation des Stromnetzes wird eine kompetente Kommunikationsinfrastruktur benötigt. Die Einführung des Standards 5G in Mobilfunknetze erleichtert die Entwicklung zukünftiger Energieverwaltungslösungen. Weiterhin ermöglichen neue Technologien die Entwicklung intelligenter Algorithmen für die Steuerung zukünftiger Stromnetze. Hierzu gehören das Internet der Dinge (Internet of Things, IoT), Vernetzung über Mesh-Netzwerke zur Fernüberwachung des Netzstatus und die Künstliche Intelligenz (KI) für Management und Koordination. In Dymobat wird ein Single-User-Controller für die Verwaltung der einzelnen DERs auch unter Einsatz von privaten 5G-Netzwerken entwickelt. Anschließend wird eine zentrale Steuerungseinheit für die Synchronisierung und Optimierung des Netzbetriebs innerhalb einer kleinen Gruppe von DERs, einem Microgrid, entworfen. Die Kommunikation zwischen und innerhalb der DER soll mittels Mobilfunktechnologie erfolgen. Dabei soll die Energieoptimierung mittels KI-Algorithmen erfolgen und auch den Energietransport mit Fahrzeugen berücksichtigen. Die softwareseitige Integration der KI-Algorithmen und des Energiemanagementsystems in das Kommunikationssystem ist ein wesentlicher Bestandteil dieses Projektes. Die entwickelten Algorithmen werden virtuell in einem Testbed-Modell anhand von realen Eingangsparametern erprobt, optimiert und validiert. Im zweiten Schritt wird ein reales Testfeld konzipiert, installiert und die Leistungsfähigkeit der modellhaft erprobten Algorithmen in einer realen Testumgebung bewertet.

1 2 3 4 5149 150 151