API src

Found 2605 results.

Similar terms

s/esp/CSP/gi

Kraftwerke: konventionelle und erneuerbare Energieträger

<p>Die Energiewende ändert die Zusammensetzung des deutschen Kraftwerksparks. Die Anzahl an Kraftwerken zur Nutzung erneuerbarer Energien nimmt deutlich zu. Kraftwerke mit hohen Treibhausgas-Emissionen werden vom Netz genommen. Gleichzeitig muss eine sichere regionale und zeitliche Verfügbarkeit der Stromerzeugung zur Deckung der Stromnachfrage gewährleistet sein.</p><p>Kraftwerkstandorte in Deutschland</p><p>Die Bereitstellung von Strom aus konventionellen Energieträgern verteilt sich unterschiedlich über die gesamte Bundesrepublik. Das ⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>⁠ stellt verschiedene Karten mit Informationen zu Kraftwerken in Deutschland zur Verfügung.</p><p>Kraftwerke und Verbundnetze in Deutschland, Stand August 2025.<br>Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.<p>Kraftwerke mit Kraft-Wärme-Kopplung (KWK) in Deutschland, Stand August 2025<br>Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.<p>Karte Kraftwerke und Windleistung in Deutschland, Stand Juni 2025<br>Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.<p>Karte Kraftwerke und Photovoltaikleistung in Deutschland, Stand Juni 2025<br>Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.<p>Installierte Kraftwerksleistung in Deutschland 2024 (Stand: Januar 2025)<br>Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.<p>Kraftwerke auf Basis konventioneller Energieträger</p><p>Der deutsche Kraftwerkspark beruhte vor der Energiewende vor allem auf konventionellen Erzeugungsanlagen auf Grundlage eines breiten, regional diversifizierten, überwiegend fossilen Energieträgermixes (Stein- und Braunkohlen, Kernenergie, Erdgas, Mineralölprodukte, Wasserkraft etc.). Die gesamte in Deutschland installierte Brutto-Leistung konventioneller Kraftwerke ist basierend auf Daten des Umweltbundesamtes in der Abbildung „Installierte elektrische Leistung von konventionellen Kraftwerken ab 10 Megawatt nach Energieträgern“ dargestellt. Die aktuelle regionale Verteilung der Kraftwerkskapazitäten ist in der Abbildung „Kraftwerksleistung aus konventionellen Energieträgern ab 10 Megawatt nach Bundesländern“ dargestellt.</p><p></p><p>In den letzten Jahrzehnten hat sich die Energiebereitstellung aus erneuerbaren Energien sehr dynamisch entwickelt. Gleichzeitig wurden mit dem im Jahr 2023 erfolgten gesetzlichen Ausstieg Deutschlands aus der Nutzung der Kernenergie und dem fortschreitenden Ausstieg aus der Braun- und Steinkohle konkrete Zeitpläne zur Reduktion konventioneller Kraftwerkskapazitäten festgelegt (siehe Tab. „Braunkohlen-Kraftwerke in Deutschland gemäß Kohleausstiegsgesetz“ im letzten Abschnitt). Unabhängig davon übt der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/c?tag=CO2#alphabar">CO2</a>⁠-Preis einen wesentlichen Einfluss auf die Rentabilität und insofern den Einsatz fossiler Kraftwerke aus.</p><p>Kraftwerke auf Basis erneuerbarer Energien</p><p>Im Jahr 2024 erreichte der Ausbau der erneuerbaren Energien in Deutschland einen neuen Höchststand: In diesem Jahr wurden über 20 Gigawatt (GW) an erneuerbarer Kraftwerkskapazität zugebaut. Dieser Zubau liegt damit nochmals höher als die vorherige Ausbaurekord aus dem Jahr 2023. Insgesamt stieg damit die Erzeugungskapazität erneuerbarer Kraftwerke auf 188,8 GW. (siehe Abb. „Installierte Leistung zur Stromerzeugung aus erneuerbaren Energien“)</p><p>Getragen wurde der Erneuerbaren-Zubau in den vergangenen Jahren vor allem von einem starken Ausbau der<strong>Photovoltaik</strong>(PV). Seit Anfang 2020 wurden mehr als 50 GW PV-Leistung zugebaut, damit hat sich die installierte Leistung in den letzten fünf Jahren verdoppelt. Mit einem Zubau von über 16,7 GW wurde im Jahr 2024 darüber hinaus ein neuer Zubaurekord erreicht. Nach den Ausbaustarken Jahren 2011 und 2012 war der Photovoltaikausbau zunächst stark eingebrochen, seit etwa 10 Jahren wächst der Zubau aber kontinuierlich mit einer deutlichen Beschleunigung innerhalb der letzten fünf Jahre. Um das im EEG 2023 formulierte PV-Ausbauziel von 215 GW im Jahr 2030 zu erreichen, wurde ein Ausbaupfad festgelegt. Das Zwischenziel von 89 GW zum Ende des Jahres 2024 wurde deutlich übertroffen. In den Folgejahren bis 2030 bleibt allerdings ein weiterer Zubau von jährlich fast 20 GW zur Zielerreichung notwendig.</p><p>Auch wenn das Ausbautempo bei<strong>Windenergie</strong>zuletzt wieder zulegt hat, sind die aktuelle zugebauten Anlagenleistungen weit von den hohen Zubauraten früherer Jahre entfernt. Im Jahr 2024 wurden 3,4 GW neue Windenergie-Leistung zugebaut (2023: 3,3 GW; 2021: 2,4 GW). In den Jahren 2014 bis 2017 waren es im Schnitt allerdings 5,5 GW. Insgesamt lag die am Ende des Jahres 2023 installierte Anlagenleistung von Windenergieanlagen an Land und auf See bei 72,8 GW. Um die im EEG 2023 festgelegte Ausbauziele von 115 GW (an Land) und 30 GW (auf See) im Jahr 2030 zu erreichen, ist jeweils eine deutliche Beschleunigung des Ausbautempos notwendig.</p><p>Durch die Abhängigkeit vom natürlichen Energiedargebot unterscheidet sich die Stromerzeugung der erneuerbaren Erzeugungsanlagen teilweise beträchtlich. So kann eine Windenergieanlage die vielfache Menge Strom erzeugen wie eine PV-Anlage gleicher Leistung. Ein einfacher Vergleich der installierten Leistungen lässt deshalb noch keinen Schluss über die jeweils erzeugten Strommengen zu. Neben Photovoltaik- und Windenergieanlagen mit stark witterungsabhängiger Stromerzeugung liefern Wasserkraftwerke langfristig konstant planbaren erneuerbaren Strom, sowie Biomassekraftwerke flexibel steuerbare Strommengen. Beide Energieträger haben in Deutschland aber nur ein begrenztes weiteres Ausbaupotential.</p><p>Weitere Informationen und Daten zu erneuerbaren Energien finden Sie auf der<a href="https://www.umweltbundesamt.de/themen/klima-energie/erneuerbare-energien/erneuerbare-energien-in-zahlen">Themenseite „Erneuerbare Energien in Zahlen“</a>.</p><p>Wirkungsgrade fossiler Kraftwerke</p><p>Im ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Brutto-Wirkungsgrad#alphabar">Brutto-Wirkungsgrad</a>⁠ ist im Vergleich zum Netto-Wirkungsgrad der Eigenverbrauch der Kraftwerke enthalten. Insgesamt verbesserte sich der durchschnittliche Brutto-Wirkungsgrad des eingesetzten deutschen Kraftwerksparks seit 1990 um einige Prozentpunkte (siehe Abb. „Durchschnittlicher Brutto-Wirkungsgrad des fossilen Kraftwerksparks“). Diese Entwicklung spiegelt nicht zuletzt die kontinuierliche Modernisierung des Kraftwerksparks und die damit verbundene Außerbetriebnahme alter Kraftwerke wider.</p><p>Der Brennstoffausnutzungsgrad von Kraftwerken kann durch eine gleichzeitige Nutzung von Strom und Wärme (Kraft-Wärme-Kopplung, KWK) gesteigert werden. Dies kann bei Großkraftwerken zur Wärmebereitstellung in Industrie und Fernwärme, aber auch bei dezentralen kleinen Kraftwerken wie Blockheizkraftwerken lokal erfolgen. Dabei müssen neue Kraftwerke allerdings auch den geänderten Flexibilitätsanforderungen an die Strombereitstellung genügen, dies kann beispielsweise über die Kombination mit einem thermischen Speicher erfolgen.</p><p>Obwohl bei konventionellen Kraftwerken in den letzten Jahren technisch eine Steigerung der Wirkungsgrade erreicht werden konnte, werden die dadurch erzielbaren Brennstoffeinsparungen nicht ausreichen, um die erforderliche Treibhausgasreduktion im Kraftwerkssektor für die Einhaltung der Klimaschutzziele zu erreichen. Dafür ist ein weiterer Ausbau der erneuerbaren Stromerzeugung notwendig.</p><p>Kohlendioxid-Emissionen</p><p>Folgende Aussagen können zum Kohlendioxid-Ausstoß von Großkraftwerken für die Stromerzeugung getroffen werden:</p><p>Weitere Entwicklung des deutschen Kraftwerksparks</p><p>Um die Klimaschutzziele zu erreichen, ist ein weiterer Ausbau der erneuerbaren Kraftwerkskapazitäten notwendig.</p><p>Um den Herausforderungen der Energiewende begegnen zu können, wird es außerdem einen zunehmenden Fokus auf Flexibilisierungsmaßnahmen geben. Dabei handelt es sich um einen Ausbau von Speichern (etwa Wasserkraft, elektro-chemische Speicher, thermische Speicher) sowie um den Ausbau der Strominfrastruktur (Netzausbau, Außenhandelskapazitäten) und Anreize zur Flexibilisierung des Stromverbrauchs.</p>

Standorte Energieerzeugende Anlagen Strom und Wärme NRW (Erneuerbare und konventionelle Energien)

Das Landesamt für Natur, Umwelt und Klima Nordrhein-Westfalen (LANUK) stellt im Energieatlas NRW (www.energieatlas.nrw.de) die Standorte der Erneuerbaren Energien, der fossilen Kraftwerke und der Elektrotankstellen in NRW dar. Folgende Energieträger werden dargestellt: Biomasse/Bioenergie, Deponiegas, Grubengas, Klärgas, Photovoltaik Freifläche, Wasserkraft, Windenergie, Windenergieanlagen in Planung, stillgelegte Windenergieanlagen, E-Tankstellen, Braunkohle, Steinkohle, Erdgas, Mineralöl, Müllverbrennungsanlagen, Grubenwasser, Industrielle Abwärme und KWK-relevante Industriestandorte. Die Excel-Tabelle fasst die Standorte aller Energieträger zusammen

Entwicklung offenporiger monolithischer Perowskitstrukturen als hybride thermische Speicher, Teilvorhaben: Keramikherstellung mittels 3D-Druck und Charakterisierung

Regelbare Kraftwerke, welche Strom je nach Bedarf liefern können, indem sie ihre Leistung anpassen und kurzfristig ein- und ausgeschaltet werden können, gewinnen im Kontext der Energiewende zunehmend an Bedeutung. Bei der direkten Stromgewinnung, z.B. mittels Photovoltaik oder Windkraft, muss die gewonnene elektrische Energie sofort in das Netz eingespeist werden, oder in großen Batteriespeichersystem gespeichert werden. Dafür benötigte Speichersysteme mit langfristiger Betriebszuverlässigkeit und wettbewerbsfähigen Kosten sind noch nicht kommerziell verfügbar. Wärme kann hingegen zu wesentlich geringeren Kosten als Strom gespeichert und bei Bedarf zur Stromerzeugung genutzt werden. So kann aus überschüssigem Strom erzeugte Wärme in großem Umfang und über lange Zeiträume gespeichert werden, aber auch einem CSP (Concentrated Solar Power)-Kraftwerk die notwendige Flexibilität verleihen, Wärme und Strom dann zu liefern, wenn eine große Nachfrage besteht. Dies ist eine unabdingbare Voraussetzung für die weitere kommerzielle Nutzung von CSP. Durch leistungsfähige Wärmespeicher kann der Stromgewinnungsprozess weitestgehend von der Wärmegewinnung entkoppelt werden und so das Potential der Regelbarkeit und Flexibilität optimal genutzt werden. Kommerziell verfügbar sind im Bereich von Temperaturen über 700°C aktuell lediglich Wärmespeichersysteme, welche auf dem Prinzip der sensiblen, also nicht reaktiven, Wärmespeicherung basieren. Ein Einsatz von redoxaktiven Materialien birgt das Potential, die Speicherkapazität und Effizienz von Wärmespeichersystem bedeutend zu steigern. Bei der zyklischen Reduktion und Oxidation solcher redoxaktiver Materialien kann zusätzliche Wärme gespeichert (Reduktion) und wieder entnommen werden (Oxidation). Im Projekt Porotherm-Solar werden Speichermodule aus redoxaktivem Perowskit entwickelt und unter Realbedingungen in einem Demonstrator erprobt.

Entwicklung offenporiger monolithischer Perowskitstrukturen als hybride thermische Speicher, Teilvorhaben: Herstellung und Charakterisierung modularer Strukturen mittels Extrusion

Regelbare Kraftwerke, welche Strom je nach Bedarf liefern können, indem sie ihre Leistung anpassen und kurzfristig ein- und ausgeschaltet werden können, gewinnen im Kontext der Energiewende zunehmend an Bedeutung. Bei der direkten Stromgewinnung, z.B. mittels Photovoltaik oder Windkraft, muss die gewonnene elektrische Energie sofort in das Netz eingespeist werden, oder in großen Batteriespeichersystem gespeichert werden. Dafür benötigte Speichersysteme mit langfristiger Betriebszuverlässigkeit und wettbewerbsfähigen Kosten sind noch nicht kommerziell verfügbar. Wärme kann hingegen zu wesentlich geringeren Kosten als Strom gespeichert und bei Bedarf zur Stromerzeugung genutzt werden. So kann aus überschüssigem Strom erzeugte Wärme in großem Umfang und über lange Zeiträume gespeichert werden, aber auch einem CSP (Concentrated Solar Power)-Kraftwerk die notwendige Flexibilität verleihen, Wärme und Strom dann zu liefern, wenn eine große Nachfrage besteht. Dies ist eine unabdingbare Voraussetzung für die weitere kommerzielle Nutzung von CSP. Durch leistungsfähige Wärmespeicher kann der Stromgewinnungsprozess weitestgehend von der Wärmegewinnung entkoppelt werden und so das Potential der Regelbarkeit und Flexibilität optimal genutzt werden. Kommerziell verfügbar sind im Bereich von Temperaturen über 700°C aktuell lediglich Wärmespeichersysteme, welche auf dem Prinzip der sensiblen, also nicht reaktiven, Wärmespeicherung basieren. Ein Einsatz von redoxaktiven Materialien birgt das Potential, die Speicherkapazität und Effizienz von Wärmespeichersystem bedeutend zu steigern. Bei der zyklischen Reduktion und Oxidation solcher redoxaktiver Materialien kann zusätzliche Wärme gespeichert (Reduktion) und wieder entnommen werden (Oxidation). Im Projekt Porotherm-Solar werden Speichermodule aus redoxaktivem Perowskit entwickelt und unter Realbedingungen in einem Demonstrator erprobt.

Simulations-Tools und KI-Methoden zur Multi-Einspeiseroptimierung in Fernwärmenetzen

Von großer Bedeutung wird künftig die zunehmende Dezentralisierung der Netze sein. Aufgrund der angestrebten Dekarbonisierung der Wärmeerzeugung (nach Paris-Abkommen bis 2035!) werden die großen Kraftwerke zunehmend durch kleinere, dezentral verteilte Kraftwerke und Einspeiser ersetzt werden. Auch die Gestehungskosten der einzelnen Wärmeerzeuger wird künftig deutlich stärker variieren. Es besteht daher Bedarf, dass der Einsatz dieser dezentralen Kraftwerke künftig dynamisch optimiert werden muss. Dazu muss neben genauen Lastprognosen und den zeitvariablen Kosten der Energieträger auch das hydraulische Verhalten des Netzes in Echtzeit berücksichtigt werden. Die übergeordneten Projektziel bestehen darin, den Einsatz regenerativer Energien in der Fernwärme zu erhöhen sowie den Betrieb der FW-Netze effizienter zu gestalten. Das vorgeschlagene Projekt verfolgt folgende vier Teil-Ziele, welche in enger Kooperation mit drei Fernwärmenetz-Betreibern untersucht werden: 1. Systematik zum effizienten Aufsetzen und Pflegen von datengetriebenen und thermo-hydraulischen Simulationsmodellen 2. Methoden und Tools zur Auswahl und Platzierung von neuen Sensoren 3. Untersuchung möglicher Optimierungspotentiale im Fernwärmenetzbetrieb 4. Methoden und Tools zur dynamischen Einsatzplanung bei dezentralen Kraftwerken und dynamischen Gestehungskosten. Die Fraunhofer IOSB ist Verbund-Koordinator und wird bei allen Arbeitspaketen mitarbeiten. Schwerpunkt der Arbeiten des IOSB liegt in der Realisierung eines modellprädiktiven Reglers zur Multi-Einspeiseroptimierung in Fernwärmenetzen.

Untersuchung der Ausbreitung von Abgasfahnen und Bestimmung ihrer Immissionsbeitraege mit der SF6-Tracermethode

Immissionskonzentrationen setzen sich stets aus den Anteilen vieler Verursacher zusammen. Industrieanlagen und Kraftwerke, Verkehr, Hausbrand und Fernverfrachtung verursachen Schadstoffkonzentrationen in der Luft, deren Messung keinen Rueckschluss auf ihre Herkunft zulaesst. Um eine solche Situation zu beurteilen und gezielte Massnahmen zur Verminderung von Luftverunreinigungen zu ermoeglichen, ist die Kenntnis der Emissions - Immissionsbeziehung fuer einzelne Emittenten notwendig. Informationen darueber koennen mit der SF6-Tracermethode erhalten werden. SF6 ist ein chemisch inertes, ungiftiges Gas, das noch in Konzentrationen bis zu 10-12 cm3/SF6/cm3 Luft mittels Gaschromatographie gemessen werden kann. Das Prinzip der Tracermethode ist es, den Abgasen waehrend der Versuchsdauer gleichmaessig eine geringe Menge dieses Gases, das in der Natur und in anderen Abgasfahnen nicht vorkommt, beizumischen. Die markierte Abgasfahne kann durch Messung des zugegebenen Gases selektiv und ohne Beeinflussung durch andere Abgasfahnen nachgewiesen werden. Die Messungen erfolgen in Windrichtung an einem Netz von Messpunktken, wo die jeweilige Konzentration des Markierungsgases ermittelt wird. Waehrend der Messung werden kontinuierliche Wetterdaten registriert, da die Ausbreitung einer Abgasfahne von den meteorologischen Bedingungen abhaengt. Die Tracermethode wird einerseits angewendet, um die Ausbreitung von Abgasfahnen bei verschiedenen Wetterlagen zu untersuchen und damit die Gueltigkeit von Ausbreitungsmodellen zu ueberpruefen. Andererseits kann mit dieser Methode der Anteil einzelner Emittenten an einer Schadstoffkonzentration im Einzugsbereich mehrerer Anlagen...

Langjährige Entwicklung der Luftqualität - Berliner Luftgütemessnetz - Standorte und Messdaten (Umweltatlas)

Darstellung aller Stationen und Messwerte der BLUME-, RUBIS- und Passivsammler-Messnetze seit 1975 sowie ausgewählter langjährig betriebener Berliner Klimastationen

Betriebe unter Bergaufsicht im Saarland, Standorte, Kraftwerke

Betriebe unter Bergaufsicht im Saarland, Standorte, Kraftwerke, Bundesberggesetz (BBergG)

Emissionen von Wärmekraftwerken und anderen Verbrennungsanlagen

<p>Deutschland verpflichtete sich 2003 mit der Zeichnung des PRTR-Protokolls dazu, ein Register über Schadstofffreisetzungen und -transporte aufzubauen. Hierzu berichten viele Industriebetriebe jährlich dem UBA über Schadstoffemissionen und die Verbringung von Abwässern und Abfällen. Das UBA bereitet diese Daten in einer Datenbank für Bürgerinnen und Bürger auf.</p><p>Umweltbelastende Emissionen aus Wärmekraftwerken und anderen Verbrennungsanlagen</p><p>Wärmekraftwerke und andere Verbrennungsanlagen, die mit fossilen Brennstoffen (insbesondere Steinkohle, Braunkohle, Erdgas) oder biogenen Brennstoffen betrieben werden, sind bedeutende Verursacher von umweltbelastenden Emissionen. Sie sind verantwortlich für einen erheblichen Teil des Ausstoßes an Kohlendioxid (CO₂), Stickstoffoxiden (NOx) und Schwefeloxiden (SOx). Die Kohleverbrennung ist zudem die wichtigste Emissionsquelle für das Schwermetall Quecksilber (Hg).</p><p>Das Schadstofffreisetzungs- und -verbringungsregister (PRTR) in Deutschland</p><p>Industriebetriebe müssen jährlich dem Umweltbundesamt (⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>⁠) sowohl über ihre Emissionen in Luft, Wasser und Boden berichten, als auch darüber, wie viele Schadstoffe sie in externe Abwasserbehandlungsanlagen weiterleiten und wie viele gefährliche Abfälle sie entsorgen. Die Betriebe müssen nicht über jeden Ausstoß und jede Entsorgung berichten, sondern nur dann, wenn der Schadstoffausstoß einen bestimmten Schwellenwert oder der Abfall eine gewisse Mengenschwelle überschreitet. In diesem Artikel werden Wärmekraftwerke und andere Verbrennungsanlagen mit einer Feuerungswärmeleistung von über 50 Megawatt (⁠<a href="https://www.umweltbundesamt.de/service/glossar/m?tag=MW#alphabar">MW</a>⁠), die von Anhang I, Nummer 1.c) der Europäischen ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PRTR#alphabar">PRTR</a>⁠-Verordnung erfasst werden, betrachtet.</p><p>Das Umweltbundesamt (UBA) sammelt die von Industriebetrieben gemeldeten Daten in einer Datenbank: dem Schadstofffreisetzungs- und -verbringungsregister PRTR (<strong>P</strong>ollutant<strong>R</strong>elease and<strong>T</strong>ransfer<strong>R</strong>egister). Das UBA leitet die Daten dann an die Europäische Kommission weiter und macht sie im Internet unter der Adresse<a href="https://thru.de/">https://thru.de</a>der Öffentlichkeit frei zugänglich.</p><p>Es gibt drei Rechtsgrundlagen für die PRTR-Berichterstattung:</p><p>Erfasst werden im PRTR industrielle Tätigkeiten in insgesamt neun Sektoren. Einer davon ist der Energiesektor, zu dem die hier dargestellten Wärmekraftwerke und andere Verbrennungsanlagen gehören. Für das aktuelle Berichtsjahr 2023 waren in Deutschland insgesamt 130 Betriebe mit einer Feuerungswärmeleistung von mehr als 50 Megawatt (MW) und mit Luftemissionen nach PRTR berichtspflichtig (siehe Karte „Standorte von PRTR-berichtspflichtigen Kraftwerken mit Luftemissionen im Jahr 2023“).</p><p>Die Aussagekraft des PRTR ist jedoch begrenzt. Drei Beispiele:</p><p>Kohlendioxid-Emissionen in die Luft</p><p>Kohlendioxid (CO₂)-Emissionen entstehen vor allem bei der Verbrennung fossiler Energieträger. Somit gehören Wärmekraftwerke und andere stationäre Verbrennungsanlagen zu den bedeutenden Quellen dieses Treibhausgases. Dies ist auch im ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PRTR#alphabar">PRTR</a>⁠ erkennbar.<br>Nicht jeder Betreiber muss CO₂-Emissionen melden. Für die Freisetzung von CO₂ in die Luft gilt im PRTR ein Schwellenwert von 100.000 Tonnen pro Jahr (t/Jahr). Erst wenn ein Betrieb diesen Wert überschreitet, muss er dem Umweltbundesamt die CO₂-Emissionsfracht melden.In den Jahren 2007 bis 2023 meldeten jeweils zwischen 117 und 156 Betreiber von Wärmekraftwerken und andere Verbrennungsanlagen CO₂-Emissionen an das PRTR. Das Jahr 2009 fiel in der Zeitreihe hinsichtlich der freigesetzten Mengen heraus, da in diesem Jahr aufgrund der Wirtschaftskrise und der daraus folgenden geringeren Nachfrage nach Strom und Wärme weniger Brennstoffe in den Anlagen eingesetzt wurden. Der zeitweilige Anstieg der Emissionsfrachten nach 2009 ist der wirtschaftlichen Erholung geschuldet. Im Berichtszeitraum war die Zahl meldender Wärmekraftwerke und anderer Verbrennungsanlagen im Jahr 2023 mit 117 Betrieben als auch die berichtete Gesamtemissionsfracht mit 162 Kilotonnen am niedrigsten. Von 2016 bis 2020 ging die Anzahl meldender Wärmekraftwerke und anderer Verbrennungsanlagen sowie der Anteil der berichteten Gesamtemissionsfracht stetig zurück (siehe Abb. „Kohlendioxid-Emissionen aus Kraftwerken in die Luft und Zahl der im PRTR meldenden Kraftwerke“). In den Jahren 2021 und 2022 stiegen die Einsätze von Stein- und Braunkohlen in Großfeuerungsanlagen und damit auch die CO2Emissionen wieder an. Einige Kohlekraftwerke wurden aus der Netzreserve/ Sicherheitsbereitschaft wieder in den regulären Betrieb überführt. Mit dem erhöhten Kohleeinsatz wurde während der Gaskrise teures Erdgas eingespart. Infolgedessen liefen die Erdgaskraftwerke weniger. Im Jahr 2023 ging der Kohleeinsatz in Kraftwerken wieder deutlich zurück. Hauptgründe dafür sind der verringerte Stromverbrauch, die Zunahme der Stromimporte und die erhöhte Einspeisung von erneuerbarem Strom. Das führte in der Summe zu einer merklichen Senkung der CO₂ Emissionen. Auch die Anzahl der CO₂-meldenden Kraftwerke war 2023 im Vergleich zum Vorjahr rückläufig, weil aufgrund von Stilllegungen aber vor allem wegen verringerter Volllaststunden Anlagen unter den Schwellenwert fielen.Die Frachtangaben zu CO₂ im PRTR basieren größtenteils auf Berechnungen der Betreiber. Als Grundlage dienen Brennstoffanalysen zur Bestimmung des Kohlenstoffgehaltes. CO₂ Messungen im Abgas werden nur selten vorgenommen.Die Karte „Standorte von PRTR-berichtspflichtigen Kraftwerken mit Kohlendioxid-Emissionen in die Luft 2023“ erfasst alle 117 Betriebe, die im Jahr 2023 mehr als 100.000 Tonnen CO₂ in die Luft freisetzten. Die Signaturen in der Karte zeigen die Größenordnung der jeweils vom Betrieb freigesetzten CO₂-Menge:Stickstoffoxid-Emissionen in die LuftStickstoffoxide (Stickstoffmonoxid und Stickstoffdioxid, gerechnet als Stickstoffdioxid und abgekürzt mit NOx, schädigen die Gesundheit von Mensch, Tier und Vegetation in vielfacher Weise. Im Vordergrund steht die stark oxidierende Wirkung von Stickstoffdioxid (NO2). Außerdem tragen einige Stickstoffoxide als Vorläuferstoffe zur Bildung von bodennahem Ozon und sekundärem Feinstaub bei, wirken überdüngend und versauernd und schädigen dadurch auch mittelbar die Vegetation und den Boden. Berichtspflichtig im ⁠PRTR⁠ sind NOx-Emissionen in die Luft ab einem Schwellenwert von größer 100.000 Kilogramm pro Jahr (kg/Jahr).In den Jahren von 2007 bis 2023 ging die Anzahl Stickstoffoxid-Emissionen meldender Betriebe von 157 auf 89 Wärmekraftwerke und andere Verbrennungsanlagen zurück. Seit 2013 ist ein Rückgang der berichteten NOx-Gesamtemissionen im PRTR von 209 Kilotonnen (kt) auf 86 Kilotonnen (kt) in 2023 zu beobachten. Der auffallende niedrige Wert berichteter NOx-Gesamtemissionen iHv. 101 Kilotonnen (kt) im Jahr 2020 ist der besonderen Situation dieses Jahres geschuldet. Einerseits nahm der Stromverbrauch aufgrund der Corona-Pandemie ab und der Stromexport verringerte sich. Andererseits legte die Stromerzeugung aus erneuerbaren Energieträgern zu. Das führte in der Summe zu einem erheblichen Rückgang des Kohleeinsatzes. Im Jahr 2021 führte die wirtschaftliche Erholung und die geringe Stromerzeugung aus Windenergie zu einer Erhöhung der Brennstoffeinsätze und entsprechend zu einer Emissionssteigerung. Aufgrund der Gaskrise und der damit verbundenen Brennstoffwechsel von Gas zu Kohle und Ölprodukten kam es im Jahr 2022 nochmals zu einer Erhöhung der berichteten Gesamtemissionsfracht. Die zeitgleich erfolgte Verschärfung der NOX-Grenzwerte im Zuge der Novelle der 13. ⁠BImSchV⁠ dämpfte den Emissionsanstieg. Im Jahr 2023 sanken die NOX-Emissionen im Vergleich zum Vorjahr wieder um rund 29 %. (siehe Abb. „Stickstoffoxid-Emissionen aus Kraftwerken in die Luft und Zahl der im PRTR meldenden Kraftwerke“). Der deutliche Rückgang im Jahr 2023 lässt sich im Wesentlichen durch den verringerten Einsatz von Kohlen, Erdgas und Ölprodukten zur Stromerzeugung erklären. Die Gründe dafür sind die erhöhte Einspeisung von erneuerbarem Strom, die Erhöhung von Stromimporten und die verringerte Stromnachfrage.Die Frachtangaben zu NOxim PRTR basieren größtenteils auf kontinuierlichen Messungen der Betreiber.Die Karte „Standorte von PRTR-berichtspflichtigen Kraftwerken mit Stickstoffoxid-Emissionen in die Luft 2023“ erfasst alle 89 Betriebe, die im Jahr 2023 mehr als 100 t Stickstoffoxid (t NOx) in die Luft freisetzten. Die Signaturen in der Karte zeigen die jeweilige Größenordnung der vom Betrieb in die Luft freigesetzten Stickstoffoxid-Mengen:Schwefeloxid-Emissionen in die LuftSchwefeloxide (wie zum Beispiel SO2, im Folgenden nur SOxgenannt) entstehen überwiegend bei Verbrennungsvorgängen fossiler Energieträger wie zum Beispiel Kohle. Schwefeloxide können Schleimhäute und Augen reizen und Atemwegsprobleme verursachen. Sie können zudem aufgrund von Ablagerung in Ökosystemen eine ⁠Versauerung⁠ von Böden und Gewässern bewirken. Der Schwellenwert für im ⁠PRTR⁠ berichtspflichtige SOx-Emissionen in die Luft beträgt größer 150.000 Kilogramm pro Jahr (kg/Jahr).In den Jahren von 2007 bis 2023 meldeten jeweils zwischen 42 und 80 Wärmekraftwerke und andere Verbrennungsanlagen Schwefeloxidemissionsfrachten. In den Jahren 2007 und 2013 war der höchste Stand der Gesamtfrachten mit jeweils 157 Kilotonnen (kt) zu verzeichnen. Die Zahl meldender Wärmekraftwerke und anderen Verbrennungsanlagen ist seit 2013 kontinuierlich rückläufig und erreichte 2020 mit 42 meldenden Betrieben den niedrigsten Stand. Das Jahr 2023 stellt mit berichteten 47 Kilotonnen (kt) das Jahr mit der niedrigsten Gesamtemissionsfracht in der Zeitreihe dar und liegt damit sogar noch unter dem Wert der Corona-Krise im Jahr 2020. &nbsp;2023 nahm im Vergleich zum vorangegangenen Jahr, 2022, die Anzahl meldender Wärmekraftwerke und anderen Verbrennungsanlagen um rund 15 % zu, der Anteil der berichteten Gesamtemissionsfracht hingegen um rund 18 % ab (siehe Abb. “Schwefeloxid-Emissionen aus Kraftwerken in die Luft und Zahl der im PRTR meldenden Kraftwerke“). Der Hauptgrund für den Emissionsrückgang im Jahr 2023 der deutlich verringerte Kohleeinsatz zur Stromerzeugung. Bemerkenswert ist, dass die Umsetzung der strengeren Grenzwerte und der höheren Schwefelabscheidegrade in der novellierten Fassung der 13. ⁠BImSchV⁠ im Jahr 2022 dazu führte, dass das Emissionsniveau trotz gestiegener Kohleeinsätze gleichblieb. Bei Betrachtung der gesamten Zeitreihe von 2007 bis 2023 ist ein Rückgang berichteter Gesamtemissionsfrachten von rund 70 % zu verzeichnen. Der Emissionsrückgang im Zeitraum 2007 bis 2023 ist, ähnlich wie bei Stickstoffoxiden, im Wesentlichen auf den sinkenden Kohleeinsatz in Wärmekraftwerken zurückzuführen. Besonders stark ging der Steinkohleeinsatz zurück, aber auch der Braunkohleeinsatz verringerte sich signifikant. Dabei verlief die Entwicklung in den einzelnen Braunkohlerevieren uneinheitlich. Aufgrund der unterschiedlichen Schwefelgehalte in den verschiedenen Revieren (rheinische Braunkohle niedriger Schwefelgehalt, mitteldeutsche Braunkohle hoher Schwefelgehalt) korreliert die Emissionsminderung nicht direkt mit der Entwicklung der Brennstoffeinsätze. Nachdem in den Jahren 2021 und 2022 aufgrund des Kernkraftausstieges und der Gaskrise wieder mehr Stein- und Braunkohle eingesetzt wurde, drehte sich diese Entwicklung im Jahr 2023 wieder um und entsprechend führte der reduzierte Kohleeinsatz zu einer deutlichen Senkung der Emissionen.Die Frachtangaben zu SOxim PRTR basieren größtenteils auf kontinuierlichen Messungen der Betreiber.Die Karte „Standorte von PRTR-berichtspflichtigen Kraftwerken mit Schwefeloxid-Emissionen in die Luft 2023“ erfasst alle 43 Betriebe, die im Jahr 2023 mehr als 150 Tonnen Schwefeloxid (t SOx) in die Luft freisetzten. Die Signaturen in der Karte zeigen die jeweilige Größenordnung der vom Betrieb in die Luft freigesetzten Schwefeloxid-Mengen:Quecksilber-Emissionen in die LuftDas zur Gruppe der Schwermetalle gehörende Quecksilber (Hg) wird hauptsächlich frei, wenn Energieerzeuger fossile Brennstoffe wie Kohle für die Energieerzeugung verbrennen. Quecksilber und seine Verbindungen sind für Lebewesen teilweise sehr giftig. Die stärkste Giftwirkung geht von Methylquecksilber aus. Diese Verbindung reichert sich besonders in Fischen und Schalentieren an und gelangt so auch in unsere Nahrungskette.Die Zahl der Wärmekraftwerke und anderen Verbrennungsanlagen, die Hg-Emissionen in die Luft an das ⁠PRTR⁠ meldeten, pendelte in den Jahren 2007 bis 2023 zwischen 19 und 56. Ein Betreiber muss nur dann berichten, wenn er mehr als 10 Kilogramm Quecksilber pro Jahr (kg/Jahr) in die Luft emittiert. Im Jahr 2009 gingen die Emissionen aufgrund der gesunkenen Nachfrage nach Strom und Wärme zurück. Der Anstieg der Emissionsfrachten von 2009 auf 2010 ist der wirtschaftlichen Erholung geschuldet. Die Zahl meldender Wärmekraftwerke und anderen Verbrennungsanlagen und die berichtete Gesamtemissionsfracht erreichte im Jahr 2020 mit 19 Betrieben den niedrigsten Stand innerhalb der Zeitreihe 2007 bis 2023, was den oben genannten Besonderheiten des Jahres 2020 geschuldet ist. &nbsp;Das Jahr 2023 stellt mit berichteten 2,17 Kilotonnen (kt) das Jahr mit der niedrigsten Gesamtemissionsfracht in der Zeitreihe dar. Bei Betrachtung der gesamten Zeitreihe von 2007 bis 2023 ist von 2016 bis 2023 ein deutlicher Rückgang der berichteten Gesamtemissionsfrachten um rund 50 % zu verzeichnen (siehe Abb. „Quecksilber-Emissionen aus Kraftwerken in die Luft und Zahl der im PRTR meldenden Kraftwerke“). Für den Rückgang der gemeldeten Gesamtemissionsfracht bis 2023 gibt es hauptsächlich zwei Gründe: Den wesentlichen Anteil hat der deutliche Rückgang der Kohleverstromung. Weiterhin trägt die Einführung eines auf das Jahr bezogenen Quecksilbergrenzwertes dazu bei, der erstmals für das Jahr 2019 anzuwenden war, und der deutlich strenger ist als der bisherige und weiterhin parallel geltende auf den einzelnen Tag bezogene Grenzwert. Diese neue Anforderung bewirkt, dass vor allem die Kraftwerke im mitteldeutschen Braunkohlerevier – hier liegen deutlich höhere Gehalte an Quecksilber in der Rohbraunkohle vor als im rheinischen Revier – erhebliche Anstrengungen für eine weitergehende Quecksilberemissionsminderung unternehmen mussten. Infolgedessen kommt es im mitteldeutschen Revier zu einer deutlichen Minderung der spezifischen Quecksilberemissionen. Aber auch im Lausitzer Revier gingen in den Jahren 2019 und 2020 die spezifischen Quecksilberemissionen zurück. Die Gründe für den Rückgang der Anzahl meldender Wärmekraftwerke und anderen Verbrennungsanlagen sind zum einen Anlagenstilllegungen, aber auch der verringerte Steinkohleeinsatz in den verbliebenen Anlagen, der dazu führt, dass einige Anlagen unter die Abschneidegrenze fallen. Der Emissionsanstieg den Jahren 2021 und 2022 ist im Wesentlichen auf den, angesichts der Gaskrise, erhöhten Braun- und Steinkohleeinsatz zurückzuführen. Daraus ergibt sich auch eine höhere Anzahl der meldenden Steinkohlenkraftwerke, die den Schwellenwert überschreiten. Im Jahr 2022 wurden im Zuge der Umsetzung der BVT-Schlussfolgerungen die gesetzlichen Anforderungen nochmals deutlich verschärft. Von daher kommt es trotz einer Erhöhung des Kohleeinsatzes in Großfeuerungsanlagen von über 8 % nur zu einer leichten Zunahme der Quecksilberemissionen von 0,3 %. Im Jahr 2023 sinken die Quecksilberemissionen im Vergleich zum Vorjahr um rund 25 %. Der Hauptgrund für diese Entwicklung ist der deutlich verringerte Einsatz von Stein- und Braunkohlen zur Stromerzeugung.Der größte Teil der Betreiber ermittelt die Hg-Luftemissionen über Messungen, die meisten davon kontinuierlich. Ein Teil der Quecksilberemissionen wird aber auch über Berechnungen ermittelt, die meist auf den vorgeschriebenen Brennstoffanalysen basieren.Die Karte „Standorte von PRTR-berichtspflichtigen Kraftwerken mit Quecksilber-Emissionen in die Luft 2023“ erfasst die 23 Betriebe, die nach eigenen Angaben im Jahr 2023 mehr als 10 Kilogramm Quecksilber (kg Hg) in die Luft freisetzten. Die Signaturen in der Karte zeigen die jeweilige Größenordnung der vom Betrieb in die Luft freigesetzten Menge an Quecksilber:

Luftqualitätsdaten (Datenstrom E1a) - Validierte Einzelwerte 2019 (Datensatz)

Datenstrom E1a umfasst gemessene (Link zu Datenstrom D) Einzelwerte von gasförmigen Schadstoffen (z. B. Ozon, Stickstoffdixoid, Schwefeldioxid, Kohlenmonoxid), von partikelförmigen Schadstoffen (z.B. Feinstaub, Ruß, Gesamtstaub) und Staubinhaltsstoffen (z.B. Schwermetalle, PAK in PM10, PM2.5, TSP) sowie der Gesamtdeposition (BULK), der nassen Deposition und meteorologische Messgrößen (z.B. Temperatur, Windgeschwindigkeit, Luftdruck), für die eine Datenbereitstellungspflicht besteht. Der Bericht umfasst zudem die Datenqualitätsziele (Messunsicherheit, Mindestzeiterfassung (time coverage) erfüllt ja/nein, Mindestdatenerfassung (data capture) erfüllt ja/nein) und Informationen zu Konzentrationswerten die natürlichen Quellen und der Ausbringung von Streusand und –salz zuzurechnen sind (Konzentrationswerte ohne etwaige Korrekturabzüge).

1 2 3 4 5259 260 261