Der Klimawandel betrifft die Hydrologie in alpinen Regionen in besonderem Maße durch Temperaturanstieg, mehr und intensiveren Regenereignissen, auch während der Wintermonate. Diese Veränderungen führen zu vermehrten Naturgefahren wie übermäßigem Oberflächenabfluss und Murenabgänge. Einer der Gründe für solche Ereignisse ist eine reduzierte Infiltrationskapazität des (teil-)gefrorenen Bodens. Wenn Regen- oder Schmelzwasser nicht ausreichend infiltrieren kann, induziert der Oberflächenabfluss eine Bodenerosion, was zu Murenabgängen führen kann. Wenn Wasser entlang präferentieller Fließwege in tiefere Schichten infiltriert und zwischen gefrorenen Schichten der Porendruck steigt, so kann dies zu mechanischem Versagen des Hanges führen. Durch signifikanten Oberflächenabfluss findet kaum Grundwasserneubildung statt und die puffernde Wirkung des Grundwasserkörpers entfällt. Dies ist besonders für Regionen, in denen Schnee- und Gebirgswasser wesentlich zum Grundwasserhaushalt beitragen von großer Bedeutung. In diesem Projekt wird die thermo-hydraulische Wechselwirkung zwischen infiltrierendem Wasser und Boden bei Temperaturen unter dem Gefrierpunkt untersucht. Dazu werden hochentwickelte Modellansätze, numerische Simulationswerkzeuge, sowie Versuche im Labor wie im Gelände eingesetzt. Präferentielle Fließwege, z.B. Makroporen durch Wurzelwachstum oder Wurmlöcher, im Boden sind dabei wesentlich, denn sie ermöglichen eine schnellere Infiltration des Wassers in den Boden und weisen zudem eine anderes Einfrier- und Auftauverhalten auf als kleine Poren der Bodenmatrix. Das Verständnis des Einflusses von Makroporen auf das Gefrieren und Schmelzen von Wasser während der Infiltration ist daher wesentlich für jede weitere Analyse. Wasserinfiltration wird durch die Temperatur der beteiligten Phasen bestimmt. Das infiltrierende Wasser ist wärmer als der Gefrierpunkt, während der Boden gefroren ist. Die Temperaturentwicklung der einzelnen Phasen hängt vom Wärmeübertrag zwischen den Phasen ab. Da Wärmeübertrag und hydraulischer Fluss stark gekoppelt und zudem rund um den Gefrierpunkt sehr dynamisch sind, bedarf es besonderer Sorgfalt bei der theoretischen Beschreibung des thermohydraulischen Verhaltens. Mit einem tiefgreifenden Verständnis vom Einfluss präferenzieller Fließwege und dem Wärmeübertrag zwischen den beteiligten Phasen können spezifische geologische und meteorologische Gegebenheiten identifiziert werden, welche entweder extremen Oberflächenabfluss oder Hangversagen verursachen. Dieses Wissen kann in der Vorsorge als auch im Grundwassermanagement alpiner Gebiete Anwendung finden.
Flagellatenpilze (Chytridiomycota) sind eine Gruppe evolutiv früh abzweigender, zoosporischer Pilze, die in verschiedensten aquatischen und terrestrischen Lebensräumen vorkommen. Sie leben entweder als Saprophyten, Parasiten oder als intermediäre Formen. Bei allen Formen haften sich freischwimmende Zoosporen an Detritus oder einen Wirt und extrahieren Nährstoffe unter Bildung eines Sporangiums, welches neue Zoosporen hervorbringt. Aufgrund ihrer geringen Größe und unscheinbaren morphologischen Merkmalen blieben die Zoosporen in Untersuchungen mariner und limnischer Planktongemeinschaften für viele Jahrzehnte nahezu unentdeckt. Molekularbasierende Methoden jüngster Zeiten haben jedoch eine hohe Abundanz sowie Diversität der Flagellatenpilze in aquatischen Lebensräumen aufgedeckt. Einige Arten infizieren Phytoplankton, wie z.B. Blaualgen, Kieselalgen und Dinoflagellaten, so dass ihnen eine wichtige Rolle in der Kontrolle von Algenblüten zugeschrieben wird. Überraschenderweise ist der trophische Lebensstil nur für wenige kultivierte Arten beschrieben und die genomischen Innovationen, welche sich auf Infektionsstrategien der Phytoplanktonparasiten zurückführen lassen, sind völlig unbekannt, so dass eine Beurteilung der Ernährungsweise der Flagellatenpilze anhand (meta)genomische eDNA-untersuchende Umweltstudien nahezu unmöglich ist. Die phylogenetischen Beziehungen innerhalb der Flagellatenpilze, welche Informationen zu den Ursprüngen und der Verbreitung von Parasitismus innerhalb ökologisch verschiedener Entwicklungslinien liefern könnten, sind weitestgehend ungeklärt. In diesem Projekt möchte ich die molekularen Voraussetzungen für einen parasitischen Lebensstil in phytoplanktoninfizierenden Flagellatenpilzen aufdecken. Vergleichende Genomanalysen von vier phytoplanktoninfizierenden Flagellatenpilzarten mit nahe verwandten saprophytischen Arten sollen neue Erkenntnisse über die parasitismus-typischen genetischen 'Werkzeuge' erbringen (z.B. über parasitenspezifische Virulenzgene). Darüber hinaus plane ich einen stabilen phylogenetischen Baum für circa 40 Flagellatenpilzarten zu rekonstruieren, für welche der trophische Lebensstil bekannt ist. Phylogenomische Analysen unter Verwendung von fast 400 proteinkodierenden Genen, gewonnen aus öffentlich verfügbaren sowie in diesem Projekt neu angefertigten Genomen/Transkriptomen, werden es erlauben die frühen Diversifikationen der Flagellatenpilze zu entwirren. Die neu generierten Sequenzdaten werden außerdem nach den im ersten Teil des Projektes identifizierten Virulenzgenen abgesucht. Die phylogenetische Einordnung von Lebensstilen der Flagellatenpilze soll es ermöglichen den ursprünglichen Zustand diverser Gruppen zu charakterisieren und unser Verständnis über die Evolution von Parasitismus in phytoplanktoninfizierenden Flagellatenpilzen verbessern.
Lake Ohrid is a large (360 km2) and deep (289 m) lake of tectonic origin and is shared between the Republics of Macedonia and Albania. Biological and biogeographical studies of the lake revealed an outstanding degree of endemism and suggest a Pliocene origin of Lake Ohrid, making the lake the oldest one in Europe. The high age and the high degree of endemism make Lake Ohrid a first class site to investigate the link between geological and biological evolution in ancient lakes. Given its importance as refugium and spreading centre, the lake was declared a UNESCO world heritage site in 1979, and included as a target site of the International Continental Scientific Drilling Program (ICDP) already in 1993. The political situation in the Balkan in the mid 1990ies, however, hampered further establishment of Lake Ohrid as potential ICDP site. This proposal bundle seeks funds for the detection of the timing of major evolutionary events, the investigation of the origin, the sedimentological inventory, neotectonic movements, and the paleoecology and paleolimnology of Lake Ohrid in order to develop a full ICDP proposal for deep drilling. Within the scope of this cover proposal funds for the coordination of the single proposals, for scientific exchange between the single bundle proponents, and for the data management are applied for.
Im Rahmen des Projekts soll aus bodengebundenen Wolkenseitenmessungen der reflektierten Strahlung mittels eines abbildenden Spektrometersystems von tropischer hochreichender Konvektion auf das Vertikalprofil der mikrophysikalischen Eigenschaften der Wolke geschlossen werden. Damit soll die vertikale Entwicklung von hochreichender Konvektion, die eine wesentliche klimarelevante Rolle spielt, unter Berücksichtigung des Einflusses von Aerosolpartikeln und von thermodynamischen Bedingungen auf das Tropfenwachstum charakterisiert werden. Die geplanten Messungen sollen auf einem 320 m hohen Messturm (ATTO: Amazonian Tall Tower Observatory), der kürzlich im brasilianischen Regenwald errichtet wurde, stattfinden. ATTO ist mit Messgeräten ausgestattet, die meteorologische, chemische und Aerosolparameter liefern. Die Messregion bietet ideale Beobachtungsbedingungen mit klar definierten Jahreszeiten (Regen- und Trockenzeit), täglicher Konvektion und variablen Aerosolbedingungen. Aus den Messungen eines neuen abbildenden Spektrometersystems, SPIRAS (SPectral Imaging Radiation System) sollen Vertikalprofile der thermodynamischen Phase und der Partikelgröße mit hoher zeitlicher und räumlicher Auflösung und mit Hilfe von adaptierten Verfahren unter Verwendung von dreidimensionalen Strahlungstransportsimulationen abgeleitet werden. Damit sollen vertikale Bereiche, die das Tropfenwachstum beschreiben (Diffusion, Koaleszenz, Mischphasenbereich und Vereisung), identifiziert werden. Zusätzliche Messungen einer Infrarotkamera und eines scannenden Depolarisations-Lidars werden für die Höhen- und Temperaturbestimmung der beobachteten Wolkenelemente herangezogen. Zusätzlich werden die Polarisationsmessungen des Lidars zur Bestimmung der thermodynamischen Phase verwendet, um den wichtigen Phasenübergang zu identifizieren. Mit Hilfe der gewonnenen Daten werden außerdem Annahmen (Effektivradius als konservative Wolkeneigenschaft) wie sie von Ableitungsverfahren zur Bestimmung von mikrophysikalischen Wolkenprofilen aus Satellitenmessungen gemacht werden, überprüft.
PHILEAS (Probing high latitude export of air from the Asian summer monsoon)Die asiatische Sommermonsun Antizyklone (AMA) während des Nordsommers wird als ein Haupttransportweg in die obere Troposphäre / untere Stratosphäre (UTLS) für troposphärische Luftmassen, die viel H2O und Aerosolvorläufergase und Verschmutzung enthalten, gesehen. Neuere Beobachtungen zeigen eine große Bedeutung des Transports von Ammoniumnitrat durch die AMA für das Aerosolbudget und die asiatische Tropopausenaerosolschicht (ATAL), wahrscheinlich auch mit Konsequenzen für die Zirrenbildung.Neuere flugzeuggetragene Messkampagnen konnten die Zusammensetzung und Aerosolgehalt im Inneren der AMA charakterisieren oder werden in unmittelbarer Nähe Messungen erheben. Im Gegensatz dazu wurde der Einfluss von monsungeprägten Luftmassen auf die Gesamtzusammensetzung der nördlichen untersten Stratosphäre, z.B. bei HALO Mesungen nachgewiesen. Allerdings gibt es bisher keine Studie, die den Übergang der AMA Luftmassen in die extratropische unterste Stratosphäre (LMS) und die Konsequenzen für Aerosolprozessierung und Zusammensetzung zeigt. Im Rahmen der früheren HALO Missionen TACTS/ESMVal und WISE hat sich gezeigt, dass der nördliche Zentralpazifik eine Schlüsselregion für diesen Übergang ist.Beobachtungen und Modelldaten zeigen eine besondere Bedeutung des sogenannten ‘eddy-sheddings‘ für die Befeuchtung der nördlichen UTLS an. Diese Eddies stellen isolierte dynamische Anomalien dar, die sich von der AMA gelöst haben und mit der Hintergrundströmung in der Atmosphäre zu zirkulieren beginnen. Die chemische Zusammensetzung der Eddies ist zunächst isoliert von ihrer Umgebung. Dynamische und diabatische Prozesse erodieren jedoch diese Anomalien und führen zu einer allmählichen Vermischung mit dem stratosphärischen Hintergrund.Weitere Transportpfade beeinflussen die Zusammensetzung der UTLS über dem Pazifik im Sommer: i) quasi-horizontales Mischen über den Subtropenjet ii) konvektiver Eintrag tropischer Taifune, die in die Extratropen wandern können iii) Wettersysteme der mittleren Breiten. Bei PHILEAS ist geplant, die relative Bedeutung verschiedener Prozesse für die Gasphasen und Aerosolzusammensetzung der UTLS zu untersuchen. Dabei soll insbesondere die dynamische und chemische Entwicklung ehemaliger AMA Filamente untersucht werden, die sich von der AMA abgespalten haben und über dem Pazifik aus der Troposphäre in die Stratosphäre übergehen.Insgesamt ergeben sich drei Hauptthemen, die die PHILEAS Mission motivieren:1) Welche Haupttransportpfade, Zeitskalen und Prozesse dominieren den Transport aus der AMA in die unterste Stratosphäre?2) Wie entwickeln sich Zusammensetzung der Gasphase und der Aerosole während des Transports speziell durch die 'shed eddies'?3) Welche Bedeutung hat der Prozess der Wirbelablösung für das globale Budget der UTLS speziell von H2O und infrarot-aktiven Substanzen?
Die Asian Tropopause Aerosol Layer (ATAL), eine Schicht mit erhöhtem Aerosolgehalt, tritt jedes Jahr von Juni bis September in 14-18 km Höhe in einem Gebiet auf, das sich vom Mittelmeer bis zum westlichen Pazifik erstreckt. Hinsichtlich der Zusammensetzung der Partikel, sowie ihrer Bedeutung für die Strahlungsbilanz in dieser klimasensitiven Höhenregion bestehen große Unsicherheiten. Die bisher einzigen Flugzeugmessungen aus dem Zentrum der ATAL wurden 2017 im Rahmen der StratoClim Kampagne von Kathmandu aus gewonnen. Dabei entdeckten wir mit Hilfe des Infrarotspektrometers GLORIA auf dem Forschungsflugzeug Geophysica, dass feste Ammoniumnitrat (AN) â€Ì Partikel einen beträchtlichen Teil der Aerosolmasse ausmachen. Diese zählen zu den effizientesten Eiskeimen in der Atmosphäre. Zudem zeigte die gleichzeitige Messung von Ammoniakgas (NH3) durch GLORIA, dass dieses Vorläufergas durch starke Konvektion in die obere Troposphäre verfrachtet wird. Im Rahmen der PHILEAS-Kampagne schlagen wir eine gemeinsamen Betrachtung von atmosphärischen Modellsimulationen und Messungen vor, um die Zusammensetzung, Ursprung, Auswirkungen und Verbleib der ATAL-Partikel zu untersuchen â€Ì insbesondere im Hinblick auf ihre Prozessierung sowie ihren Einfluss auf die obere Troposphäre und die untere Stratosphäre der nördlichen Hemisphäre. Messungen von monsunbeeinflussten Luftmassen über dem östlichen Mittelmeer sowie über dem nördlichen Pazifik werden es uns erlauben, Luft mit gealtertem Aerosol- und Spurengasgehalt zu analysieren und damit die StratoClim-Beobachtungen aus dem Inneren des Monsuns zu komplementieren. Um dabei die wahrscheinlich geringeren Konzentrationen an Aerosol und Spurengasen zu quantifizieren, schlagen wir vor, die GLORIA-Datenerfassung von NH3 und AN u.a. durch die Verwendung neuartiger spektroskopischer Daten zu verbessern. Ferner werden wir die Analyse der GLORIA-Spektren auf Sulfataerosole sowie deren Vorläufergas SO2 auszudehnen. Auf der Modellseite werden wir das globale Wetter- und Klimamodellsystem ICON-ART weiterentwickeln, um die ATAL unter Einbeziehung verschiedener Aerosoltypen (Nitrat, Ammonium, Sulfat, organische Partikel, Staub) zu simulieren â€Ì unter Berücksichtigung der hohen Eiskeimfähigkeit von festem AN. Modellläufe werden durchgeführt, um einerseits einen globalen Überblick über die Entwicklung der ATAL 2023 zu gewinnen und zudem detaillierte, auf die relevanten Kampagnenperioden zugeschnittene, wolkenauflösende Informationen über die Aerosol-Wolken-Strahlungs-Wechselwirkungen zu erhalten. Über die direkte Analyse der PHILEAS-Kampagne hinausgehend wird diese Arbeit die Grundlage für eine verbesserte Analyse von Aerosolparametern aus GLORIA-Beobachtungen früherer und zukünftiger HALO-Kampagnen sowie aus Satellitenbeobachtungen legen. Darüber hinaus wird sie ICON-ART, einem der zentralen Klimamodellsysteme in Deutschland die Simulation von Aerosolprozessen sowie Aerosol/Wolken-Wechselwirkungen im Zusammenhang mit der ATAL ermöglichen.
The Labrador Sea is one of the few places in the world ocean, where deep water formation takes place. This water is exported from the Labrador Sea to become part of the southward branch of the meridional overturning circulation. Previous observational work has largely focused on the role of deep convection in the interior of the Labrador Sea. Recent evidence from observations and numerical ocean models specifically indicate that processes near the ocean boundaries might be most relevant for both Eulerian downwelling of waters in the Labrador Sea and the fast export of newly transformed waters. We propose to analyze mooring based observations at the western margin of the Labrador Sea together with high resolution numerical model simulations to understand the role both processes play for the meridional overturning circulation in the subpolar North Atlantic. Specifically, we want to test (i) if (and where) downwelling occurs along the margins of the Labrador Sea, (ii) how downwelling relates to the seasonal evolution of convection and eddy activity, (iii) how fast waters newly transformed near the western margin of the Labrador Sea are exported, and (iv) how the two processes (downwelling, fast export) affect the temporal variability of the Atlantic meridional overturning circulation.
Zahlreiche Prozesse sind an der Entwicklung von Wolkensystemen unter leicht unterkühlten Bedingungen bis zu -10°C beteiligt. Das Zusammenspiel von Thermodynamik, Wasserdampf und Aerosolpartikeln steuert die Verteilung von Flüssigwasser und Eis, die Niederschlagsbildung und die Strahlungseigenschaften. Das Projekt PolarCAP zielt darauf ab, die komplexen Zusammenhänge aufzulösen, indem die Entwicklung der Eisphase unter leicht unterkühlten Bedingungen in einer thermodynamisch und aerosol-kontrollierten natürlichen Umgebung mittels Radarpolarimetrie und Spectral-Bin Modellierung untersucht wird. Zielobjekt der Studie sind flüssigwasserdominierte, unterkühlte stratiforme Wolken, die sich im Winter häufig im Temperaturbereich von -10 bis 0°C über dem Schweizer Plateau bilden. Im Rahmen des externen ERC-Forschungsprojekts CLOUDLAB werden Drohnen eingesetzt, um diese Wolken mit definierten Mengen verschiedener Arten von eisnukleierenden Partikeln, wie Silberjodid oder Snowmax, zu impfen. Die anschließend gebildete Eisphase und die Auflösung der Flüssigphase werden im Rahmen von CLOUDLAB mit Hilfe von In-situ-Messungen und einem Standardsatz von Fernerkundungsinstrumenten wie Lidar und LDR-Wolkenradar charakterisiert. Konkretes Ziel von CLOUDLAB ist, die 1- und 2-Momenten-Parametrisierungen der Eisphase des Wettervorhersagemodells ICON zu verbessern. PolarCAP wird mit dem CLOUDLAB-Projekt zusammenarbeiten, um diesen einzigartigen Datensatz durch die Anwendung modernster polarimetrischer Radar- und Lidar-basierter Fernerkundungstechniken zur Bestimmung der mikrophysikalischen Eigenschaften von Wolken sowie durch die Anwendung wolkenauflösender Spektral-Bin Modellierung zu verbessern und zu nutzen. Synergistische, mehrwellenlängen- und polarimetrische bodengebundene Fernerkundung mit scannendem Radar und Lidar wird eingesetzt, um den Übergang von unterkühlten flüssigen stratiformen Wolken in Mischphasenwolken zu beobachten. Begleitet von wolkenauflösenden Modellsimulationen und Radar-Forward-Operatoren wird PolarCAP die Entwicklung und die beteiligten mikrophysikalischen Prozesse zwischen -10 und 0°C erfassen. Die kombinierten Beobachtungen werden neue Erkenntnisse über das Zusammenspiel von Kontakt- und Immersionsgefrieren, sekundärer Eisbildung und Eisvervielfachung liefern, indem Wolken in verschiedenen Temperaturregimen untersucht werden, von denen angenommen wird, dass sie entweder von spezifischen Eisphasenprozessen beeinflusst bzw. unbeeinflusst sind. PolarCAP wird das derzeitige Verständnis wolkenmikrophysikalischer Prozesse und deren Darstellung in atmosphärischen Modellen herausfordern und die wolkenauflösende Modellierung und deren Kopplung an Radarvorwärtsoperatoren vorantreiben. Insgesamt wird PolarCAP Fortschritte in unseren Fähigkeiten erzielen, die Effizienz verschiedener eisbildender Substanzen besser einschätzen zu können und die Zeitskalen von mikrophysikalischen Prozessen und dem Lebenszyklus von Stratusbewölkung zu verknüpfen.
Im Rahmen dieses Projektes sollen die Verwandtschaftsbeziehungen ausgewählter Copepodenarten auf Populations- bzw. Artebene zwischen verschiedenen Gebieten des atlantischen Sektors des Südpolarmeeres (Küstenstrom (Weddell-, Lazarevmeer), Antarktischer Zirkumpolarstrom) u.a. mit molekulargenetischen Methoden untersucht werden. Damit werden neue Erkenntnisse über die ökologische Abgrenzung, Biogeographie, Phylogenie und Evolution pelagischer Copepoden erwartet.Da bei der Identifikation und Charakterisierung zahlreicher pelagischer Copepodenarten die Anwendung morphologischer Methoden nicht zu befriedigenden Ergebnissen führte, sollen in diesem Projekt maßgeblich molekularbiologische Methoden zum Einsatz kommen. Sollten die molekularbiologischen Daten deutliche genetische Distanzen der untersuchten Populationen aufzeigen, so wird davon auszugehen sein, dass Geschwisterarten bzw. supraspezifische Taxa (Gattungen, Familien) vorliegen. Molekularbiologischen Hinweisen soll als zweiter Schritt durch genauere morphologische Untersuchungen (Adult-/Postembryonalstadien, Karyologie) sowie durch Kreuzungsexperimente nachgegangen werden.
norganische Funktionsmaterialien spielen innerhalb der Schlüsseltechnologien des 21. Jahrhunderts, etwa im Bereich der Informationstechnik oder der Energieerzeugung und -speicherung, eine zentrale Rolle. Dabei sind komplex strukturierte multifunktionelle Materialien auf rein anorganischer Basis sowie im Verbund mit organischen Anteilen zur Weiterentwicklung dieser Technologien von wesentlicher Bedeutung. Die Erzeugung solcher Materialien mit definierter Struktur und Stöchiometrie über die konventionelle Prozesstechnik, die in der Regel bei erhöhten Temperaturen und/oder Drücken sowie unter erheblichem verfahrenstechnischen Aufwand abläuft, stößt hierbei jedoch an ihre Grenzen. Demgemäß ist die Suche nach neuen Verfahren, die eine Generierung von diesen Materialien bei Umgebungsbedingungen und mit reduziertem prozesstechnischen Aufwand ermöglichen, derzeit Gegenstand weltweiter Forschungsanstrengungen. Für die Bildung von komplex strukturierten anorganischen Festkörpern bei Umgebungsbedingungen liefert die belebte Natur eindrucksvolle Beispiele. So entstehen durch Biomineralisationsprozesse Stoffe wie etwa Calciumphosphat oder -carbonat, deren Bildung genetisch determiniert ist und durch die Wechselwirkung mit Biomolekülen gesteuert wird, wobei unter anderem Selbstorganisationsprozesse eine Rolle spielen. Die hierdurch entstehenden anorganischen Materialien besitzen multifunktionelle Eigenschaften, wobei deren Eigenschaftsspektrum durch den Einbau von bioorganischen Komponenten erweitert wird. Wenngleich viele technisch relevante Materialien bei diesen natürlichen Prozessen keine Rolle spielen, ergeben sich hieraus unmittelbar aussichtsreiche Perspektiven zur Generierung neuer anorganischer Funktionsmaterialien durch spezifische molekulare Interaktionen zwischen bioorganischen und anorganischen Stoffen. Das Hauptziel dieses Schwerpunktprogramms ist daher die Übertragung von Prinzipien der Biomineralisation auf die Generierung von anorganischen Funktionsmaterialien und von deren Hybriden mit bioorganischen Anteilen. Zur Erreichung dieses Ziels werden Arbeiten durchgeführt (1) zur In-vitro- und In-vivo-Synthese anorganischer Funktionsmaterialien und deren Hybride mit bioorganischen Molekülen in Form von Schichten oder 3D-Strukturen, (2) zur Charakterisierung der Bildungsprozesse und der Struktur der Materialien sowie (3) zur Bestimmung und zum Design von deren physikalischen und chemischen Eigenschaften. Diese experimentellen Untersuchungen werden weiterhin durch Arbeiten zur Modellierung der Materialbildung, -struktur und -eigenschaften begleitet.
| Origin | Count |
|---|---|
| Bund | 883 |
| Wissenschaft | 4 |
| Type | Count |
|---|---|
| Daten und Messstellen | 4 |
| Förderprogramm | 882 |
| unbekannt | 1 |
| License | Count |
|---|---|
| geschlossen | 1 |
| offen | 886 |
| Language | Count |
|---|---|
| Deutsch | 536 |
| Englisch | 531 |
| Resource type | Count |
|---|---|
| Archiv | 3 |
| Datei | 1 |
| Keine | 536 |
| Webseite | 347 |
| Topic | Count |
|---|---|
| Boden | 659 |
| Lebewesen und Lebensräume | 822 |
| Luft | 466 |
| Mensch und Umwelt | 880 |
| Wasser | 526 |
| Weitere | 887 |