In diesem Projekt soll die wichtige Thematik der Entfernung von NOM (Natural Organic Matter) aus Trinkwasser im Aufbereitungsprozess aus der grundlegenden Sicht der Kolloidwissenschaften untersucht werden. Dieses Thema ist eine zentrale Frage der menschlichen Gesundheit und bei Oberflächenwasser wird meist ein Polykation (cPE) zur Bindung und Präzipitation der negativ geladenen NOM Moleküle eingesetzt. Trotz der hohen Bedeutung dieser Fragestellung gibt es nur wenige fundamentale, kolloidchemische Arbeiten zu dieser Thematik. Dieser ist Ansatz dieses Projekts, in dem wir aufgereinigte Huminsäure (HA, Hauptbestandteil von NOM) als Modellsystem nehmen und seine Komplexierung mit unterschiedlich modifiziertem kationischen (quaternisierten) Chitosan (q-Chit) untersuchen wollen. Tests mit australischen Partnern haben bereits vielversprechende Resultate bei der NOM Abtrennung mit q-Chit gezeigt. Seine Hauptvorteile sind Biokompatibilität und Variabilität des molekularen Aufbaus aufgrund einfacher chemischer Modifikation. q-Chit wird hier maßgeschneidert synthetisiert, wobei Parameter wie Ladungsdichte, Mw und Hydrophobizität systematisch variiert werden. Das Phasenverhalten soll als Funktion des Mischungsverhältnisses untersucht werden, inklusive einer quantitativen Bestimmung der im Zweiphasengleichgewicht in Lösung verbleibenden Menge an HA. Dies wird ergänzt durch umfangreiche thermodynamische Untersuchungen (ITC) und der Bestimmung der mesoskopischen Struktur der gebildeten Komplexe mit Hilfe von Licht, Röntgen- und Neutronenstreuung. Wichtig ist auch die zeitliche Entwicklung der Systeme, die durch kinetische Strukturmessungen verfolgt wird. Diese umfassende thermodynamische, strukturelle und kinetische Charakterisierung soll systematische Korrelationen zwischen den cPEs und der Stärke ihrer Wechselwirkungen mit HA liefern. Hieraus soll abgeleitet werden welche molekularen Motive wichtig sind, um die Entfernung von HA aus Wasser zu optimieren. Diese Motive werden in einer optimierten Synthese entsprechend verwendet. q-Chit ist im Fokus, aber später soll auch quaternisiertes verzweigtes Polyethylenimin (PEI) eingesetzt werden, bei dem es sich um kompaktes globuläres Polykation mit hoher Ladungsdichte handelt. Sein Einfluss auf Phasenverhalten und Struktur in Mischungen mit HA soll untersucht werden, mit dem Fokus auf Mischungen in denen auch (lineares) q-Chit enthalten ist, da man einen ausgeprägten Synergismus bei der Wechselwirkung mit den sehr unterschiedlichen anionischen Molekülen der HA erwarten kann. Auf dieser Basis einer umfassenden physiko-chemischen Charakterisierung wollen wir ein solides grundlegendes Verständnis der in Mischungen aus cPE und HA vorliegenden Wechselwirkungen generieren. Dieses soll die Grundlage sein für systematische Verbesserungen bei der Entfernung von NOM aus Trinkwasser, einer der zentralen aktuellen technologischen Herausforderungen der Menschheit.
Globale Klimadepression fuehren erst unter bestimmten geografischen Konstellationen ueber Rueckkopplungseffekte zu Vereisungen. Fuer bestimmte Phasen, z.B. den Uebergang von der letzten Warmphase der Nordhemisphaere zur ersten Kaltphase (Eiszeit) werden Klimakarten (Temperaturen, Luftdruck) aufgrund der fossilen Daten und Modellrechnungen fuer bestimmte Zeitscheiben erstellt. Fuer homotype und heterotype Organismenkollektive werden die Wirkungen von Temperaturveraenderungen sowie daraus entstehende moegliche Defekte und Reparaturprozesse in den Populationen und Biozoenosen analysiert, um gemeinsam mit dem ersten Teilprojekt zukunftsrelevante Aussagen treffen zu koennen.
Ein wesentlicher Aspekt dieses Projektes ist es, eine verbesserte Darstellung von Bodenkrusten (biotisch uns abiotisch) in Modellen für äolische Erosion und Transportprozesse zu entwickeln. Ziel ist es, die langfristige Wechselwirkung zwischen äolischen, biologischen und Bodenbildungs-Prozessen, beeinflusst von atmosphärischen Parametern wie z.B. Luftfeuchtigkeit, in der Atacama Wüste zu untersuchen. Es besteht ein starker Bezug zu biologischen, boden- und materialkundlichen Teilprojekten des SFB.
Submarine Grundwasservorkommen sind ein globales Phänomen in küstennahen Sedimenten. Im Verlaufe der letzten ca. 20 Jahre wurden weltweit vermehrt Anstrengungen unternommen, submarine Grundwasservorkommen räumlich zu erfassen, um, unter anderem, eine bessere Abschätzung über die damit verbundenen Mengen an submarin gespeichertem Süßwasser zu erhalten sowie deren Bedeutung für Schelf-Ökosysteme bzw. globale Elementkreisläufe zu erfassen. Trotz der bisherigen Anstrengungen fehlt es derzeit immer noch an einem grundlegenden Verständnis der Entstehungsprozesse submariner Grundwasservorkommen sowie deren zeitlicher und räumlicher Entwicklung. Eine große Unbekannte ist in vielen Fällen, ob vorhandene Vorkommen rezent noch aktiv von Land aus gespeist werden oder von den Landsystemen abgeschnitten sind und somit Relikte früherer Umweltbedingungen darstellen. Die hier vorgeschlagenen Untersuchungen setzen an dieser übergeordneten Fragestellung an. Ziel ist es, anhand von IODP Bohrdaten der Legs 317 (Neuseeland) und 313 (New Jersey, USA), numerische 1D und 2D Transport-Reaktions-Modelle zu entwickeln, die insbesondere auf die Abbildung geochemischer Prozesse und die damit verbundene Verteilung gelöster Stoffe im Porenwasser abzielen. Unser derzeitiges Verständnis zur Entstehung und Entwicklung submariner Grundwasservorkommen in den genannten Gebieten beruht im Wesentlichen auf den Ergebnissen großräumiger, hydrogeologischer Modelle. Deren Ergebnisse können allerdings gemessene Element-Verteilungsmuster im Porenwasser aufgrund der unzureichenden, räumlichen Auflösung nicht wiedergeben und stehen darüber hinaus zum Teil in direktem Widerspruch zu einigen geochemischen Indikatoren. In diesem Antrag schlagen wir daher eine genaue Analyse dieser Widersprüche vor. Auf Grundlage der vorhandenen Porenwasserdaten sollen die geplanten 1D/2D Modellierungen insbesondere dazu dienen, den zeitlichen Verlauf der Grundwasserdynamik im Bereich der Bohrungen zu erfassen und abzubilden. Dabei ist das übergeordnete Ziel, eine bessere Bewertung submariner Grundwasservorkommen hinsichtlich ihrer nachhaltigen Nutzung sowie ihrer Bedeutung innerhalb globaler Elementkreisläufe zu ermöglichen.
Ziel dieses Projekts ist es, die Forschung im Bereich der wechselseitigen Beziehung zwischen biologischer Evolution und Landschaftsevolution maßgeblich voranzutreiben. Arbeitsgebiete sind aride bis hyperaride Systeme, in denen sowohl biologische Aktivität als auch Erdoberflächenprozesse vorwiegend und sehr stark durch die Verfügbarkeit von Wasser limitiert sind. In diesem Projekt sollen die Schlüsselmerkmale biologischer Aktivität in extrem wasserlimitierten Habitaten der Erde identifiziert und Erdoberflächenprozesse, die unter nahezu wasserfreien Bedingungen ablaufen, charakterisiert werden. Die Bestimmung kritischer Schwellenwerte der Umweltbedingungen, die eine biologische Kolonisation und/oder Landschaftstransformationen erlauben, stellt ein wesentliches Ziel dar. Das zeitliche und räumliche Muster biologischer Kolonisation und Isolation wird zusammen mit der Chronologie der Landschaftsentwicklung in Bezug zur auschlaggebenden gemeinsamen Triebkraft, dem (Paleo-) Klima, untersucht. Diese Ziele sollen durch: (i) paleoklimatische Rekonstruktion und Observation des gegenwärtigen Klimas, zur Entwicklung geeigneter Klimamodelle, (ii) Erfassung der biogeographischen Migrationsgeschichte, Phylogenie (Pflanzen, Insekten, Protisten und Bakterien) und deren molekularer Datierung und (iii) räumliche Erfassung, Prozesscharakterisierung und Datierung von (fossilen) Landschaftselementen (Entwässerungssysteme, Hänge, fluviale und aeolische Sedimente, Böden), angegangen werden. Die Datierung geologischer Archive (i & iii) erfordert eine innovative (Weiter-) Entwicklung isotopengeologischer Methoden, welche entsprechend durchgeführt werden sollen.Es werden u.a. wesentliche Beiträge zu den sich entwickelnden Konzepten des evolutionären Timelags (Guerreo et al. 2013, PNAS 110, 11469-11474), des Einflusses geographischer Barrieren auf klimabedingte Speziesmigration (Burrows et al. 2014, Nature 507, 492-495), der Biogeomorphologie (Corenbilt et al. 2011, Earth Sci. Rev. 106, 307-331), sowie der Entwicklung neuer Methoden zur Datierung und Prozesscharakterisierung von Erdoberflächenprozessen und biologischer Evolution erwartet.
Unser grundlegendes Verständnis über die Entwicklung physikalischer Prozesse, die während der ein- und mehrphasigen Strömung in zerklüfteten porösen Medien ablaufen, ist für die Wissenschaft von großer Bedeutung. Im Hinblick auf die praktischen Auswirkungen bedeutet es verbesserte Anwendungen in den Bereichen unterirdischer Hydrologie, Geophysik, Reservoir Engineering und Biomechanik. Während niedrige Geschwindigkeiten im Bereich von Kriechströmungen am besten durch die Darcy-Gleichung beschrieben werden, muss man für deutlich höhere Geschwindigkeiten Terme höherer Ordnung zusätzlich berücksichtigen, wie von Forchheimer vorgeschlagen. Es gibt eine große Anzahl von Arbeiten über das reine Kriechströmungs- und das rein turbulente Strömungsregime, aber nicht für den Bereich dazwischen, d.h. für das „weak-inertia“ Regime. In Anbetracht dieses Mangels an experimentellen Beweisen wollen wir genau für diesen Bereich Fließfelder in Systemen zunehmender Komplexität von 2D bis 3D räumlich hochaufgelöst abbilden. Zunächst untersuchen wir 2D-Micromodelle mit einem einzelnen Kanal, einer sich wiederholenden Kanal-Poren-Einheit und einem 2D-Riß mit rauen Porenoberflächen. Diese Micromodelle erlauben die Kombination der 2D Mikro-Partikel-Imaging-Velocimetry (micro-PIV) mit 3D flusssensitiver Magnetresonanztomographie (MRT). Um die Auflösungen beider Methoden anzupassen, werden mit der MRT auch ortsaufgelöste Propagatoren bestimmt, die eine Auflösung der Geschwindigkeitsfelder innerhalb eines Voxels erlauben. Sie dienen dann als Proxys für Geschwindigkeitsfelder und können auf 3D- und undurchsichtige Systeme angewendet werden. In einem zweiten Schritt untersuchen wir das erste 3D-System, einen homogenen porösen Glaszylinder. Bei kleinen Geschwindigkeiten erwartet man „bulk“-Effekte durch alle Poren im Sinne der Darcy-Beziehung. Steigen die Reynoldszahlen an, bilden sich immer größere Strömungsschatten kombiniert mit gestreckten Fließpfaden aus. Die bisher gewonnenen Erkenntnisse werden nun im 2. Hauptteil des Projekts für die Untersuchung von Bohrkernen mit Rissen genutzt. Um die Strömung zu untersuchen, wird ein natürlicher Gesteinskern vertikal gefrackt, eine Technik, die an der Universität Stuttgart nun zur Verfügung steht. In Bezug auf die MRT wird die Verwendung einer multi-slice Pulssequenz mit bipolaren Gradientenpaaren notwendig. Der Unterschied zu den bisher untersuchten Modellsystemen besteht darin, dass die Strömung durch Wasseraustausch zwischen Porensystem und Riß kontrolliert wird. Es ist daher zu erwarten, daß sich beim Übergang vom Darcy- zum „weak-inertia“ Regime präferentielle Fließmuster neben stationären Bereichen entwickeln. Diese experimentell gewonnenen 3D-Fließfelder stehen dann zur Verfügung, um theoretische Ansätze wie die Forchheimer-Relation auf ihre Gültigkeit und ihre Grenzen zu prüfen und weiter zu entwickeln.
Obwohl nach unseren Erkenntnissen der mykoparasitischen Lebensweise eine wesentliche Rolle in der Evolution der Basidiomyceten zukommt, ist der Kenntnisstand über mykoparasitische Basidiomyceten dürftig. So ergaben unsere Voruntersuchungen überraschenderweise, daß die ausschließlich auf Rostpilzen vorkommenden Arten der Hyphomycetengattung Tuberculina Basidiomyceten sind. Im ersten Antragszeitraum soll deshalb dieses ungeklärte Tuberculina-Rostpilz-System modellhaft bearbeitet werden, wobei durch morphologische, ultrastrukturelle und molekularphylogenetische Untersuchungen sowie durch Infektionsversuche der Infektionsverlauf, die zelluläre Interaktion, die Artzusammensetzung von Tuberculina und das Wirtsspektrum der einzelnen Tuberculina-Arten aufgeklärt werden sollen. Des weiteren soll überprüft werden, mit welchen perfekten Basidiomyceten die Tuberculina-Arten am nächsten verwandt sind, um Hinweise auf ihre möglicherweise in der Natur vorkommende perfekte Form und auf deren Lebensweise zu bekommen. aufbauend auf diesen Untersuchungen (i) sollen Hypothesen zur Evolution und Artentstehung von Tuberculina entwickelt werden und (ii) soll die Potenz von Tuberculina zur biologischen Bekämpfung von Rostpilzen am Beispiel des Birnengitterrosts Gymnosporangium sabinae getestet werden.
Die Tiefsee ist das größte Ökosystem auf der Erde, das uns aufgrund der Unerreichbarkeit und immensen Ausdehnung in weiten Teilen noch fremd ist. Wegen der geringen Verbreitung von Tiefsee-Sedimenten auf dem Festland und dem Mangel einer kontinuierlichen Fossil-Überlieferung ist unsere Kenntnis über Tiefseepaläobiogeographie und Tiefsee-Evolution ebenfalls recht limitiert. Eine Sichtung unterkretazischer bis obermiozäner Sedimente in ODP/DSDP/IODP-Bohrkernen (Paläoablagerungstiefe: tiefes Bathyal über 2000 m) erbrachte überraschende Ergebnisse: Sklerite von Echinodermata (Holothurien, Ophiuren, Asteroideen, Crinoiden), die heute einen wichtigen Anteil der Tiefseefaunafauna stellen, fehlen nahezu völlig. Dafür sind Stacheln von irregulären Echiniden (Holasteroida, Spatangoida: Atelostomata) häufig. Da die Stacheln morphologisch sehr variabel sind, bergen Klassifizierung der morphologischen Bandbreite ('Morphospace'), der Morphospace-Veränderung in der Zeit und die berechnete Stachel-Akkumulationsrate das Potential, Diversitäts- und Abundanz-Veränderungen in Bezug zu globalem Klimawandel zu kartieren. Da die derzeitige globale Erwärmung besonders in offenen Ozeanen zu geringerer Produktivität und verringertem Export von Organik in die Tiefsee führt, eignet sich der östliche tropische Pazifik als Modell-Region um zwei Arbeitshypothesen zu testen. i) Die Stachel-Diversität der Atelostomata korreliert invers mit känozoischen Warmzeiten, was die 'Productivity-Diversity Relation' stützt; und ii) Die Abundanz von Atelostomata-Stacheln als Ausdruck von Biomasse und Export-Productivity ist geringer in warmen Perioden als in kühlen. Für das Projekt wurde exemplarisch känozoisches Material aus einer sich rapide ändernden Welt berücksichtigt (Abkühlung Mittel-Miozän, mittelmiozänes Klimaoptimum, Abkühlung oberstes Oligozän, Warmphase Ober-Oligozän, oligozäne Oi-2 Eiszeiten & Nachspiel). Klassifizierbare Merkmale der Stacheln (z.B. Morphologie des Schaftes, Anwesenheit, Verteilung, Häufigkeit von Stacheln und Dornen, Form/Anzahl von Poren, Form der Stachelspitze u.a.) werden in eine Datenmatrix eingepflegt und statistisch ausgewertet. Variationen der Stachel-Diversität (Shannon-Wiener-Index) sind Ausdruck sich verändernder Biodiversität, und eine Abnahme der Diversität sowie der Stachel-Akkumulationsrate werden in Kontext mit Warmphasen vermutet. Eine 'Principal Component Analysis' von Stachel-Vergesellschaftungen einzelner Zeitintervalle ermöglicht es, die Disparität des Morphospace der berücksichtigten Intervalle zu erarbeiten. Hieraus lassen sich darüber hinaus Aussagen über graduelle (Evolution?) oder abrupte (Aussterben und Speziation/Immigration) Faunenveränderungen in der Tiefsee treffen, die in Beziehung zu schwankender Primärproduktivität durch globale Temperaturschwankungen gesetzt werden können (Hypothese 2).
Unser Ziel ist es, das allgemeine Verständnis der extrem wichtigen, aber wenig verstandenen Rückkopplungsmechanismen zwischen biodiversitätsvermittelter Flexibilität von ökologischen Systemen und deren Möglichkeiten, auf Störungen zu reagieren, besser zu verstehen. Individuen, Populationen und Artengemeinschaften besitzen je nach Art der Biodiversität (z.B. genetisch, phänotypisch, taxonomisch) eine natürliche Flexibilität, die es ihnen erlaubt, sich an die jeweiligen Umweltbedingungen anzupassen. Dies wiederum beeinflusst ihre zeitliche Dynamik und schlussendlich das gesamte Nahrungsnetz. Erhöhter Fraßdruck kann zum Beispiel zu mehr schlecht fressbaren Algen führen. Dies reduziert die Abnahme der Algenbiomasse, wodurch die Biomasse und Zusammensetzung der Herbivorengemeinschaft beeinflusst wird. Beispielsweise kann sich der Anteil der Herbivoren (Pflanzenfresser) erhöhen, die schlecht fressbare Algen verwerten können, wodurch der Vorteil der schlecht fressbaren Algen gegenüber den gut fressbaren reduziert wird und somit die Koexistenz beider Formen steigt. Das Schwerpunktprogramm zielt darauf ab, den klassischen ökologischen Ansatz, dass alle Individuen einer Population oder alle Arten einer Lebensgemeinschaft, unabhängig von den jeweiligen Umweltbedingungen, konstante Eigenschaften haben, durch einen neuen Ansatz zu ersetzen, der die Variabilität der Merkmale von Organismen und Arten berücksichtigt. Dieser Ansatz basiert auf messbaren funktionalen Merkmalen (sogenannte traits, z.B. Fressbarkeit der Beute, Selektivität von Räubern), die sich in Abhängigkeit von Umweltbedingungen ändern können. Wir streben einen intensiven, sich gegenseitig stimulierenden Austausch zwischen experimentellen Ansätzen, Freilandarbeiten und mathematischen Modellen an, die hauptsächlich mit Plankton und Aufwuchssystemen arbeiten. Diese mikrobiellen Nahrungsnetze bestehen aus mehreren trophischen Ebenen mit interner Kopplung. Wir wollen besser verstehen, wie sich Biodiversität auf die Form von Dynamiken (z.B. stabil oder zyklisch) und die Reaktion auf Umweltänderungen auswirkt. Eine Überprüfung bereits etablierter theoretischer Konzepte ist damit unumgänglich, was uns jedoch die Möglichkeit geben wird, Biodiversität erhaltende Mechanismen zu identifizieren, diese zu testen und in Modelle zu integrieren, um deren Gültigkeit und damit Vorhersagekraft zu verbessern.
| Origin | Count |
|---|---|
| Bund | 884 |
| Wissenschaft | 4 |
| Type | Count |
|---|---|
| Daten und Messstellen | 4 |
| Förderprogramm | 882 |
| Text | 1 |
| unbekannt | 1 |
| License | Count |
|---|---|
| geschlossen | 2 |
| offen | 886 |
| Language | Count |
|---|---|
| Deutsch | 537 |
| Englisch | 531 |
| Resource type | Count |
|---|---|
| Archiv | 3 |
| Datei | 1 |
| Dokument | 1 |
| Keine | 536 |
| Webseite | 347 |
| Topic | Count |
|---|---|
| Boden | 659 |
| Lebewesen und Lebensräume | 738 |
| Luft | 479 |
| Mensch und Umwelt | 881 |
| Wasser | 529 |
| Weitere | 888 |