API src

Found 884 results.

Schwerpunktprogramm (SPP) 1530: Flowering time control: from natural variation to crop improvement, Schwerpunktprogramm (SPP) 1530: Flowering time control: from natural variation to crop improvement

During evolution plants have coordinated the seasonal timing of flowering and reproduction with the prevailing environmental conditions. With the onset of flowering plants undergo the transition from vegetative growth to reproductive development. In agriculture, flowering is a prerequisite for crop production whenever seeds or fruits are harvested. In contrast, avoidance of flowering is necessary for harvesting vegetative parts of a plant. Late flowering also severely hampers breeding success due to long generation times. Thus, FTi (flowering time) regulation is of utmost importance for genetic improvement of crops. There are many new challenges for plant geneticists and breeders in the future (e.g. changing climate, need for higher yields, demand for vegetative biomass for bioenergy production), requiring novel approaches for altering the phenological development of a plant species beyond the currently available genetic variation. Changes in the expression of a single FTi regulator can suffice to drastically alter FTi. Exploiting the molecular fundament of FTi control offers new perspectives for knowledge-based breeding. Pleiotropic effects of FTi gene regulation beyond flowering time, such as yield parameters/hybrid yield were most recently demonstrated. This emerging field of research offers new possibilities for gaining insight into the very foundations of yield potential in crop plants. The Priority Programme aims to develop a functional cross-species network of FTi regulators for modelling developmental and associated (e.g. yield) characters in relation to environmental cues. Plant species with different phenological development will be investigated. Phylogenetic similarities can be used to infer similar functional interactions between FTi regulators in related crop species. Comparative analysis of FTi regulation among and between closely and remotely related species will identify distinct evolutionary paths towards optimisation of FTi in a diverse set of species and the branching points of divergence. Projects in this Priority Programme focus on genomic approaches to gain a comprehensive understanding of FTi regulation also in crops, which thus far have not been a major target of research. Another focus is on non-genetic cues regulating FTi and hormonal constitution and nutrient supply.

Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, COALA – Kontinuierliche Beobachtungen von Aerosol-Wolken-Interaktion in der Antarktis

Das unvollständige Verständnis der Wechselwirkung von Aerosolpartikeln mit Strahlung, Wolken und Niederschlag ist eine Schlüsselfrage der Atmosphärenforschung. Detaillierte Beobachtungen sind erforderlich, um die komplexen Zusammenhänge zwischen den beteiligten Prozessen zu erfassen. Dies gilt insbesondere für die abgelegene Region der Antarktis, wo bodengestützte, vertikal aufgelöste Langzeitbeobachtungen von Aerosol, Wolken und Niederschlag selten sind und Satellitenbeobachtungen technischen Beschränkungen unterliegen. Um die Messlücke mit modernsten Beobachtungen zu schließen, wird TROPOS die Messplattform OCEANET-Atmosphere zwischen den Südsommern 2022/23 und 2023/24 an der Station Neumayer III (70,67°S, 8,27°W) einsetzen. OCEANET-Atmosphere ist ein autonomer, polar-erprobter, modifizierter 20-Fuss-Messcontainer, der erst kürzlich erfolgreich während MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) eingesetzt wurde. Die Instrumentierung während COALA umfasst ein Mehrwellenlängen-Polarisations- und ein Doppler-Lidar, ein 35-GHz-Wolkenradar, ein Mikrowellenradiometer sowie jeweils ein 1-d und 2-d-Niederschlags-Disdrometer. OCEANET ist die einzige polare Einzelcontainer-Plattform, die mit Mehrwellenlängen-Lidar, Radar und Mikrowellenradiometer Wolken und Niederschlag sowie mit Doppler-Lidar und -Radar turbulente Luftbewegungen in Wolken an verschiedenen Messstandorten beobachten kann.Die zeitliche und vertikale Auflösung des gewonnenen Datensatzes wird in der Größenordnung von 30 s (2 s für Vertikalgeschwindigkeitsbeobachtungen) und 30 m liegen. COALA ist ein 3-Jahres-Projekt. Ein Postdoktorand wird für den Einsatz von OCEANET-Atmosphere bei Neumayer III und die Datenanalyse verantwortlich sein und dabei von Experten am TROPOS unterstützt. Die Beobachtungen werden in erster Linie dazu dienen, die Schlüsselhypothese von COALA zu untersuchen, dass Aerosol aus dem Südlichen Ozean, den mittleren Breiten und den Subtropen der südlichen Hemisphäre in die Antarktis transportiert wird, wo es die Bildung und Entwicklung von Wolken und Niederschlag beeinflusst. Die Arbeiten konzentrieren sich auf (1) die Untersuchung des Ursprungs, der Häufigkeit und der Eigenschaften des Aerosols über der Station Neumayer III, (2) die Untersuchung des Einflusses von Oberflächen- und Grenzschicht-Kopplungseffekten auf die Eigenschaften und die Entwicklung von tiefen Wolken, (3) die Untersuchung des Beitrags von Dynamik (orographische Wellen), Aerosol und Meteorologie zur Verteilung der Eis- und Flüssigphase in Wolken über Neumayer III, (4) zur Untersuchung der vertikalen Struktur von Wolken und ihrer Beziehung zur Niederschlagsbildung und (5) zur Bewertung regionaler Kontraste in den Eigenschaften von Aerosolen und Wolken und den damit verbundenen Aerosol-Wolken-Wechselwirkungsprozessen, indem die Neumayer-III-Beobachtungen von vorhandenen Datensätzen aus Südchile, Zypern, Deutschland und der Arktis kontrastiert werden.

Conservation et developpement integre de Lac San Pablo/Imbacocha (Equateur) et etude diachronique de bassin versant (FRA)

Analyser les possibilites de mise en oevre des principes de developpement durable pour une gestion integree des ressources en eau dans une region defavorisee de la Cordillere des Andes. Une etude du bassin versant de lac est en cours afin d'analyser l'evolution de l'occupation du sol au fil du temps et son impact sur l'erosion. Cette etude vise notamment a verifier l'hypothese solon laquelle l'augmentation des apports en nutriments du lac et son eutrophisation consevative ont pour origine la deforestation accrue du bassin versant depuis vne vingtaine d'annee pour la mise en culture des pentes des soumets dominant le lac. (FRA)

Evolutionsökologie und Biogeographie der Gastropoden des Kaspischen Meeres

Das Kaspische Meer repräsentiert ein Relikt der östlichen Paratethys und das, sowohl nach Oberfläche als auch nach Volumen, weltweit größte lakustrine Gewässer. Die Einzigartigkeit des Sees für evolutionsökologische und biogeographische Forschung ist insbesondere auch im Kontext starker hydrologischer Differenzierungen und einer wechselhaften neogenen und quartären Paläogeographie zu sehen. Die Kaspis scheint biogeographisch zwischen den europäischen und den zentralasiatischen Faunen zu vermitteln. Die Organismen des Sees sind jedoch größtenteils nicht modern, d.h. nicht falsifizierbar systematisch bearbeitet, so dass über stammesgeschichtliche und (paläo-) biogeographische Zusammenhänge weitgehend nur spekuliert werden kann. Im Zuge einer detaillierten, analytischen Bearbeitung der rezenten kaspischen Gastropoden, unter Einbeziehung ausgewählter Begleitfauna, soll deren evolutionsökologischer Kontext aufgeklärt und damit Bezüge zu den fossilen Faunen der westlichen Paratethys einerseits und zu den (Paläo-) Seen Zentralasiens andererseits, abgeklärt werden.

Sonderforschungsbereich (SFB) 1211: Evolution der Erde und des Lebens unter extremer Trockenheit, Teilprojekt D05: OSL-Datierung: Zeitliche Eingrenzung der pleistozänen Umweltgeschichte der Atacama: Ausweitung des anwendbaren Altersbereichs für Lumineszenz-Datierungen

Ziel dieses Projektes ist es, den nutzbaren Altersbereich für OSL-Datierungen von 200-400 ka in Richtung 1 Ma auszuweiten. Diese Ausweitung würde die zeitliche Lücke in unserem Vermögen klastische Sedimente zu datieren, zwischen Radiokohlenstoffdatierung (bis ca. 40 ka) und Bedeckungsalterdatierung (größer als 500 ka), schliessen helfen.

Schwerpunktprogramm (SPP) 2238: Dynamik der Erzmetallanreicherung, Teilprojekt: Schwefel-Isotope und ihre Entwicklung in sedimentgebundenen Erzsystemen

Die nachhaltige Entwicklung kritischer Rohstoffe (CRM) ist eine der größten Herausforderungen, vor der unsere Gesellschaft im Zuge des Übergangs zu einer grünen, digitalen und kreislauforientierten Wirtschaft steht. Sedimentgebundene Erzlagerstätten sind gekennzeichnet durch hohe Metallkonzentrationen und einer mittleren bis hohen Fördermenge. Im Vergleich zu anderen Lagerstättentypen können sedimentgebundene Lagerstätten daher umweltfreundlicher abgebaut werden. Die wichtigsten Erze in diesen Lagerstätten bilden die beiden schwefelhaltigen Minerale Zinkblende (ZnS) und Bleiglanz (PbS). Um hochgradige Vorkommen zu bilden, sind daher nicht nur große Mengen an Metallen, sondern auch ebenso große Mengen an reduziertem Schwefel erforderlich. Das Erzvorkommen entsteht in der Regel dort, wo das hydrothermale Fluid, welches Zink (und Blei) transportiert, auf Gestein trifft, das große Mengen an reduziertem Schwefel enthält. Sedimentgebundene Lagerstätten bildeten sich nur in bestimmten Perioden der Erdgeschichte; in den heutigen Ozeanen entstehen keine solchen Lagerstätten mehr. Die Gründe dafür sind unklar, aber wir wissen heute, dass die Erzbildung stark von der Optimierung von Schlüsselprozessen abhängt und in alten Sedimentbecken wahrscheinlich mikrobielle Aktivitäten eine Rolle gespielt haben. Mikroben sind für für die Umwandlung von Sulfat aus altem Meerwasser zu reduziertem Schwefel wichtig, welcher wiederum die Grundlage für die Anreicherung der Metalle und die Erzbildung bildet. In diesem Projekt wollen wir neue Techniken entwickeln, um die mikrobielle Aktivität und die Bildung von reduziertem Schwefel in sedimentgebundenen Erzlagerstätten nachzuweisen. Dies wird uns dabei helfen zu verstehen, warum und wie sich große Lagerstätten bilden und wo sie vorkommen. Unser Projekt hilft somit die Entdeckung neuer Lagerstätten zu verbessern.

Sonderforschungsbereich (SFB) 1211: Evolution der Erde und des Lebens unter extremer Trockenheit, Teilprojekt Z02 (INF): Datenmanagement und raumbezogene Analyse

Dieses Projekt befasst sich mit der Einrichtung eines Datenmanagementsystems (aufbauend auf ein bereits bestehendes; im TR32). Dieses System ist in der Lage, große Mengen an Forschungsdaten zu speichern und zur Verfügung zu stellen. Es ermöglicht eine genaue Datencharakterisierung über eine flexible, jedoch standardisierte und benutzeroberflächenunabhängige Metadatenstruktur. Datensäte können Digitale Objekt Identifier (DOI) erhalten. Alle raumbezogenen Daten des SFB werden über ein WebGIS zugänglich sein. Die Daten der Wetterstationen (Z03) werden entsprechend gängiger Standards im System integriert. Eine weitere Aufgabe dieses Projekts besteht in der Analyse raumbezogener Daten für die gemeinsamen Forschungsgebiete des SFB.

Untersuchung des Einflusses vulkanischer Eruptionen auf stratosphärische Aerosole und den Strahlungsantrieb

Das Projekt VolARC ist eines von fünf Projekten des Antrags für die zweite Phase der DFG Forschungsgruppe VolImpact (FOR 2820), deren erste Phase im Frühjahr 2019 begann. VolARC befasst sich mit wichtigen und offenen Fragen vulkanischer Effekte auf stratosphärische Aerosole und deren Einfluss auf die Strahlungsbilanz des Erdsystems. Basierend auf den Arbeiten der laufenden Phase I sollen in Phase II folgende drei Themen bearbeitet werden:(1) Konsolidierung des Verständnisses der Entwicklung stratosphärischer Aerosolparameter nach Vulkanausbrüchen und Untersuchung der Gründe für die verbleibenden Unterschiede zwischen beobachteten und modellierten stratosphärischen Aerosolparametern (Aerosolextinktionsprofile, optische Tiefe und insbesondere die Teilchengrößenverteilung stratosphärischer Aerosols), sowie Behebung der Ursachen für die Unterschiede. Insbesondere die zeitliche Entwicklung der Aerosolgrößenverteilung soll besser verstanden werden. (2) Untersuchung des Einflusses von Modellauflösung und Transport auf die Entwicklung vulkanischer Aerosolwolken in der Stratosphäre. In Phase II wird ein “Seamless Simulation”-Ansatz verwendet, der mittels mehrerer Nests eine konsistente Modellierung aller relevanten Prozesse auf den entsprechenden Skalen ermöglicht, von der initialen Entwicklung der Vulkanwolke bis hin zu globalen und längerfristigen Skalen. (3) Untersuchung der Fähigkeit von Limb- und Okkultationsinstrumenten, vulkanische Sulfataerosole in der Stratosphäre nach stärkeren Vulkanausbrüchen zu erfassen. Bereits bei relativ moderaten optischen Tiefen wird die Sichtlinie in Limb-Geometrie optisch dicht und eine robuste Bestimmung der Aerosolextinktion problematisch. Außerdem wird untersucht, ob aktuelle Satelliteninstrument in der Lage sind, eine im Rahmen von Geoengineering Aktivitäten künstliche verstärkte stratosphärische Aerosolschicht zu erfassen und zu überwachen. Diese Themen werden durch die Synergy globaler Satellitenbeobachtung stratosphärischer Aerosolparameter im optischen Spektralbereich und globaler Modellsimulationen mit expliziter Aerosolmikrophysik untersucht. Wir werden u.a. unsere eigenen Algorithmen verwenden um aus Messungen vergangener, aktueller und zukünftiger Satelliteninstrumente (bsp. OMPS-LP, SAGE III and SCIAMACHY) Aerosolparameter abzuleiten. Die Modellsimulationen werden hauptsächlich mit ICON-ART durchgeführt, aber auch MAECHAM-HAM-Simulationen werden zum Vergleich mit Messdaten und ICON-ART-Simulationen zum Einsatz kommen. Das VolARC-Projekt ist sehr gut mit den anderen vier VolImpact-Projekten vernetzt, insbesondere durch die definierten übergreifenden Forschungsthemen an denen jeweils mehrere VolImpact-Projekte beteiligt sind. Diese Themen sind: (1) die Aerosolteilchengrößenverteilung, (2) vulkanische H2O-Injektionen in die mittlere Atmosphäre und (3) Strahlungsantrieb durch vulkanische Effekte. Darüber hinaus wird VolARC alle Aktivitäten zur Seamless-Simulation in VolImpact koordinieren.

Ökologie und Evolution von dunklen Materiepilzen in aquatischen Biofilmen

In der aquatischen Umwelt zeigen Pilze starke Interaktionen zu einer Vielzahl anderer Organismen, darunter Algen, Metazoen und Bakterien, die die pilzliche Diversifizierung vorangetrieben haben. Die Pilzevolution begann frühzeitlich in der aquatischen Umwelt. Die Verbindungen mit anderen Organismen führten zu vielen biotrophen Lebensweisen und einer großen phylogenetischen Vielfalt. Es ist wahrscheinlich, dass die frühen Wasserpilze bereits die funktionellen Merkmale ausbildeten, die zum Erfolg des Pilzreichs, als eine der vielfältigsten Organismengruppen der Erde, geführt hat. Trotz der recht umfangreichen Studien, die die Komplexität der aquatischen Mikrobiome untersuchen, sind weder die große phylogenetische Vielfalt der aquatischen Pilze noch die Wechselwirkungen der aquatischen Pilze mit anderen Organismen gut beschrieben. Dieses Paradoxon ist das Resultat von zu wenigen Studien, die aquatische Mikrobiome ganzheitlich untersuchen, und ist zudem auch der Tatsache geschuldet, dass die aquatischen Pilze nicht als solche erkannt werden. Wasserpilze erscheinen oft als unbekannte genetische Elemente ohne erkennbare Übereinstimmung mit unseren Datenbanken. Das veranlasste uns dazu, den Begriff Dunkle Materiepilze (DMP) zu etablieren, um die Unbekanntheit der frühen divergierenden Pilzlinien in der aquatischen Umwelt hervorzuheben. Einer der vielversprechendsten aquatischen Lebensräume zur Untersuchung von DMP und deren Wechselwirkungen mit anderen Organismen im kleinen Maßstab ist der aquatische Biofilm. Insbesondere heterotrophe Biofilme können einen hohen Anteil an DMP aufweisen, was die Aufklärung von DMP-Interaktionen und ökologischen Funktionen erleichtert. Es ist völlig unklar, welche organismischen Wechselwirkungen die Determinanten für die DMP in Biofilmen sind und inwieweit DMP die Biofilmstruktur beeinflussen. Das Verständnis der Ökologie und der Evolution von DMP bleibt aufgrund der Komplexität der natürlichen Gemeinschaften eine Herausforderung. Aufgrund der neuen methodischen Entwicklungen ist es nun jedoch möglich, durch Manipulationsexperimente an natürlichen sowie an Modell-Biofilmgemeinschaften eine konzeptionelle Sicht auf die DMP-Ökologie und -Evolution aufzubauen. Das Ziel der vorgeschlagenen Emmy Noether-Forschungsgruppe ist es, die grundlegende Ökologie und Evolution der aquatischen DMP zu verstehen. Durch die Kombination von Mikrodissektion, Hochdurchsatz-Kultivierung und molekularer Sequenzierung der nächsten Generation, werden wir herausfinden, wie und welche Pilz-Interaktionen mit Mikroben die gesamte Struktur und Funktion der mikrobiellen Gemeinschaft beeinflussen. Wir werden auch umfangreiche DMP-Barcode- und Genomdaten generieren, die als Schlüsselressourcen für das Erstellen einer robusten frühen Pilzphylogenie dienen werden, und es uns ermöglicht, die frühe Pilzevolution auf der Grundlage von Phylogenomik und biotrophen Interaktionen zu diskutieren.

Forschergruppe (FOR) 2332: Temperature-related stresses as a unifying principle in ancient extinctions (TERSANE), Teilprojekt: Die Rolle von Hyperthermie im Massenaussterben an der Perm/Trias-Grenze

Wir wollen die Rolle von Hyperthermie im Massenaussterben an der Perm/Trias-Grenze, der größten biotischen Krise in der Erdgeschichte, verstehen. Trotz ihrer erheblichen Bedeutung für die Evolution des Lebens werden die auslösenden Mechanismen für diese Krise noch immer sehr kontrovers diskutiert. Dieses Massenaussterben ist das gravierendste vergangene Beispiel einer durch Klimaveränderungen, besonders durch globale Erwärmung, ausgelöste Krise. Sie kann daher als ein Analogon für die Reaktion der Biodiversität auf die zukünftige anthropogene Klimaänderung angesehen werden. Wir schlagen hier ein Forschungsprojekt vor, in welchem die Konsequenzen von Stress durch Erwärmung während des end-Permischen Massenaussterbens und der Erholung in der frühen Trias untersucht wird. Wir wählen die Ostracoden als Modell-Organismen für simultane Untersuchungen ihrer Evolutionsgeschichte und ihrer Reaktion auf Klimaveränderungen (besonders hinsichtlich der Erwärmung am Perm/Trias-Grenzintervall). Die zu untersuchenden Aufschlüsse liegen im Nordwest-Iran (Region von Julfa), Zentraliran (Region von Abadeh) und dem Zagros-Gebirge (Region von Esfahan); diese Regionen repräsentieren Tiefschelf- bis Flachwasser-Habitate. Unsere Studie wird die Untersuchung von Isotopengeochemie (Analysen von delta13C und delta18O) unter Anwendung der SIMS-Technologie von Ostracodenschalen beinhalten. Außerdem werden die Ostracoden-Vergesellschaftungen hinsichtlich ihrer taxonomischen Diversität, morphologischen Disparität, Grad des Endemismus, Veränderungen in der Größe der Individuen usw. untersucht.

1 2 3 4 587 88 89