Ziel ist es, Methoden zu entwickeln, die geeignet sind alte Sedimente in Trockengebieten verlässlich zu datieren: (i) Entwicklung einer Methode um mittels kosmogenen 10Be and 53Mn terrestrische Alter von Mikrometeoriten (aus Trockenseesedimenten und der Gipsstaubbedeckung der Landschaft) zu bestimmen, (ii) Entwicklung und Anwendung der 10Be/21Ne-Bedeckungalterdatierung an Grobsedimenten, (iii) Entwicklung einer kosmogenen 21,22Ne Methode um Halit (Steinsalz) in Oberflächensedimenten (z.B. fossile Salzseen) zu datieren. Erwartete erschließbare Altersbereiche: ca. 1 bis 22 Ma bzw. ca. 0.5 bis 10 Ma, für 53Mn und 10Be/21Ne Bedeckungsaltersdatierung, es gibt keine theoretische Obergrenze für 21,22Ne.
Der Klimawandel betrifft die Hydrologie in alpinen Regionen in besonderem Maße durch Temperaturanstieg, mehr und intensiveren Regenereignissen, auch während der Wintermonate. Diese Veränderungen führen zu vermehrten Naturgefahren wie übermäßigem Oberflächenabfluss und Murenabgänge. Einer der Gründe für solche Ereignisse ist eine reduzierte Infiltrationskapazität des (teil-)gefrorenen Bodens. Wenn Regen- oder Schmelzwasser nicht ausreichend infiltrieren kann, induziert der Oberflächenabfluss eine Bodenerosion, was zu Murenabgängen führen kann. Wenn Wasser entlang präferentieller Fließwege in tiefere Schichten infiltriert und zwischen gefrorenen Schichten der Porendruck steigt, so kann dies zu mechanischem Versagen des Hanges führen. Durch signifikanten Oberflächenabfluss findet kaum Grundwasserneubildung statt und die puffernde Wirkung des Grundwasserkörpers entfällt. Dies ist besonders für Regionen, in denen Schnee- und Gebirgswasser wesentlich zum Grundwasserhaushalt beitragen von großer Bedeutung. In diesem Projekt wird die thermo-hydraulische Wechselwirkung zwischen infiltrierendem Wasser und Boden bei Temperaturen unter dem Gefrierpunkt untersucht. Dazu werden hochentwickelte Modellansätze, numerische Simulationswerkzeuge, sowie Versuche im Labor wie im Gelände eingesetzt. Präferentielle Fließwege, z.B. Makroporen durch Wurzelwachstum oder Wurmlöcher, im Boden sind dabei wesentlich, denn sie ermöglichen eine schnellere Infiltration des Wassers in den Boden und weisen zudem eine anderes Einfrier- und Auftauverhalten auf als kleine Poren der Bodenmatrix. Das Verständnis des Einflusses von Makroporen auf das Gefrieren und Schmelzen von Wasser während der Infiltration ist daher wesentlich für jede weitere Analyse. Wasserinfiltration wird durch die Temperatur der beteiligten Phasen bestimmt. Das infiltrierende Wasser ist wärmer als der Gefrierpunkt, während der Boden gefroren ist. Die Temperaturentwicklung der einzelnen Phasen hängt vom Wärmeübertrag zwischen den Phasen ab. Da Wärmeübertrag und hydraulischer Fluss stark gekoppelt und zudem rund um den Gefrierpunkt sehr dynamisch sind, bedarf es besonderer Sorgfalt bei der theoretischen Beschreibung des thermohydraulischen Verhaltens. Mit einem tiefgreifenden Verständnis vom Einfluss präferenzieller Fließwege und dem Wärmeübertrag zwischen den beteiligten Phasen können spezifische geologische und meteorologische Gegebenheiten identifiziert werden, welche entweder extremen Oberflächenabfluss oder Hangversagen verursachen. Dieses Wissen kann in der Vorsorge als auch im Grundwassermanagement alpiner Gebiete Anwendung finden.
Langfristige Veränderungen von Gezeiten zählen zu den bemerkenswertesten Facetten der Ozeandynamik. Zur Entschlüsselung dieser Signale wird im vorliegenden Projekt ein mehrschichtiger Modellierungsansatz auf globalen und regionalen Skalen entwickelt, der Meeresspiegelvariationen, Veränderungen der ozeanischen Dichtestruktur und Migrationsbewegungen von antarktischem Schelfeis in klassische Gezeitensimulationen einflechtet. Die Reaktion primärer Partialtiden auf diese Antriebsmechanismen wird in einer ersten Ausbaustufe von ~1970 bis 2015 erarbeitet, wobei hochauflösende barokline (3D) Simulationen im Nordostatlantik und um Australien rigoros in globale barotrope (2D) Vorwärtsläufe eingebettet werden. Die Validierung der Simulationsergebnisse gegenüber robusten und großräumigen Gezeitentrends aus Wasserstandsbeobachtungen legt den Grundstein für konkrete Projektionen von Ozeangezeiten bis zum Jahr 2100 unter Annahme realistischer Emissionsszenarien. Veränderte Randbedingungen in globalen und regionalen Gezeitenläufen einhergehend mit Meeresspiegelanstieg, Ozeanerwärmung und ausdünnendem Schelfeis werden hierzu in konsistenter Weise aus gekoppelten Klimamodellen abgeleitet. Erweiterte barokline und globale Sensitivitätsexperimente liefern einen Überblick über Küstenabschnitte, in denen mit nennenswerten Gezeitenentwicklungen durch großflächige Veränderungen der Dichtestruktur zu rechnen ist. Neben dem reinen Prozessverständnis soll auch Augenmerk auf die Abschätzung von Unsicherheiten der numerisch modellierten Tidenvariabilität in den kommenden Dekaden gelegt werden. Das Projekt ebnet in seiner Gesamtheit den Weg für eine verlässlichere Quantifizierung von säkularen Gezeitensignalen in Anwendungsbereichen (z.B. Küstenschutz) und der Ozeanographie nahestehenden Wissenschaftsdisziplinen.
Vier Fragestellungen stehen hierbei im Mittelpunkt: 1) Wie setzt sich die Vegetation im extrem trockenen Kernbereich der Atacama zusammen und welchen räumlichen und zeitlichen Schwankungen ist sie unterlegen? 2) Erfolgte die Besiedlung und Diversifizierung korreliert mit klimatischen und geologischen Ereignissen, welche als Ursache für die Aridität der Atacama zu sehen sind? 3) Sind diversifizierte Pflanzengruppen in der Atacama das Produkt einer einmaligen oder mehrmaligen Kolonisierung? 4) Spiegelt sich die Fragmentierung ausgewählter Arten in der Atacama in der genetischen Diversität wider oder wird diese positiv durch die Samenbank bzw. Ausbreitungsereignisse beeinflusst. Um diese Fragen zu beantworten, schlagen wir eine Kombination floristischer und molekularbiologischer Methoden vor: floristische Aufnahmen, ex-situ Kultivierung, molekulare Phylogenien ausgewählter und artenreicher Atacama Gruppen, sowie Populationsgenetik von Modelarten.
norganische Funktionsmaterialien spielen innerhalb der Schlüsseltechnologien des 21. Jahrhunderts, etwa im Bereich der Informationstechnik oder der Energieerzeugung und -speicherung, eine zentrale Rolle. Dabei sind komplex strukturierte multifunktionelle Materialien auf rein anorganischer Basis sowie im Verbund mit organischen Anteilen zur Weiterentwicklung dieser Technologien von wesentlicher Bedeutung. Die Erzeugung solcher Materialien mit definierter Struktur und Stöchiometrie über die konventionelle Prozesstechnik, die in der Regel bei erhöhten Temperaturen und/oder Drücken sowie unter erheblichem verfahrenstechnischen Aufwand abläuft, stößt hierbei jedoch an ihre Grenzen. Demgemäß ist die Suche nach neuen Verfahren, die eine Generierung von diesen Materialien bei Umgebungsbedingungen und mit reduziertem prozesstechnischen Aufwand ermöglichen, derzeit Gegenstand weltweiter Forschungsanstrengungen. Für die Bildung von komplex strukturierten anorganischen Festkörpern bei Umgebungsbedingungen liefert die belebte Natur eindrucksvolle Beispiele. So entstehen durch Biomineralisationsprozesse Stoffe wie etwa Calciumphosphat oder -carbonat, deren Bildung genetisch determiniert ist und durch die Wechselwirkung mit Biomolekülen gesteuert wird, wobei unter anderem Selbstorganisationsprozesse eine Rolle spielen. Die hierdurch entstehenden anorganischen Materialien besitzen multifunktionelle Eigenschaften, wobei deren Eigenschaftsspektrum durch den Einbau von bioorganischen Komponenten erweitert wird. Wenngleich viele technisch relevante Materialien bei diesen natürlichen Prozessen keine Rolle spielen, ergeben sich hieraus unmittelbar aussichtsreiche Perspektiven zur Generierung neuer anorganischer Funktionsmaterialien durch spezifische molekulare Interaktionen zwischen bioorganischen und anorganischen Stoffen. Das Hauptziel dieses Schwerpunktprogramms ist daher die Übertragung von Prinzipien der Biomineralisation auf die Generierung von anorganischen Funktionsmaterialien und von deren Hybriden mit bioorganischen Anteilen. Zur Erreichung dieses Ziels werden Arbeiten durchgeführt (1) zur In-vitro- und In-vivo-Synthese anorganischer Funktionsmaterialien und deren Hybride mit bioorganischen Molekülen in Form von Schichten oder 3D-Strukturen, (2) zur Charakterisierung der Bildungsprozesse und der Struktur der Materialien sowie (3) zur Bestimmung und zum Design von deren physikalischen und chemischen Eigenschaften. Diese experimentellen Untersuchungen werden weiterhin durch Arbeiten zur Modellierung der Materialbildung, -struktur und -eigenschaften begleitet.
Die Kenntnis rezenter Lebensräume wird genutzt, um Modelle zur Rekonstruktion neogener und pleistozäner Habitate zu entwickeln. Es wird erwartet, dass die Nahrungsspezifität von Huftieren wichtige Hinweise liefert auf die Habitate der untersuchten Faunen. Evolutionstrends lassen sich dann mit Veränderungen im Habitat korrelieren.
Lake Ohrid is a large (360 km2) and deep (289 m) lake of tectonic origin and is shared between the Republics of Macedonia and Albania. Biological and biogeographical studies of the lake revealed an outstanding degree of endemism and suggest a Pliocene origin of Lake Ohrid, making the lake the oldest one in Europe. The high age and the high degree of endemism make Lake Ohrid a first class site to investigate the link between geological and biological evolution in ancient lakes. Given its importance as refugium and spreading centre, the lake was declared a UNESCO world heritage site in 1979, and included as a target site of the International Continental Scientific Drilling Program (ICDP) already in 1993. The political situation in the Balkan in the mid 1990ies, however, hampered further establishment of Lake Ohrid as potential ICDP site. This proposal bundle seeks funds for the detection of the timing of major evolutionary events, the investigation of the origin, the sedimentological inventory, neotectonic movements, and the paleoecology and paleolimnology of Lake Ohrid in order to develop a full ICDP proposal for deep drilling. Within the scope of this cover proposal funds for the coordination of the single proposals, for scientific exchange between the single bundle proponents, and for the data management are applied for.
Dieses Projekt befasst sich mit der Einrichtung eines Datenmanagementsystems (aufbauend auf ein bereits bestehendes; im TR32). Dieses System ist in der Lage, große Mengen an Forschungsdaten zu speichern und zur Verfügung zu stellen. Es ermöglicht eine genaue Datencharakterisierung über eine flexible, jedoch standardisierte und benutzeroberflächenunabhängige Metadatenstruktur. Datensäte können Digitale Objekt Identifier (DOI) erhalten. Alle raumbezogenen Daten des SFB werden über ein WebGIS zugänglich sein. Die Daten der Wetterstationen (Z03) werden entsprechend gängiger Standards im System integriert. Eine weitere Aufgabe dieses Projekts besteht in der Analyse raumbezogener Daten für die gemeinsamen Forschungsgebiete des SFB.
Das internationale ICDP (International Continental Scientific Drilling Program) ist das Programm zur Realisierung von wissenschaftlichen Bohrprojekten auf den Kontinenten. Der ICDP Science Plan 2020-2030 sieht 4 Hauptthemen vor: i) Geodynamische Prozesse; ii) Geogefahren; iii) Georessourcen; und iv) Umweltveränderungen. Deutsche Wissenschaftler*innen sind an ca. 65% aller ICDP Projekte als PIs oder Co-PIs beteiligt. Die Finanzierung im Rahmen des DFG Infrastrukturschwerpunktprogramms ‘SPP 1006 – ICDP‘ stellt die Grundlage für die zentrale Rolle von deutschen Wissenschaftler*innen in diesen Bohrprojekten dar. Die Zielsetzung dieses Antrages ist die Fortsetzung der Arbeiten des nationalen ICDP Koordinationsbüros. Es sollen auf nationaler Ebene Initiativen und Projekte koordiniert, die Kommunikation auf nationaler und internationaler Ebene intensiviert (z.B. Bekanntmachung und Unterstützung von Workshops und wissenschaftlichen Treffen), sowie deutsche Wissenschaftler*innen bei der Erarbeitung neuer internationaler Initiativen unterstützt werden. Das Koordinationsbüro dokumentiert ebenfalls den Verlauf von laufenden nationalen und internationalen ICDP Aktivitäten mit deutscher Beteiligung. Die weitere Vertiefung der Zusammenarbeit mit dem IODP Koordinationsbüro sowie die Förderung von Nachwuchswissenschaftler*innen bleiben zentrale Anliegen in der kommenden Förderphase.
| Origin | Count |
|---|---|
| Bund | 883 |
| Wissenschaft | 4 |
| Type | Count |
|---|---|
| Daten und Messstellen | 4 |
| Förderprogramm | 882 |
| unbekannt | 1 |
| License | Count |
|---|---|
| geschlossen | 1 |
| offen | 886 |
| Language | Count |
|---|---|
| Deutsch | 536 |
| Englisch | 531 |
| Resource type | Count |
|---|---|
| Archiv | 3 |
| Datei | 1 |
| Keine | 536 |
| Webseite | 347 |
| Topic | Count |
|---|---|
| Boden | 659 |
| Lebewesen und Lebensräume | 822 |
| Luft | 466 |
| Mensch und Umwelt | 880 |
| Wasser | 526 |
| Weitere | 887 |