Die Kenntnis rezenter Lebensräume wird genutzt, um Modelle zur Rekonstruktion neogener und pleistozäner Habitate zu entwickeln. Es wird erwartet, dass die Nahrungsspezifität von Huftieren wichtige Hinweise liefert auf die Habitate der untersuchten Faunen. Evolutionstrends lassen sich dann mit Veränderungen im Habitat korrelieren.
Die Larven ('Raupen') der meisten Schmetterlingsarten leben solitär. Nur wenige Arten bilden komplexere Sozialverbände aus, dies aber konvergent in vielen taxonomischen Gruppen. Die ökologischen Randbedingungen, unter denen gemeinschaftliches Leben und Suchen nach Nahrung vorteilhaft sind, sind bis heute unbefriedigend verstanden. Wir untersuchen, welche Mechanismen zum Zusammenhalt der Gruppen beitragen, welche Rolle dabei chemische und mechanische Kommunikation zwischen den Raupenindividuen spielt, wie wichtig physiologische (vor allem thermobiologische) Effekte bei in Gruppen lebenden Arten sind und welche Konsequenzen das gemeinschaftliche Leben für die Nahrungssuche und mögliche Konkurrenz unter den Geschwistern hat. Diese Untersuchungen werden vergleichend an mehreren Arten mit unterschiedlich komplexen Sozialsystemen durchgeführt, ausgehend von den lockeren, auf die frühen Larvenstadien beschränkten Geschwisterverbänden von Landkärtchen (Araschnia levana) bis zu dauerhaft in Gemeinschaftsnestern lebenden Raupengesellschaften (z. B. Wollafter, Eriogaster lanestris).
Das Projekt VolARC ist eines von fünf Projekten des Antrags für die zweite Phase der DFG Forschungsgruppe VolImpact (FOR 2820), deren erste Phase im Frühjahr 2019 begann. VolARC befasst sich mit wichtigen und offenen Fragen vulkanischer Effekte auf stratosphärische Aerosole und deren Einfluss auf die Strahlungsbilanz des Erdsystems. Basierend auf den Arbeiten der laufenden Phase I sollen in Phase II folgende drei Themen bearbeitet werden:(1) Konsolidierung des Verständnisses der Entwicklung stratosphärischer Aerosolparameter nach Vulkanausbrüchen und Untersuchung der Gründe für die verbleibenden Unterschiede zwischen beobachteten und modellierten stratosphärischen Aerosolparametern (Aerosolextinktionsprofile, optische Tiefe und insbesondere die Teilchengrößenverteilung stratosphärischer Aerosols), sowie Behebung der Ursachen für die Unterschiede. Insbesondere die zeitliche Entwicklung der Aerosolgrößenverteilung soll besser verstanden werden. (2) Untersuchung des Einflusses von Modellauflösung und Transport auf die Entwicklung vulkanischer Aerosolwolken in der Stratosphäre. In Phase II wird ein “Seamless Simulation”-Ansatz verwendet, der mittels mehrerer Nests eine konsistente Modellierung aller relevanten Prozesse auf den entsprechenden Skalen ermöglicht, von der initialen Entwicklung der Vulkanwolke bis hin zu globalen und längerfristigen Skalen. (3) Untersuchung der Fähigkeit von Limb- und Okkultationsinstrumenten, vulkanische Sulfataerosole in der Stratosphäre nach stärkeren Vulkanausbrüchen zu erfassen. Bereits bei relativ moderaten optischen Tiefen wird die Sichtlinie in Limb-Geometrie optisch dicht und eine robuste Bestimmung der Aerosolextinktion problematisch. Außerdem wird untersucht, ob aktuelle Satelliteninstrument in der Lage sind, eine im Rahmen von Geoengineering Aktivitäten künstliche verstärkte stratosphärische Aerosolschicht zu erfassen und zu überwachen. Diese Themen werden durch die Synergy globaler Satellitenbeobachtung stratosphärischer Aerosolparameter im optischen Spektralbereich und globaler Modellsimulationen mit expliziter Aerosolmikrophysik untersucht. Wir werden u.a. unsere eigenen Algorithmen verwenden um aus Messungen vergangener, aktueller und zukünftiger Satelliteninstrumente (bsp. OMPS-LP, SAGE III and SCIAMACHY) Aerosolparameter abzuleiten. Die Modellsimulationen werden hauptsächlich mit ICON-ART durchgeführt, aber auch MAECHAM-HAM-Simulationen werden zum Vergleich mit Messdaten und ICON-ART-Simulationen zum Einsatz kommen. Das VolARC-Projekt ist sehr gut mit den anderen vier VolImpact-Projekten vernetzt, insbesondere durch die definierten übergreifenden Forschungsthemen an denen jeweils mehrere VolImpact-Projekte beteiligt sind. Diese Themen sind: (1) die Aerosolteilchengrößenverteilung, (2) vulkanische H2O-Injektionen in die mittlere Atmosphäre und (3) Strahlungsantrieb durch vulkanische Effekte. Darüber hinaus wird VolARC alle Aktivitäten zur Seamless-Simulation in VolImpact koordinieren.
Der globale Wandel verändert nicht nur das Klima sondern auch die Oberfläche der Erde. Unser Verständnis von Bodenveränderungen und ihrer Wechselwirkungen mit hydrologischen, ökologischen und geomorphologischen Prozesse ist jedoch noch rudimentär. Einige der Bodeneigenschaften sind zeitlich stabil, aber andere verändern sich zum Teil sehr schnell mit signifikanten Auswirkungen auf die Quantität und Qualität des Wasserkreislaufes. Diese Veränderungen sind besonders markant auf der Hangskala, wo laterale und vertikale Prozesse über unterschiedliche Zeitskalen miteinander interagieren. Wasser und Vegetation beeinflussen die oberirdischen und unterirdischen Prozesse an Hängen auch über die Verwitterung, die Bodenentwicklung und die Erosion. Diese Prozesse wiederum beeinflussen auch die Fließwege des Wassers. Die daraus resultierende Verteilung der Wasserspeicher beeinflusst die Artenverteilung und Funkrionalität der Vegetation, wobei die Vegetation selber wiederum die Fließwege des Wassers beeinflusst. Dieses komplexe Gefüge an Wechselwirkungen wurde in seiner zeitlichen Entwicklung bisher noch kaum detailliert untersucht. Das interdisziplinäre Forschungsprojekt HILLSCAPE (HILLSlope Chronosequence And Process Evolution) soll sich mit der Frage beschäftigen, wie sich dieser Feedback-Zyklus in einem Zeitraum von 10000 Jahren verändert und was für strukturelle Veränderungen daraus resultieren. Das Projekt konzentriert sich dabei auf die vertikale und laterale Umverteilung von Wasser und Stoffen an Hängen und ihrer Wechselwirkungen mit dem Boden, der Vegetation und der Landschaftsentwicklung. Um dieses ehrgeizige Ziel erreichen zu können, wird sich HILLSCAPE Hang-Chronosequenzen auf Moränenstandorten zu Nutze machen. Gletschervorländer liefern uns so Schnappschüsse der zeitlichen Entwicklung. Die Auswahl zweier Fokusgebiete mit unterschiedlichem Ausgangsmaterial erlaubt dabei den direkten Vergleich der Entwicklung auf Silikat- und Karbonatgestein. In jedem Fokusgebiet werden Hänge in 4 verschiedenen Altersklassen instrumentiert. Die Aufgliederung in 5-6 Flächen pro Altersklasse ermöglicht es uns, eine große Bandbreite an Vegetationsbedeckung und -komplexität abzudecken. Wir werden gezielt relevante Strukturen aller 48 Hangflächen aufnehmen und werden deren hydrologische und geomorphologische Funktionsweise und Prozesse einerseits über ein Jahr beobachten und andererseits durch künstliche Beregnung in kontrollierten Experimenten genauer aufschlüsseln. Zusätzlich werden wir funktionalen Eigenschaften der Pflanzen und somit die strukturelle und funktionale Diversität der Standorte erfassen. Die Kombination von vier interdisziplinären Doktorarbeiten und der integrativen Modellierung durch einen Postdoc erlaubt uns die gemeinsame Untersuchung von hydrologischen, geomorphologischen und biotischen Prozessen und ihrer Interaktionen.
Acht der neunzehn geplanten Teilprojekte verwenden Daten bodengestützer Messungen. Eine Reihe von Teilprojekten benötigen Feldbewässerungsexperimente. Alle Projekte benötigen, zumindest zu Teil, rezente Wetterbeobachtungsdaten. Das Projekt Z03 bedient diesen Bedarf. Aufgrund der bekannten klimatischen Variabilität der Region (z.B. El Nino-Southern Oscillation (ENSO)) werden die meteorologischen Beobachtungsstationen auf einen Zeitraum von mindestens 12 Jahre angelegt. Die Projektmitarbeiter sind verantwortlich für die Planung und Durchführung/Implementierung der Experimente und der Wetterstationen, sowie deren Datenaufbereitung und Analyse (zusammen mit A01).
Dieses Projekt konzentriert sich auf die lateral umfassende (21ºS bis 25°S) Aufzeichnung des fluvialen Transports und der Ablagerung entlang der Küste, die als Schwemmkegel in der schmalen Küstenebene erhalten sind. Ziel ist es, den langfristigen küstenparallelen Klimagradienten und zeitliche Schwankungen der Transportvorgänge aus den Quellgebieten in der Küstenkordillere und Ablagerungsraten abzuleiten. Der Zeitbereich dieses Projekts ist das Quartär, eingeschränkt vom maximalen Alter der schmalen Küstenebene. Schwerpunkte sind die Sedimentologie und Chronologie der Küstenschwemmkegel. Chronologische Informationen werden durch Lumineszenzdatierung von feinkörnigen Sedimenten und Bedeckungsaltersdatierungen von Grobsedimenten, mittels kosmogenen Nukliden, gewonnen.
Dieses Projekt ist für die Verwaltung der zentralen Mittel und die Organisation und Koordination SFB-interner und nach außen gerichteter Aktivitäten verantwortlich. Diese Aktivitäten umfassen u.a. die Unterstützung von Gastwissenschaftlern, Kolloquien, Arbeitstagungen, Publikationen, Gleichstellungsmaßnahmen und Graduiertenausbildung. Die Graduiertenausbildung wird in Zusammenarbeit mit den Graduiertenschulen der Geowissenschaften (GSGS) und der Biologie (GSfBS) durchgeführt.
Methane (CH4) is a major greenhouse gas of which the atmospheric concentration has more than doubled since pre-industrial times. Soils can act as both, source and sink for atmospheric CH4, while upland forest soils generally act as CH4 consumers. Oxidation rates depend on factors influenced by the climate like soil temperature and soil moisture but also on soil properties like soil structure, texture and chemical properties. Many of these parameters directly influence soil aeration. CH4 oxidation in soils seems to be controlled by the supply with atmospheric CH4, and thus soil aeration is a key factor. We aim to investigate the importance of soil-gas transport-processes for CH4 oxidation in forest soils from the variability the intra-site level, down to small-scale (0.1 m), using new approaches of field measurements. Further we will investigate the temporal evolution of soil CH4 consumption and the influence of environmental factors during the season. Based on previous results, we hypothesize that turbulence-driven pressure-pumping modifies the transport of CH4 into the soil, and thus, also CH4 consumption. To improve the understanding of horizontal patterns of CH4 oxidation we want to integrate the vertical dimension on the different scales using an enhanced gradient flux method. To overcome the constraints of the classical gradient method we will apply gas-diffusivity measurements in-situ using tracer gases and Finite-Element-Modeling. Similar to the geophysical technique of Electrical Resistivity Tomography we want to develop a Gas Diffusivity Tomography. This will allow to derive the three-dimensional distribution of soil gas diffusivity and methane oxidation.
| Origin | Count |
|---|---|
| Bund | 839 |
| Wissenschaft | 4 |
| Type | Count |
|---|---|
| Daten und Messstellen | 4 |
| Förderprogramm | 838 |
| unbekannt | 1 |
| License | Count |
|---|---|
| geschlossen | 1 |
| offen | 842 |
| Language | Count |
|---|---|
| Deutsch | 520 |
| Englisch | 503 |
| Resource type | Count |
|---|---|
| Archiv | 3 |
| Datei | 1 |
| Keine | 513 |
| Webseite | 326 |
| Topic | Count |
|---|---|
| Boden | 626 |
| Lebewesen und Lebensräume | 783 |
| Luft | 442 |
| Mensch und Umwelt | 837 |
| Wasser | 498 |
| Weitere | 843 |