In the Bavarian Forest National Park a brief, but intense storm event on 1 August 1983 created large windfall areas. The windfall ecosystems within the protection zone of the park were left develop without interference; outside this zone windfall areas were cleared of dead wood but not afforested. A set of permanent plots (transect design with 10 to 10 m plots) was established in 1988 in spruce forests of wet and cool valley bottoms in order to document vegetation development. Resampling shall take place every five years; up to now it was done in 1993 and 1998. On cleared areas an initial raspberry (Rubus idaeus) shrub community was followed by pioneer birch (Betula pubescens, B. pendula) woodland, a sequence well known from managed forest stands. In contrast to this, these two stages were restricted to root plates of fallen trees in uncleared windfalls; here shade-tolerant tree species of the terminal forest stages established rather quickly from saplings that had already been present in the preceeding forest stand. Soil surface disturbances are identified to be causal to the management pathway of forest development, wereas the untouched pathway is caused by relatively low disturbance levels. The simulation model FORSKA-M is used to analyse different options of further stand development with a simulation time period of one hundred years.
Der schnelle Fortschritt der elektronischen Geräte erhöht die Nachfrage nach verbesserten Li-Ionen Batterien. Kommerziell erhältliche Li-Zellen nutzen meist Lithiumkobaltoxid für die positive Elektrode. Doch gerade dieses Material ist ein Hindernis für eine weitere Optimierung, insbesondere für eine Kostensenkung. Vor allem für größere Anwendungen wie Hybrid- oder Elektrofahrzeuge müssen alternative Materialen erforscht werden, die billiger, sicherer und umweltverträglicher sind. Daher wird im ISEA derzeit ein neues Forschungsprojekt ins Leben gerufen und die dafür benötigte Infrastruktur geschaffen. Die Forschung wird sich auf die Untersuchung geeigneter Übergangsmetalloxide und Polyanionen konzentrieren, die besonders gut zur Einlagerung von Li-Ionen geeignet sind. Es werden neue Herstellungsverfahren unter Verwendung wässriger Precurser-Substanzen untersucht, die Verbindungen mit überlegenen Eigenschaften erzeugen und außerdem leicht an eine Massenproduktion angepasst werden können. Ziel der Arbeiten ist, preisgünstiges Elektrodenmaterial zu entwickeln, das eine spezifische Energie von über 200 Wh/kg und eine Leistungsdichte von 400 W/kg aufweist. Außerdem werden Arbeiten im Bereich der physikalisch-chemischen Charakterisierung der neuen Materialien stattfinden sowie elektrochemische Analysen der gesamten Zellen- und Batteriesysteme durchgeführt. Das elektrodynamische Verhalten der neuen Zellen wird u. a. mit Hilfe der elektrochemischen Impedanzspektroskopie analysiert, um präzise und zuverlässige Algorithmen für ein späteres Batteriemonitoring im realen Betrieb zu finden.
Entwicklungs-, Pflege- und Erschließungsmaßnahmen gem. § 13 LNatSchG NRW
Aquifers are the main source of water in most semi-arid areas of the Mediterranean basin. As a result of over-exploitation hydrologic deficits of varying acuity prevail in these areas. Seawater intrusion and pollution have been identified as the primary factors for quality degradation. Further deterioration can be expected based on trends in the precipitation regime attributed to climate change. The objective of this project is to identify alternative sources of water and to investigate the feasibility, both environmental and economic of their utilization. Alternative water sources to be artificially recharged comprise: surface water runoff, treated effluent, and imported water. Furthermore, brackish water bodies, present in many aquifers could be utilised after desalination. The project structured into eight work-packages comprehensively addresses all issues related to the problem: expected precipitation rates, recharge and water budgets, identification of potential alternative water sources and technologies for their utilization, development of tools for the management of groundwater resources under artificial recharge conditions, aquifer vulnerability assessment, characterization of the unsaturated zone, and mixing effects. Four test sites have been selected for practical application of the approach. Substantial field testing, integration of technologies and findings to ensure optimal implementations of aquifer recharge alternatives, quantification of socio-economic impacts and development of dissemination platform are planned. Finally a carefully designed project management shall drive and accompany the project execution in order to ascertain consistency and efficiency.
Sustainable development is a fundamental goal of the European Union and loss of biodiversity is emphasised as one of the main threats to it. However, biodiversity and ecosystems of European Seas are under human impact, such as pollution, eutrophication, and overfishing. Therefore it is necessary to monitor changes in biodiversity and ecosystem functioning. The aim of the project is the development of DNA chips for the identification of marine organisms in European Seas as a cost effective, reliable and efficient technology in biodiversity and ecosystem science. Many marine organisms, such as eggs and larvae of fishes, plankton, and benthic invertebrates, are difficult to identify by morphological characters. The classical methods are extremely time consuming and require a high degree of taxonomie expertise. Consequently, the basic step of identifying such organisms is a major bottleneck in biodiversity and ecosystem science. Therefore, the project seeks to demonstrate that DNA chips can be a new powerful and innovative tool for the identification of marine organisms. Three DNA chips for the identification of fishes, phytoplankton, and invertebrates of European Seas will be developed. These chips will facilitate research on dispersal of ichthyoplankton, monitoring of phytoplankton, and identification of bioindicators as well as prey in gut contents analysis. To achieve this goal a combined biological and technical approach has been initiated: The biological material will be sampled by marine biologists. The next step is the sequencing of suitable molecular markers for probe design. The technical part consists mainly in constructing gene probe libraries and determining their specificity. This will be done by biotech research centres in connection with SMEs engaged in bioinformatics and DNA chip technology. Therefore the project has the potential to bring Europe's marine biotechnology to the forefront of this field.
The Clean Development Mechanism (CDM) was established as part of the Kyoto Protocol in 1997. It is one of the 'flexibility mechanisms created to enable more cost-effective meeting of mitigation targets. The CDM-study will evaluate possible techniques for assessing the achievements of sustainable development, whilst evaluating the most likely trade barriers for the implementation of the CDM and identify options to overcome such barriers. One of the key issues in the design of the CDM is that of transactions costs. Transactions costs are important as they may significantly affect the implementation of the CDM, particularly in relation to small-scale projects. THe role of regional environmental centres and the potential for their creation in selected countries will be evaluated. The countries for the analysis will be India, Morocco, Phillipines, Senegal, Bolivia, Moldova and Samoa.