Datenstrom E1a umfasst gemessene (Link zu Datenstrom D) Einzelwerte von gasförmigen Schadstoffen (z. B. Ozon, Stickstoffdixoid, Schwefeldioxid, Kohlenmonoxid), von partikelförmigen Schadstoffen (z.B. Feinstaub, Ruß, Gesamtstaub) und Staubinhaltsstoffen (z.B. Schwermetalle, PAK in PM10, PM2.5, TSP) sowie der Gesamtdeposition (BULK), der nassen Deposition und meteorologische Messgrößen (z.B. Temperatur, Windgeschwindigkeit, Luftdruck), für die eine Datenbereitstellungspflicht besteht. Der Bericht umfasst zudem die Datenqualitätsziele (Messunsicherheit, Mindestzeiterfassung (time coverage) erfüllt ja/nein, Mindestdatenerfassung (data capture) erfüllt ja/nein) und Informationen zu Konzentrationswerten die natürlichen Quellen und der Ausbringung von Streusand und Ätzsalz zuzurechnen sind (Konzentrationswerte ohne etwaige Korrekturabzüge).
Betriebe unter Bergaufsicht im Saarland, Standorte, Kraftwerke, Bundesberggesetz (BBergG)
Datenstrom E1a umfasst gemessene (Link zu Datenstrom D) Einzelwerte von gasförmigen Schadstoffen (z. B. Ozon, Stickstoffdixoid, Schwefeldioxid, Kohlenmonoxid), von partikelförmigen Schadstoffen (z.B. Feinstaub, Ruß, Gesamtstaub) und Staubinhaltsstoffen (z.B. Schwermetalle, PAK in PM10, PM2.5, TSP) sowie der Gesamtdeposition (BULK), der nassen Deposition und meteorologische Messgrößen (z.B. Temperatur, Windgeschwindigkeit, Luftdruck), für die eine Datenbereitstellungspflicht besteht. Der Bericht umfasst zudem die Datenqualitätsziele (Messunsicherheit, Mindestzeiterfassung (time coverage) erfüllt ja/nein, Mindestdatenerfassung (data capture) erfüllt ja/nein) und Informationen zu Konzentrationswerten die natürlichen Quellen und der Ausbringung von Streusand und –salz zuzurechnen sind (Konzentrationswerte ohne etwaige Korrekturabzüge).
Die Arbeiten dienen der Begutachtung von Standorten fuer Fragen der Auswirkung technischer Anlagen (Kraftwerke) auf die Umwelt.
Fraunhofer ISE, Frenell GmbH, John Cockerill / CMI UVK GmbH und BASF New Business GmbH werden im Projekt HybridKraft zur Hybridisierung von solarthermischen Kraftwerken (CSP) und Photovoltaik (PV) mittels Elektroerhitzern neue Technologien entwickeln, die zum Ausbau dieser Art von Kraftwerken beitragen werden. Hauptziel des Projekts ist die Entwicklung eines Elektroerhitzers für Salzschmelze, der sich für den Einsatz in Großkraftwerken eignet. Zu diesem Zweck wird ein Elektroerhitzer mit einer Leistung von 1 MW entworfen, hergestellt und in einer Testschleife mit Salzschmelze als Wärmeträgermedium getestet. Auf der Grundlage des Designkonzepts des Prototyps, der Testergebnisse und der Simulationsstudien wird ein Design für Elektroerhitzer mit großen Kapazitäten entworfen. Anschließend werden die erwartete Steigerung der Systemeffizienz, der Flexibilität und der technisch-wirtschaftlichen Gesamtleistung eines integrierten CSP/PV-Hybridkraftwerks (ICPH) durch den Einsatz des entwickelten Elektroerhitzers untersucht. Während in anderen industriellen Prozessen kleinere Erhitzer bereits eingesetzt werden, ist ein kostengünstiger und leistungsstarker Elektroerhitzer, der für ICPH-Kraftwerke von 50-100 MW benötigt wird, noch nicht verfügbar. Dieser modulare Elektroerhitzer im Nutzmaßstab wird in den Bereichen optimierte mechanische Stabilität und Strömungsführung, verbesserte Anschlussfähigkeit an die Strominfrastruktur, Einspeisekompatibilität von PV-Stromquellen und ein erhöhtes Betriebsspannungsniveau zur Verringerung des Bedarfs an teuren Spannungstransformatoren evaluiert werden. Mit diesen Bewertungen können weitere Optimierungen von ICPH-Anlagen in den Bereichen Betriebsbedingungen, wirtschaftliche Empfindlichkeit und Vereinfachung der Anlage durchgeführt werden.
Die Stadtwerke Bielefeld GmbH beantragt gem. § 16 Abs. 2 des Bundes-Immissionsschutzgesetzes (BImSchG) die Genehmigung zur wesentlichen Änderung ihrer Anlage nach Nr. 1.1 des Anhangs der 4. BImSchV (Anlagen zur Erzeugung von Strom, Dampf, Warmwasser, Prozesswärme oder erhitztem Abgas durch den Einsatz von Brennstoffen in einer Verbrennungseinrichtung (wie Kraftwerk, Heizkraftwerk, Heizwerk, Gasturbinenanlage, Verbrennungsmotoranlage, sonstige Feuerungsanlage), einschließlich zugehöriger Dampfkessel, mit einer Feuerungswärmeleistung von 50 Megawatt oder mehr) einschl. der erforderlichen Nebeneinrichtungen auf ihrem Betriebsgrundstück Ehlentruper Weg 130 in 33604 Bielefeld (Gemarkung Bielefeld, Flur 62, Flurstück 1853). Beantragt wird die Änderung der Emissionsmessverpflichtung und des Emissionsgrenzwertes für Gesamtstaub.
Im Vorhaben GridConWiIG sollen netzstützende und netzbildende Regelungsverfahren für Windenergieanlagen mit doppelt gespeisten Asynchrongeneratoren erforscht werden. Ziel ist es, dass diese Windenergieanlagen unter folgenden Netzbedingungen betrieben werden können: - Direkte Anbindung an ein stabiles Verbundnetz - das ist die heute in Europa übliche Situation. - Anbindung über lange Überlandleitungen oder Kabel an ein stabiles Verbundnetz - diese Situation findet sich in großen Flächenstaaten, z.B. in Australien - Stabilisierung des Verbundnetzes durch die Windenergieanlage selber - diese Situation wird auch in Europa immer wichtiger, wenn konventionelle Kraftwerke vom Netz genommen werden. Dazu müssen bisher von diesen Kraftwerken erbrachte Systemdienstleistungen von den Windenergieanlagen übernommen werden. - Schwarzstart und Inselbetrieb - dies ist für den Netzwiederaufbau ohne konventionelle Kraftwerke essentiell, wichtig aber auch für außereuropäische Länder mit schwachen Netzen. Dabei sollen nicht nur einzelnen Windenergieanlagen, sondern auch das Verhalten in Windparks untersucht werden. An der Universität Rostock wird im ersten Schritt ein passendes Testnetz erforscht, das ausreichend komplex ist, um die wichtigen Vorgänge realer Netze abzubilden, aber gleichzeitig ausreichend übersichtlich um praktikable Rechenzeiten und die Interpretation der Ergebnisse zu ermöglichen. Im zweiten Schritt werden an der Universität netzstützende und netzbildende Regelungskonzepte für doppelt gespeiste Asynchronmaschinen erforscht. Aus der Literatur bekannte sind ebenso wie an der Universität Rostock erdachte Regelungskonzepte theoretisch und mittels Simulationen im Zeitbereich zu erforschen. Die gewünschte Spannungseinprägung kann dabei durch den rotorseitigen Stromrichter und die DFIG selber, aber auch durch den netzseitigen Stromrichter oder durch einen separaten Statcom Umrichter im Windpark erfolgen.
Um die mehrfach belasteten Quartiere in der Hauptstadt identifizieren zu können, werden fünf Kernindikatoren für den ressortübergreifenden Umweltgerechtigkeitsatlas analysiert. Kernindikatoren Kernindikator Lärmbelastung: Lärm gilt als eine der bedeutendsten Umweltbelastungen mit signifikanten Auswirkungen auf die menschliche Gesundheit sowie die Wohn- und Umweltqualität. Kernindikator Luftschadstoffe: Die Luft wird durch gesundheitsbeeinträchtigende Schadstoffe aus Verkehr, Industrie, Kraftwerken und privaten Haushalten verunreinigt. Luftschadstoffe können u.a. zu Erkrankungen der Atemwege und des Herzkreislaufsystems führen. Kernindikator Bioklimatische Belastung: Großstädte sind Wärmeinseln. Die thermische Belastung (Bioklima) ist die Summe aller Klimafaktoren, die auf den Menschen sowie andere Organismen einwirken und deren Gesundheit und Wohlbefinden beeinflussen. Insbesondere Hitze, Kälte, Luftfeuchtigkeit und Windverhältnisse. Kernindikator Grün- und Freiflächenversorgung: Grün- und Freiflächen haben eine wichtige Funktion für die innerstädtische Lebensqualität. Bewegung, Stressabbau und Erholung sind zentrale Motive für die Nutzung von Park- und Grünanlagen. Gleichzeitig haben diese Flächen wichtige kompensatorische Funktionen, vor allem mit Blick auf gesundheitsbelastende Umweltbedingungen. Kernindikator Soziale Benachteiligung: In Berlin gibt es eine hohe Konstanz der räumlichen Verteilung sozial benachteiligter Einwohnerinnen und Einwohner. Die soziale Benachteiligung wird durch den Status-Index (Monitoring Soziale Stadtentwicklung) abgebildet. Das Monitoring liefert kleinräumige Aussagen zur Veränderung der sozialstrukturellen und sozialräumlichen Entwicklung in den Teilgebieten der Stadt und zeigt die höchsten Problemdichten. Mithilfe der Berliner Umweltgerechtigkeitskonzeption werden die räumliche Überlagerung von Umweltbelastungen und sozialer Benachteiligung im gesamtstädtischen Gefüge sichtbar gemacht. Der Umweltgerechtigkeitsatlas dient dabei als fachliche Grundlage für ressortübergreifende Planungs- und Entscheidungsprozesse. Vor diesem Hintergrund wurde die Aktualisierung des Umweltgerechtigkeitsatlas 2023/2024 in Zusammenarbeit mit dem Amt für Statistik und der Senatsverwaltung für Stadtentwicklung, Bauen und Wohnen vorgenommen. Was ist neu in der Fortschreibung? In der Fortschreibung werden erneut die fünf Kernindikatoren Lärmbelastung, Luftbelastung, thermische Belastung, Grün- und Freiflächenversorgung sowie soziale Benachteiligung betrachtet. Für vier dieser fünf Indikatoren – mit Ausnahme der Grün- und Freiflächenversorgung – liegen aktualisierte Datensätze vor; zudem wurden hier methodische Anpassungen vorgenommen. Diese Veränderungen führen dazu, dass die aktuellen Ergebnisse nicht unmittelbar mit denen des Umweltgerechtigkeitsatlas 2021/2022 vergleichbar sind. Aussagen zu zeitlichen Trends oder zur Entwicklung der Umweltgerechtigkeit im Sinne einer Verbesserung oder Verschlechterung sind daher weiterhin nicht möglich. Auch bei der aktuellen Fortschreibung lassen sich auf Basis der neuen Datenlage Muster erkennen. So nimmt der Anteil von Planungsräumen mit einem hohen sozialen Status-Index mit steigender Umweltbelastung deutlich ab, während Quartiere mit mittlerem bis niedrigem Status-Index stärker von Mehrfachbelastungen betroffen sind. Planungsräume mit überwiegend hohem Status-Index weisen meist eine günstigere Versorgung mit Grün- und Freiflächen sowie eine geringere thermische Belastung auf. Weniger als die Hälfte der Räume mit niedrigem Status-Index bieten ein vergleichbar günstiges Wohnumfeld. Besonders hervorzuheben ist, dass drei Planungsräume im Bezirk Mitte – alle innerhalb des S-Bahn-Rings – in vier Umweltindikatoren hoch belastet sind und zudem eine hohe soziale Problemdichte aufweisen. Häufungen von Mehrfachbelastungen finden sich auch in dicht besiedelten Gebieten: Etwa 60 Prozent der Planungsräume mit über 20.000 Einwohnenden pro Quadratkilometer verzeichnen starke Umweltbelastungen in mindestens drei Indikatoren. Auf diese Situation macht der Berliner Umweltgerechtigkeitsatlas aufmerksam und ist somit ein wertvolles Instrument zum Ableiten von politischen Handlungsbedarfen. Die Geodatendienste zum Umweltgerechtigkeitsatlas 2023/2024 können auch im Umweltatlas Berlin und im Geoportal Berlin eingesehen werden. In ressortübergreifender Zusammenarbeit und mit Unterstützung des Amts für Statistik ist im Juli 2022 der aktualisierte Umweltgerechtigkeitsatlas für Berlin erschienen (unter Download verfügbar). Durch einige Änderungen in der Methodik ist er nur begrenzt mit dem Basisbericht aus 2019 (ebenfalls als Download verfügbar) vergleichbar; zeigt aber eins: die Ballung von potenziell gesundheitsschädlichen Umweltbelastungen trifft besonders häufig Menschen mit niedrigem sozialen Status-Index. Und: Umweltgerechtigkeit ist nicht nur Thema im dicht besiedelten Innenstadtbereich; auch die Außenbezirke sind teilweise stark von Mehrfachbelastungen betroffen.
<p>Deutschland verpflichtete sich 2003 mit der Zeichnung des PRTR-Protokolls dazu, ein Register über Schadstofffreisetzungen und -transporte aufzubauen. Hierzu berichten viele Industriebetriebe jährlich dem UBA über Schadstoffemissionen und die Verbringung von Abwässern und Abfällen. Das UBA bereitet diese Daten in einer Datenbank für Bürgerinnen und Bürger auf.</p><p>Umweltbelastende Emissionen aus Wärmekraftwerken und anderen Verbrennungsanlagen </p><p>Wärmekraftwerke und andere Verbrennungsanlagen, die mit fossilen Brennstoffen (insbesondere Steinkohle, Braunkohle, Erdgas) oder biogenen Brennstoffen betrieben werden, sind bedeutende Verursacher von umweltbelastenden Emissionen. Sie sind verantwortlich für einen erheblichen Teil des Ausstoßes an Kohlendioxid (CO₂), Stickstoffoxiden (NOx) und Schwefeloxiden (SOx). Die Kohleverbrennung ist zudem die wichtigste Emissionsquelle für das Schwermetall Quecksilber (Hg).</p><p>Das Schadstofffreisetzungs- und -verbringungsregister (PRTR) in Deutschland</p><p>Industriebetriebe müssen jährlich dem Umweltbundesamt (<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>) sowohl über ihre Emissionen in Luft, Wasser und Boden berichten, als auch darüber, wie viele Schadstoffe sie in externe Abwasserbehandlungsanlagen weiterleiten und wie viele gefährliche Abfälle sie entsorgen. Die Betriebe müssen nicht über jeden Ausstoß und jede Entsorgung berichten, sondern nur dann, wenn der Schadstoffausstoß einen bestimmten Schwellenwert oder der Abfall eine gewisse Mengenschwelle überschreitet. In diesem Artikel werden Wärmekraftwerke und andere Verbrennungsanlagen mit einer Feuerungswärmeleistung von über 50 Megawatt (<a href="https://www.umweltbundesamt.de/service/glossar/m?tag=MW#alphabar">MW</a>), die von Anhang I, Nummer 1.c) der Europäischen <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PRTR#alphabar">PRTR</a>-Verordnung erfasst werden, betrachtet.</p><p>Das Umweltbundesamt (UBA) sammelt die von Industriebetrieben gemeldeten Daten in einer Datenbank: dem Schadstofffreisetzungs- und -verbringungsregister PRTR (<strong>P</strong>ollutant <strong>R</strong>elease and <strong>T</strong>ransfer <strong>R</strong>egister). Das UBA leitet die Daten dann an die Europäische Kommission weiter und macht sie im Internet unter der Adresse <a href="https://thru.de/">https://thru.de</a> der Öffentlichkeit frei zugänglich.</p><p>Es gibt drei Rechtsgrundlagen für die PRTR-Berichterstattung:</p><p>Erfasst werden im PRTR industrielle Tätigkeiten in insgesamt neun Sektoren. Einer davon ist der Energiesektor, zu dem die hier dargestellten Wärmekraftwerke und andere Verbrennungsanlagen gehören. Für das aktuelle Berichtsjahr 2023 waren in Deutschland insgesamt 130 Betriebe mit einer Feuerungswärmeleistung von mehr als 50 Megawatt (MW) und mit Luftemissionen nach PRTR berichtspflichtig (siehe Karte „Standorte von PRTR-berichtspflichtigen Kraftwerken mit Luftemissionen im Jahr 2023“).</p><p>Die Aussagekraft des PRTR ist jedoch begrenzt. Drei Beispiele:</p><p>Kohlendioxid-Emissionen in die Luft</p><p>Kohlendioxid (CO₂)-Emissionen entstehen vor allem bei der Verbrennung fossiler Energieträger. Somit gehören Wärmekraftwerke und andere stationäre Verbrennungsanlagen zu den bedeutenden Quellen dieses Treibhausgases. Dies ist auch im <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PRTR#alphabar">PRTR</a> erkennbar. <br><br>Nicht jeder Betreiber muss CO₂-Emissionen melden. Für die Freisetzung von CO₂ in die Luft gilt im PRTR ein Schwellenwert von 100.000 Tonnen pro Jahr (t/Jahr). Erst wenn ein Betrieb diesen Wert überschreitet, muss er dem Umweltbundesamt die CO₂-Emissionsfracht melden.</p><p>In den Jahren 2007 bis 2023 meldeten jeweils zwischen 117 und 156 Betreiber von Wärmekraftwerken und andere Verbrennungsanlagen CO₂-Emissionen an das PRTR. Das Jahr 2009 fiel in der Zeitreihe hinsichtlich der freigesetzten Mengen heraus, da in diesem Jahr aufgrund der Wirtschaftskrise und der daraus folgenden geringeren Nachfrage nach Strom und Wärme weniger Brennstoffe in den Anlagen eingesetzt wurden. Der zeitweilige Anstieg der Emissionsfrachten nach 2009 ist der wirtschaftlichen Erholung geschuldet. Im Berichtszeitraum war die Zahl meldender Wärmekraftwerke und anderer Verbrennungsanlagen im Jahr 2023 mit 117 Betrieben als auch die berichtete Gesamtemissionsfracht mit 162 Kilotonnen am niedrigsten. Von 2016 bis 2020 ging die Anzahl meldender Wärmekraftwerke und anderer Verbrennungsanlagen sowie der Anteil der berichteten Gesamtemissionsfracht stetig zurück (siehe Abb. „Kohlendioxid-Emissionen aus Kraftwerken in die Luft und Zahl der im PRTR meldenden Kraftwerke“). In den Jahren 2021 und 2022 stiegen die Einsätze von Stein- und Braunkohlen in Großfeuerungsanlagen und damit auch die CO2 Emissionen wieder an. Einige Kohlekraftwerke wurden aus der Netzreserve/ Sicherheitsbereitschaft wieder in den regulären Betrieb überführt. Mit dem erhöhten Kohleeinsatz wurde während der Gaskrise teures Erdgas eingespart. Infolgedessen liefen die Erdgaskraftwerke weniger. Im Jahr 2023 ging der Kohleeinsatz in Kraftwerken wieder deutlich zurück. Hauptgründe dafür sind der verringerte Stromverbrauch, die Zunahme der Stromimporte und die erhöhte Einspeisung von erneuerbarem Strom. Das führte in der Summe zu einer merklichen Senkung der CO₂ Emissionen. Auch die Anzahl der CO₂-meldenden Kraftwerke war 2023 im Vergleich zum Vorjahr rückläufig, weil aufgrund von Stilllegungen aber vor allem wegen verringerter Volllaststunden Anlagen unter den Schwellenwert fielen.</p><p>Die Frachtangaben zu CO₂ im PRTR basieren größtenteils auf Berechnungen der Betreiber. Als Grundlage dienen Brennstoffanalysen zur Bestimmung des Kohlenstoffgehaltes. CO₂ Messungen im Abgas werden nur selten vorgenommen.</p><p>Die Karte „Standorte von PRTR-berichtspflichtigen Kraftwerken mit Kohlendioxid-Emissionen in die Luft 2023“ erfasst alle 117 Betriebe, die im Jahr 2023 mehr als 100.000 Tonnen CO₂ in die Luft freisetzten. Die Signaturen in der Karte zeigen die Größenordnung der jeweils vom Betrieb freigesetzten CO₂-Menge:</p><p>Stickstoffoxid-Emissionen in die Luft</p><p>Stickstoffoxide (Stickstoffmonoxid und Stickstoffdioxid, gerechnet als Stickstoffdioxid und abgekürzt mit NOx, schädigen die Gesundheit von Mensch, Tier und Vegetation in vielfacher Weise. Im Vordergrund steht die stark oxidierende Wirkung von Stickstoffdioxid (NO2). Außerdem tragen einige Stickstoffoxide als Vorläuferstoffe zur Bildung von bodennahem Ozon und sekundärem Feinstaub bei, wirken überdüngend und versauernd und schädigen dadurch auch mittelbar die Vegetation und den Boden. Berichtspflichtig im <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PRTR#alphabar">PRTR</a> sind NOx-Emissionen in die Luft ab einem Schwellenwert von größer 100.000 Kilogramm pro Jahr (kg/Jahr).</p><p>In den Jahren von 2007 bis 2023 ging die Anzahl Stickstoffoxid-Emissionen meldender Betriebe von 157 auf 89 Wärmekraftwerke und andere Verbrennungsanlagen zurück. Seit 2013 ist ein Rückgang der berichteten NOx-Gesamtemissionen im PRTR von 209 Kilotonnen (kt) auf 86 Kilotonnen (kt) in 2023 zu beobachten. Der auffallende niedrige Wert berichteter NOx-Gesamtemissionen iHv. 101 Kilotonnen (kt) im Jahr 2020 ist der besonderen Situation dieses Jahres geschuldet. Einerseits nahm der Stromverbrauch aufgrund der Corona-Pandemie ab und der Stromexport verringerte sich. Andererseits legte die Stromerzeugung aus erneuerbaren Energieträgern zu. Das führte in der Summe zu einem erheblichen Rückgang des Kohleeinsatzes. Im Jahr 2021 führte die wirtschaftliche Erholung und die geringe Stromerzeugung aus Windenergie zu einer Erhöhung der Brennstoffeinsätze und entsprechend zu einer Emissionssteigerung. Aufgrund der Gaskrise und der damit verbundenen Brennstoffwechsel von Gas zu Kohle und Ölprodukten kam es im Jahr 2022 nochmals zu einer Erhöhung der berichteten Gesamtemissionsfracht. Die zeitgleich erfolgte Verschärfung der NOX-Grenzwerte im Zuge der Novelle der 13. <a href="https://www.umweltbundesamt.de/service/glossar/b?tag=BImSchV#alphabar">BImSchV</a> dämpfte den Emissionsanstieg. Im Jahr 2023 sanken die NOX-Emissionen im Vergleich zum Vorjahr wieder um rund 29 %. (siehe Abb. „Stickstoffoxid-Emissionen aus Kraftwerken in die Luft und Zahl der im PRTR meldenden Kraftwerke“). Der deutliche Rückgang im Jahr 2023 lässt sich im Wesentlichen durch den verringerten Einsatz von Kohlen, Erdgas und Ölprodukten zur Stromerzeugung erklären. Die Gründe dafür sind die erhöhte Einspeisung von erneuerbarem Strom, die Erhöhung von Stromimporten und die verringerte Stromnachfrage.</p><p>Die Frachtangaben zu NOx im PRTR basieren größtenteils auf kontinuierlichen Messungen der Betreiber.</p><p>Die Karte „Standorte von PRTR-berichtspflichtigen Kraftwerken mit Stickstoffoxid-Emissionen in die Luft 2023“ erfasst alle 89 Betriebe, die im Jahr 2023 mehr als 100 t Stickstoffoxid (t NOx) in die Luft freisetzten. Die Signaturen in der Karte zeigen die jeweilige Größenordnung der vom Betrieb in die Luft freigesetzten Stickstoffoxid-Mengen:</p><p>Schwefeloxid-Emissionen in die Luft</p><p>Schwefeloxide (wie zum Beispiel SO2, im Folgenden nur SOx genannt) entstehen überwiegend bei Verbrennungsvorgängen fossiler Energieträger wie zum Beispiel Kohle. Schwefeloxide können Schleimhäute und Augen reizen und Atemwegsprobleme verursachen. Sie können zudem aufgrund von Ablagerung in Ökosystemen eine <a href="https://www.umweltbundesamt.de/service/glossar/v?tag=Versauerung#alphabar">Versauerung</a> von Böden und Gewässern bewirken. Der Schwellenwert für im <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PRTR#alphabar">PRTR</a> berichtspflichtige SOx-Emissionen in die Luft beträgt größer 150.000 Kilogramm pro Jahr (kg/Jahr).</p><p>In den Jahren von 2007 bis 2023 meldeten jeweils zwischen 42 und 80 Wärmekraftwerke und andere Verbrennungsanlagen Schwefeloxidemissionsfrachten. In den Jahren 2007 und 2013 war der höchste Stand der Gesamtfrachten mit jeweils 157 Kilotonnen (kt) zu verzeichnen. Die Zahl meldender Wärmekraftwerke und anderen Verbrennungsanlagen ist seit 2013 kontinuierlich rückläufig und erreichte 2020 mit 42 meldenden Betrieben den niedrigsten Stand. Das Jahr 2023 stellt mit berichteten 47 Kilotonnen (kt) das Jahr mit der niedrigsten Gesamtemissionsfracht in der Zeitreihe dar und liegt damit sogar noch unter dem Wert der Corona-Krise im Jahr 2020. 2023 nahm im Vergleich zum vorangegangenen Jahr, 2022, die Anzahl meldender Wärmekraftwerke und anderen Verbrennungsanlagen um rund 15 % zu, der Anteil der berichteten Gesamtemissionsfracht hingegen um rund 18 % ab (siehe Abb. “Schwefeloxid-Emissionen aus Kraftwerken in die Luft und Zahl der im PRTR meldenden Kraftwerke“). Der Hauptgrund für den Emissionsrückgang im Jahr 2023 der deutlich verringerte Kohleeinsatz zur Stromerzeugung. Bemerkenswert ist, dass die Umsetzung der strengeren Grenzwerte und der höheren Schwefelabscheidegrade in der novellierten Fassung der 13. <a href="https://www.umweltbundesamt.de/service/glossar/b?tag=BImSchV#alphabar">BImSchV</a> im Jahr 2022 dazu führte, dass das Emissionsniveau trotz gestiegener Kohleeinsätze gleichblieb. Bei Betrachtung der gesamten Zeitreihe von 2007 bis 2023 ist ein Rückgang berichteter Gesamtemissionsfrachten von rund 70 % zu verzeichnen. Der Emissionsrückgang im Zeitraum 2007 bis 2023 ist, ähnlich wie bei Stickstoffoxiden, im Wesentlichen auf den sinkenden Kohleeinsatz in Wärmekraftwerken zurückzuführen. Besonders stark ging der Steinkohleeinsatz zurück, aber auch der Braunkohleeinsatz verringerte sich signifikant. Dabei verlief die Entwicklung in den einzelnen Braunkohlerevieren uneinheitlich. Aufgrund der unterschiedlichen Schwefelgehalte in den verschiedenen Revieren (rheinische Braunkohle niedriger Schwefelgehalt, mitteldeutsche Braunkohle hoher Schwefelgehalt) korreliert die Emissionsminderung nicht direkt mit der Entwicklung der Brennstoffeinsätze. Nachdem in den Jahren 2021 und 2022 aufgrund des Kernkraftausstieges und der Gaskrise wieder mehr Stein- und Braunkohle eingesetzt wurde, drehte sich diese Entwicklung im Jahr 2023 wieder um und entsprechend führte der reduzierte Kohleeinsatz zu einer deutlichen Senkung der Emissionen.</p><p>Die Frachtangaben zu SOx im PRTR basieren größtenteils auf kontinuierlichen Messungen der Betreiber.</p><p>Die Karte „Standorte von PRTR-berichtspflichtigen Kraftwerken mit Schwefeloxid-Emissionen in die Luft 2023“ erfasst alle 43 Betriebe, die im Jahr 2023 mehr als 150 Tonnen Schwefeloxid (t SOx) in die Luft freisetzten. Die Signaturen in der Karte zeigen die jeweilige Größenordnung der vom Betrieb in die Luft freigesetzten Schwefeloxid-Mengen:</p><p>Quecksilber-Emissionen in die Luft</p><p>Das zur Gruppe der Schwermetalle gehörende Quecksilber (Hg) wird hauptsächlich frei, wenn Energieerzeuger fossile Brennstoffe wie Kohle für die Energieerzeugung verbrennen. Quecksilber und seine Verbindungen sind für Lebewesen teilweise sehr giftig. Die stärkste Giftwirkung geht von Methylquecksilber aus. Diese Verbindung reichert sich besonders in Fischen und Schalentieren an und gelangt so auch in unsere Nahrungskette.</p><p>Die Zahl der Wärmekraftwerke und anderen Verbrennungsanlagen, die Hg-Emissionen in die Luft an das <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PRTR#alphabar">PRTR</a> meldeten, pendelte in den Jahren 2007 bis 2023 zwischen 19 und 56. Ein Betreiber muss nur dann berichten, wenn er mehr als 10 Kilogramm Quecksilber pro Jahr (kg/Jahr) in die Luft emittiert. Im Jahr 2009 gingen die Emissionen aufgrund der gesunkenen Nachfrage nach Strom und Wärme zurück. Der Anstieg der Emissionsfrachten von 2009 auf 2010 ist der wirtschaftlichen Erholung geschuldet. Die Zahl meldender Wärmekraftwerke und anderen Verbrennungsanlagen und die berichtete Gesamtemissionsfracht erreichte im Jahr 2020 mit 19 Betrieben den niedrigsten Stand innerhalb der Zeitreihe 2007 bis 2023, was den oben genannten Besonderheiten des Jahres 2020 geschuldet ist. Das Jahr 2023 stellt mit berichteten 2,17 Kilotonnen (kt) das Jahr mit der niedrigsten Gesamtemissionsfracht in der Zeitreihe dar. Bei Betrachtung der gesamten Zeitreihe von 2007 bis 2023 ist von 2016 bis 2023 ein deutlicher Rückgang der berichteten Gesamtemissionsfrachten um rund 50 % zu verzeichnen (siehe Abb. „Quecksilber-Emissionen aus Kraftwerken in die Luft und Zahl der im PRTR meldenden Kraftwerke“). Für den Rückgang der gemeldeten Gesamtemissionsfracht bis 2023 gibt es hauptsächlich zwei Gründe: Den wesentlichen Anteil hat der deutliche Rückgang der Kohleverstromung. Weiterhin trägt die Einführung eines auf das Jahr bezogenen Quecksilbergrenzwertes dazu bei, der erstmals für das Jahr 2019 anzuwenden war, und der deutlich strenger ist als der bisherige und weiterhin parallel geltende auf den einzelnen Tag bezogene Grenzwert. Diese neue Anforderung bewirkt, dass vor allem die Kraftwerke im mitteldeutschen Braunkohlerevier – hier liegen deutlich höhere Gehalte an Quecksilber in der Rohbraunkohle vor als im rheinischen Revier – erhebliche Anstrengungen für eine weitergehende Quecksilberemissionsminderung unternehmen mussten. Infolgedessen kommt es im mitteldeutschen Revier zu einer deutlichen Minderung der spezifischen Quecksilberemissionen. Aber auch im Lausitzer Revier gingen in den Jahren 2019 und 2020 die spezifischen Quecksilberemissionen zurück. Die Gründe für den Rückgang der Anzahl meldender Wärmekraftwerke und anderen Verbrennungsanlagen sind zum einen Anlagenstilllegungen, aber auch der verringerte Steinkohleeinsatz in den verbliebenen Anlagen, der dazu führt, dass einige Anlagen unter die Abschneidegrenze fallen. Der Emissionsanstieg den Jahren 2021 und 2022 ist im Wesentlichen auf den, angesichts der Gaskrise, erhöhten Braun- und Steinkohleeinsatz zurückzuführen. Daraus ergibt sich auch eine höhere Anzahl der meldenden Steinkohlenkraftwerke, die den Schwellenwert überschreiten. Im Jahr 2022 wurden im Zuge der Umsetzung der BVT-Schlussfolgerungen die gesetzlichen Anforderungen nochmals deutlich verschärft. Von daher kommt es trotz einer Erhöhung des Kohleeinsatzes in Großfeuerungsanlagen von über 8 % nur zu einer leichten Zunahme der Quecksilberemissionen von 0,3 %. Im Jahr 2023 sinken die Quecksilberemissionen im Vergleich zum Vorjahr um rund 25 %. Der Hauptgrund für diese Entwicklung ist der deutlich verringerte Einsatz von Stein- und Braunkohlen zur Stromerzeugung.</p><p>Der größte Teil der Betreiber ermittelt die Hg-Luftemissionen über Messungen, die meisten davon kontinuierlich. Ein Teil der Quecksilberemissionen wird aber auch über Berechnungen ermittelt, die meist auf den vorgeschriebenen Brennstoffanalysen basieren.</p><p>Die Karte „Standorte von PRTR-berichtspflichtigen Kraftwerken mit Quecksilber-Emissionen in die Luft 2023“ erfasst die 23 Betriebe, die nach eigenen Angaben im Jahr 2023 mehr als 10 Kilogramm Quecksilber (kg Hg) in die Luft freisetzten. Die Signaturen in der Karte zeigen die jeweilige Größenordnung der vom Betrieb in die Luft freigesetzten Menge an Quecksilber:</p>
| Origin | Count |
|---|---|
| Bund | 2082 |
| Kommune | 1 |
| Land | 526 |
| Wissenschaft | 55 |
| Zivilgesellschaft | 59 |
| Type | Count |
|---|---|
| Chemische Verbindung | 53 |
| Daten und Messstellen | 80 |
| Ereignis | 62 |
| Förderprogramm | 1262 |
| Gesetzestext | 6 |
| Kartendienst | 2 |
| Lehrmaterial | 1 |
| Text | 802 |
| Umweltprüfung | 170 |
| WRRL-Maßnahme | 53 |
| unbekannt | 300 |
| License | Count |
|---|---|
| geschlossen | 680 |
| offen | 1581 |
| unbekannt | 425 |
| Language | Count |
|---|---|
| Deutsch | 2607 |
| Englisch | 451 |
| Resource type | Count |
|---|---|
| Archiv | 404 |
| Bild | 14 |
| Datei | 459 |
| Dokument | 796 |
| Keine | 1133 |
| Multimedia | 4 |
| Unbekannt | 14 |
| Webdienst | 17 |
| Webseite | 820 |
| Topic | Count |
|---|---|
| Boden | 1676 |
| Lebewesen und Lebensräume | 1622 |
| Luft | 1478 |
| Mensch und Umwelt | 2686 |
| Wasser | 1460 |
| Weitere | 2257 |