API src

Found 268 results.

Related terms

Dynamik, Variabilität und bioklimatische Effekte von niedrigen Wolken im westlichen Zentralafrika

Niedrige Wolken sind Schlüsselbestandteile vieler Klimazonen, aber in numerischen Modellen oft nicht gut dargestellt und schwer zu beobachten. Kürzlich wurde gezeigt, dass sich während der Haupttrockensaison im Juni und September im westlichen Zentralafrika eine ausgedehnte niedrige Wolkenbedeckung (engl. „low cloud cover“, LCC) entwickelt. Eine derart wolkige Haupttrockenzeit ist in den feuchten Tropen einzigartig und erklärt wahrscheinlich die dichtesten immergrünen Wälder in der Region. Da paläoklimatische Studien auf eine Instabilität hinweisen, kann jede Verringerung des LCC aufgrund des Klimawandels einen Kipppunkt für die Waldbedeckung darstellen. Daher besteht ein dringender Bedarf, das Auftreten, die Variabilität und die bioklimatischen Auswirkungen des LCC in westlichen Zentralafrika besser zu verstehen.Um diese Ziele zu erreichen, wurde ein Konsortium aus französischen, deutschen und gabunischen Partnern aufgebaut, zu dem Meteorologen, Klimatologen und Experten für Fernerkundung und Waldökologie gehören. Die meteorologischen Prozesse, welche die Bildung und Auflösung der LCC im Tagesgang steuern, werden anhand von zwei Ozean-Land-Transekten auf der Grundlage einer synergistischen Analyse von historischen In-situ Beobachtungen, von Daten einer Feldkampagne und anhand von atmosphärischen Modellsimulationen untersucht. Die Ergebnisse werden mit einem kürzlich entwickelten konzeptionellen Modell für LCC im südlichen Westafrika verglichen.Die intrasaisonale bis interannuale Variabilität des LCC wird durch die Analyse von In-Situ-Langzeitdaten und Satellitenschätzungen quantifiziert. Unterschiede im Jahresgang des LCC (d.h. jahreszeitlicher Beginn und Rückzug, wolkenarme Tage) und die Ausdehnung ins Inland werden dokumentiert. Ansätze, die auf Wettertypen und äquatorialen Wellen basieren, werden verwendet, um intrasaisonale Variationen des LCC zu verstehen. Die Auswirkungen lokaler und regionaler Meeresoberflächentemperaturen auf die LCC-Entwicklung und ihre Jahr-zu-Jahr Variabilität werden bewertet, wobei statistische Analysen und spezielle Sensitivitätsversuche mit einem regionalen Klimamodell verknüpft werden.Schließlich wird der Einfluss von LCC auf die Licht- und Wasserverfügbarkeit bzw. die Waldfunktion anhand von In-Situ-Messungen untersucht. Die Ergebnisse werden mit Messungen aus der nördlichen Republik Kongo, wo die Trockenzeit sonnig ist, sowie mit einem einfachen Wasserhaushaltsmodells, das an die Region angepasst ist, verglichen. Die Wasserhaushaltsanalysen sollen die Kompensations- oder Verstärkungseffekte von Regen im Vergleich zur potenziellen Evapotranspiration, beide moduliert durch die LCC, auf das Wasserdefizit aufzeigen.Die Ergebnisse von DYVALOCCA werden zum ersten konzeptionellen Modell für Wolkenbildung und -auflösung im westlichen Zentralafrika führen und eine Hilfestellung für die Bewertung von Klimawandel-Simulationen mit Blick auf potentielle Kipppunkte für die immergrünen Regenwälder in der Region geben.

Multivariate Analyse von Land-Atmosphäre Wechselwirkungen in einem veränderlichen Klima

Die Hydrologie der Landoberfläche wirkt an der Schnittstelle zwischen Boden, Vegetation und Atmosphäre. Sie hat dadurch Auswirkungen auf Nahrungsmittelproduktion, Wasserverfügbarkeit und Extremereignisse, wie Dürren und Überschwemmungen. Die Wechselwirkungen zwischen Land (Hydrologie) und Atmosphäre (Wetter) sind bisher nur ungenügend verstanden. Es ist insbesondere unklar, ob sich die Einflüsse der Landoberfläche auf Vegetation und Wetter durch die globale Erwärmung verstärken werden. Darüber hinaus ist nur wenig bekannt bezüglich des Übergangs von einem energielimitierten Regime, wo die Atmosphäre (Temperatur und Einstrahlung) das Land (Vegetationsproduktivität, Bodenfeuchte) beeinflusst, hin zu einem wasserlimitierten Regime, wo das Land (auch) die Atmosphäre beeinflusst. Um das Verständnis der Land-Atmosphäre-Wechselwirkungen zu verbessern, wird ein multivariater Ansatz mit der Analyse von Daten über Bodenfeuchte, Matrixpotential, Bruttoprimärproduktion, Verdunstung, Temperatur und Landoberflächencharakteristiken vorgeschlagen. Mit dieser umfassenden Methodik werden Land-Atmosphäre-Wechselwirkungen in Bezug auf ihre kurz- und langfristige Variabilität, sowie auf ihre Veränderungen im Kontext des Klimawandels untersucht. Ausserdem werden potentiell stark betroffene Regionen bestimmt. Desweiteren wird ein kritischer Bereich der Bodenfeuchte und/oder des Matrixpotentials identifiziert und charakterisiert, ab dem eine Wasserlimitierung von Vegetation oder Evapotranspiration auftritt. Ein Ergebnis dieser Analyse wird die Identifizierung eines dritten charakteristischen Matrixpotentials neben dem permanenten Welkepunkt und der Feldkapazität sein. Als Grundlage für diese Untersuchungen wird mittels eines Landoberflächenmodells von geeigneter Komplexität ein langfristiger, qualitativ hochwertiger hydrologischer Datensatz berechnet, welcher anhand von multivariaten Beobachtungen kalibriert wird. Dabei werden auch die Unsicherheiten des Datensatzes, sowie der multivariaten Beobachtungen, thematisiert. Die Resultate dieser Arbeit können helfen das Management von Wasserressourcen zu verbessern. Beispielsweise können Prognosen des Matrixpotentials in Verbindung mit dem identifizierten kritischen Bereich für eine intelligente Bewässerung von Pflanzen und Feldern verwendet werden. Eine Analyse von langfristigen Trends in Matrixpotential-, Bodenfeuchte- und Abflussdaten kann als Grundlage für langfristige Anpassungsmaßnahmen dienen. In einer weiteren Analyse werden Größenordnungen und Auftrittshäufigkeiten von Extremereignissen, wie Dürren und Überschwemmungen untersucht und in Verbindung mit entstandenen Sach- und Personenschäden gebracht. Diese Arbeit trägt zu den Millenniums-Entwicklungszielen der Vereinten Nationen bezüglich der Bekämpfung von Hunger und einer nachhaltigeren Wassernutzung, den 'Europa 2020' Zielen der EU Kommission bezüglich nachhaltiger Energienutzung, und zum 'grand challenge' Wasserverfügbarkeit des Weltklimaforschungsprogramms bei.

Untersuchung der Eignung aus Inertmaterial aufgebauter Deponieoberflächenabdichtungssysteme am Beispiel einer Hausmülldeponie in Sachsen

Die zum 1. August 2002 inkraftgetretene Deponieverordnung des Bundes (DepV) fordert ab 31.05.2002, in Ausnahmefällen ab 31.05.2009, die Beendigung der bisher üblichen Siedlungsabfalldeponierung. Auf den zahlreichen, daraufhin zu schließenden Siedlungsabfalldeponien sind dann entsprechende Oberflächenabdichtungssysteme aufzubringen. Für Hausmülldeponien sieht die Deponieverordnung ein Regel-Oberflächenabdichtungssystem vor (vgl. Anhang 1 Nr. 2 DK II DepV), dass unter Experten als vielfach nicht zielführend angesehen wird. Kritisiert wird unter anderem die Haltbarkeit der Kunststoffdichtungsbahn, die für den Bewuchs nicht ausreichende Mächtigkeit der Rekultivierungsschicht und die Austrocknungs- und Rissbildungsgefahr in der unter der Kunststoffdichtungsbahn gelegenen mineralischen Ton-Dichtungsschicht. Eine Entlassung aus der Nachsorgeverantwortung für die Oberflächenabdichtung einer Deponie wird nur dann realistisch sein, wenn diesen Problemaspekten ausreichend Rechnung getragen worden ist. Um dies zu erreichen, ist es erforderlich, deponiespezifisch besser geeignete Oberflächenabdichtungssysteme zu entwickeln. Vor diesem Hintergrund sollen Dichtungssysteme untersucht werden, die vollständig aus vor Ort verfügbarem Boden- oder anderem Inertmaterial aufgebaut sind. Derartige Systeme bieten folgende Vorteile: 1) anders als Kunststoffdichtungsbahnen ist Boden- und Inertmaterial und somit die gesamte Konstruktion des Dichtungssystems praktisch unbegrenzt haltbar; 2) der gesamte Dichtungsquerschnitt steht dem Bewuchs für eine tiefe Wurzelverankerung sowie hohe Wasserspeicherung und -nachlieferung zur Verfügung; 3) die Schichten des Dichtungssystems und der Bewuchs können an die jeweiligen meteorologischen Verhältnisse so angepasst werden, dass das Dichtungssystem genügend feucht bleibt, damit es dauerhaft plastisch und somit setzungstolerant ist; 4) eindringendes Niederschlagswasser kann durch Speicherung und bewuchsabhängige Evapotranspiration dauerhaft zurückgehalten werden, so dass es nicht in den Deponiekörper eindringen kann; 5) eventuell noch an die Deponieoberfläche drängende Deponiegase können flächig verteilt eine ausreichende belebt-durchwurzelte Bodenschicht passieren, so dass das im Deponiegas enthaltene Methan oxidiert werden kann.

Nutzung des Fortschritts in der stabilen Wasserisotopenforschung zur Quantifizierung von art- und interspezifischen ökohydrologischen Rückkopplungsprozessen und Wasserdurchgangszeiten verschiedener Baumbestände

Signifikante Veränderungen hydrologischer Extremereignisse sind zentraler Bestandteil zukünftiger Klimawandelprognosen. Das Verständnis komplexer Wechselwirkungen zwischen Niederschlägen, Wasserspeicherung in Boden und Grundwasser sowie Wasserflüssen im Einzugsgebiet ist eine große Herausforderung in der Ökohydrologie. Die Vegetation spielt dabei eine zentrale Rolle in dem sie 50-70% der terrestrischen Evapotranspiration kontrolliert. Verschiedene Pflanzenarten unterscheiden sich signifikant in ihren Wassernutzungsstrategien. Die Integration solcher Informationen zu artspezifischen Einflüssen auf die Bodeninfiltration und Wurzelwasseraufnahmedynamiken liefern erste Hinweise darauf, wie Bäume Wasser in Richtung ihrer aktiven Wurzelzone leiten können. Dies wird unter zukünftigen klimatischen Bedingungen und bei der Entwicklung von Anpassungsstrategien für eine nachhaltige Waldökosystembewirtschaftung bedeutend. Das Konzept des Wasseralters mittels stabiler Wasserisotopen wird verwendet, um den Beitrag unterschiedlicher Wasserfließwege zum Abfluss und deren Änderungen zu bewerten. Das Wasseralter bietet dabei eine weitere Perspektive, um hydrologische Prozesse besser zu verstehen und Modelle zu optimieren. Jüngste Studien zur Bestimmung von Verweilzeit zeigen, dass besonders die Schnittstellen zwischen den Kompartimenten (z.B. Boden-Atmosphäre oder Boden-Wurzeln) besser berücksichtigt werden muss, um den ökohydrologischen Kreislauf ganzheitlicher zu verstehen. Artspezifische Unterschiede und die komplementäre Ressourcennutzung von Baum-Mischbeständen können dabei Wasserverweilzeiten und -alter im ökohydrologischen Kreislauf verändern. Unsere zentrale Hypothese lautet, dass Artidentität und Wasserkonkurrenz zwischen Baumarten ein Haupttreiber für ökohydrologische Rückkopplungsprozesse zwischen Boden und Bäumen sind. Wir werden unsere zentrale Hypothese in Rein- und Mischbeständen von Tannen und Buchen in einem kombinierten experimentellen (Arbeitspakete (WPs) 1-3) und Modellierungsansatz (WP 4) untersuchen, in dem räumlich hochaufgelöste Messungen von Isotopen sowie hydrometrische und ökophysiologische Messungen mit kontinuierlicher Langzeitüberwachung kombiniert werden, um alle Kompartimente des Wasserkreislaufs des Ökosystems zu quantifizieren. Isotopensignaturen von Wasserflüssen auf natürlichem Niveau werden zunächst über eine neuartige in-situ-Monitoringplattform (SWIP) für ein Jahr (WP 1) beobachtet, um das SWIP-System standortspezifisch zu validieren. In WP 2 werden wir ein Isotopenmarkierungsexperiment durchführen, um die standortspezifische zeitliche Heterogenität der Reaktionszeiten der Ökosystemkompartimente zu quantifizieren, während in WP 3 die Verweilzeiten und das Wasseralter der verschiedenen Kompartimente untersucht werden. WP 4 dient der Modellierung ökohydrologischer Prozesse mittels der erhobenen Daten. Der Fokus wird hier auf der Verbesserung der SWIS-Modellstruktur und der Anpassung an verschiedene Baumstände liegen.

CDC (Climate Data Center)

Free access and download to of a growing selection of DWD’s climate data. Via CDC Search you will find data for direct download and interactive access to station data. The interactive mode gives graphical and tabular previews of the German station data. In addition, all data sets remain accessible from our ftp server for direct download

Lysimeterversuch

Versuchsfrage: Welche mittel- und langfristigen Auswirkungen ergeben sich bei der unterschiedlichen Fruchtfolge- und Bewirtschaftungssystemen in Bezug auf: a) Ertrag und Qualitaet des pflanzlichen Erntegutes? b) Verlagerung von Mineral- und Schadstoffen mit dem Sickerwasser? c) Wasser-, Naehrstoff- und Schadstoffhaushalt des Bodens? - Versuch in besonderer Anlage- 32 Lysimeter (monolithische Bodensaeulen 1,45 m3 Inhalt) und 2 Kieskontrollparzellen- 8 Bewirtschaftungssysteme mit jeweils unterschiedlicher Fruchtfolge, 4-fache Wiederholung.

Gravimetrie in der Alpinen Hydrologie

Wissenschaftlicher Kontext: Das Schneewasseräquivalent ist eine wesentliche Klimavariable und hat entscheidende Bedeutung für den Wasserkreislauf und das Wohlergehen von Milliarden Menschen weltweit. Die mengenmäßige und raumzeitliche Abschätzung des Schnees gilt derzeit als eine der wichtigsten Herausforderungen der alpinen Hydrologie. Zudem ist es sehr schwierig, andere Komponenten alpiner Wasserspeicher, z.B. Karstspeicher, und die Beziehungen zwischen Niederschlag, Evapotranspiration, Speicher, interner Flüsse und Abfluss zu erfassen. Innovation: Das Zugspitze Geodynamic Observatory Germany (ZUGOG) mit seiner weltweit einmaligen Installation eines Supraleitgravimeters auf der Zugspitze über einem gut instrumentierten, hochalpinen, schneereichen Einzugsgebiet, wird als neuartiges hydrologisches Sensorsystem zur direkten, integralen und nicht invasiven Beobachtung des Schwereeffekts von Wasserspeichervariationen eingesetzt. Aufgrund der geologischen Situation, ist dieses Einzugsgebiet ein natürliches Lysimeter, das detaillierte Analysen der Massenbilanz ermöglicht. Ziel: Wir werden diese einzigartige instrumentelle Konstellation mit detaillierten physikalisch-basierten Schneedecken- sowie karst-hydrologischen Modellen kombinieren, um die raumzeitliche Dynamik der hydrologischen Prozesse zu beschreiben. Die übergeordnete Forschungsfrage ist, inwieweit dies zu einem verbesserten Verständnis und einer genaueren Quantifizierung der hydrologischen Prozesse und Speicher in alpinen Einzugsgebieten beitragen kann, dessen Erkenntnisse sich auch auf andere Regionen weltweit übertragen lassen. Ansatz: Wichtige Schritte sind: i) die Bereitstellung von schnee-hydro-meteorologischen Beobachtungen für Anfangs- und Randbedingungen zur Modellierung, Kalibrierung und Validierung; ii) die Verbesserung der gravimetrischen Modellierung und die Ausweitung gravimetrischer Beobachtungen innerhalb des Testgebiets; iii) die Entwicklung eines Schnee-Hydro-Gravimetrie-Modellsetups zur Beschreibung der raumzeitlichen hydrologischen Massenvariationen und der korrespondierenden gravimetrischen Signale, unter Einbeziehung der Abschätzung von Unsicherheiten zur Modellkonditionierung, und iv) einer Synthese zur Beurteilung inwieweit die gravimetrischen Signale einen Mehrwert für die alpinen Hydrologie darstellen. Primär beteiligte Wissenschaftler: Eine erfolgreiche Umsetzung dieses stark interdisziplinären Projekts beruht auf intensiver Zusammenarbeit. Diese Konstellation umfasst die Expertise zum alpinen hydrologischen Monitoring und zur Modellierung sowie Unsicherheitsabschätzung von Modellparametern der BOKU Wien, die Expertise der Technischen Universität Berlin und des GFZ Potsdam zur Ableitung gravimetrischer Signale, die auf kleine Änderungen in der Hydrosphäre reagieren, sowie das langjährige lokale hydro(geo)logische Wissen und die Betreuung des Sensornetzwerks durch die Universität Augsburg.

Bodenbewertung - Bodenkundliche Feuchtestufe (BKF)

Die bodenkundliche Feuchtestufe ist ein Kennwert zur Bewertung des Lebensraumes für natürliche Pflanzen(-gesellschaften) und wird über Bodenwasserhaushaltsverhältnisse bewertet. Diese werden maßgeblich vom Wasserrückhaltevermögen, dem Grundwasseranschluss, dem Niederschlag und der Evapotranspiration gesteuert. Standorte mit sehr niedrigen (trocken) oder sehr hohen (nass) bodenkundlichen Feuchtestufen lassen sich meist nur mit hohem Aufwand landwirtschaftlich nutzen und sind daher als Extremstandorte für den Naturschutz häufig von besonderem Interesse. Mit der bodenkundlichen Feuchtestufe wird eine natürliche Bodenfunktionen nach § 2 Abs. 2 BBodSchG bewertet und zwar nach Punkt 1.a) die Lebensgrundlage und Lebensraum für Menschen, Tiere, Pflanzen und Bodenorganismen. Das hierfür gewählte Kriterium ist das Standortpotenzial für natürliche Pflanzengesellschaften mit dem Kennwert bodenkundliche Feuchtestufe. Die Karten liegen für die folgenden Maßstabsebenen vor: - 1 : 1.000 - 10.000 für hochaufgelöste oder parzellenscharfe Planung, - 1 : 10.001 - 35.000 für Planungen auf Gemeindeebene, - 1 : 35.001 - 100.000 für Planungen in größeren Regionen, - 1 : 100.001 - 350.000 für landesweit differenzierte Planung, - 1 : 350.001 - 1000.000 für landesweite bis bundesweite Planung.

Bodenbewertung - Nitratauswaschungsgefährdung/Bodenwasseraustausch (NAG), landesweit bewertet

Der Bodenwasseraustausch ist ein Kennwert zur Bewertung des Bodens als Filter für nicht sorbierbare Stoffe und kennzeichnet das Verlagerungsrisiko für nicht oder kaum sorbierbare Stoffe wie Nitrat (Nitratauswaschungsgefährdung). Die Nährstoffe verbleiben fast vollständig in gelöster Form im Bodenwasser und werden bei Versickerung mit diesem verlagert (Bodenwasseraustausch). Das Verlagerungsrisiko ist hoch bei Böden mit geringem Wasserrückhaltevermögen, bei hohen Niederschlägen und bei geringer Evapotranspiration. Das Verlagerungsrisiko ist umso höher, je höher der Bodenwasseraustausch ist, weil das ausgetauschte Bodenwasser mit den darin gelösten Nitraten versickert. Mit dem Bodenwasseraustausch wird eine natürliche Bodenfunktionen nach § 2 Abs. 2 BBodSchG bewertet und zwar nach Punkt 1.c) als Abbau-, Ausgleichs- und Aufbaumedium für stoffliche Einwirkungen auf Grund der Filter-, Puffer- und Stoffumwandlungseigenschaften, insbesondere auch zum Schutz des Grundwassers. Das hierfür gewählte Kriterium ist das Rückhaltevermögen des Bodens für nicht sorbierbare Stoffe mit dem Kennwert Bodenwasseraustausch. Die Karten liegen für die folgenden Maßstabsebenen vor: - 1 : 1.000 - 10.000 für hochaufgelöste oder parzellenscharfe Planung, - 1 : 10.001 - 35.000 für Planungen auf Gemeindeebene, - 1 : 35.001 - 100.000 für Planungen in größeren Regionen, - 1 : 100.001 - 350.000 für landesweit differenzierte Planung, - 1 : 350.001 - 1000.000 für landesweite bis bundesweite Planung. In dieser Darstellung wird der Bodenwasseraustausch landesweit einheitlich klassifiziert. Unter dem Titel "Bodenbewertung - Nitratauswaschungsgefährdung/Bodenwasseraustausch (NAG), regionalspezifisch bewertet" gibt es noch eine naturraumbezogene Klassifikation des Bodenwasseraustausches, die den Bodenwasseraustausch regional differenzierter darstellt.

Bodenbewertung - Nitratauswaschungsgefährdung/Bodenwasseraustausch (NAG), regionalspezifisch bewertet

Der Bodenwasseraustausch ist ein Kennwert zur Bewertung des Bodens als Filter für nicht sorbierbare Stoffe und kennzeichnet das Verlagerungsrisiko für nicht oder kaum sorbierbare Stoffe wie Nitrat (Nitratauswaschungsgefährdung). Die Nährstoffe verbleiben fast vollständig in gelöster Form im Bodenwasser und werden bei Versickerung mit diesem verlagert (Bodenwasseraustausch). Das Verlagerungsrisiko ist hoch bei Böden mit geringem Wasserrückhaltevermögen, bei hohen Niederschlägen und bei geringer Evapotranspiration. Das Verlagerungsrisiko ist umso höher, je höher der Bodenwasseraustausch ist, weil das ausgetauschte Bodenwasser mit den darin gelösten Nitraten versickert. Mit dem Bodenwasseraustausch wird eine natürliche Bodenfunktionen nach § 2 Abs. 2 BBodSchG bewertet und zwar nach Punkt 1.c) als Abbau-, Ausgleichs- und Aufbaumedium für stoffliche Einwirkungen auf Grund der Filter-, Puffer- und Stoffumwandlungseigenschaften, insbesondere auch zum Schutz des Grundwassers. Das hierfür gewählte Kriterium ist das Rückhaltevermögen des Bodens für nicht sorbierbare Stoffe mit dem Kennwert Bodenwasseraustausch. Die Karten liegen für die folgenden Maßstabsebenen vor: - 1 : 1.000 - 10.000 für hochaufgelöste oder parzellenscharfe Planung, - 1 : 10.001 - 35.000 für Planungen auf Gemeindeebene, - 1 : 35.001 - 100.000 für Planungen in größeren Regionen, - 1 : 100.001 - 350.000 für landesweit differenzierte Planung, - 1 : 350.001 - 1000.000 für landesweite bis bundesweite Planung. In dieser Darstellung wird der Bodenwasseraustausch regionalspezifisch klassifiziert. Unter dem Titel "Bodenbewertung - Nitratauswaschungsgefährdung/Bodenwasseraustausch (NAG), landesweit bewertet" gibt es noch eine Klassifikation des Bodenwasseraustausches, die den Bodenwasseraustausch über die Naturraumgrenzen hinweg landesweit einheitlich darstellt.

1 2 3 4 525 26 27