Grönland beheimatet, abgesehen von seinem großen Eisschild, eine Vielzahl von weitaus kleineren peripheren Gletschern. Der Anteil dieser Gletscher am gesamten Eismassenverlust Grönlands geht weit über den Anteil hinaus, den diese Gletscher an der gesamten Eismasse und –fläche einnehmen. Da sie sich meist in gebirgigem Gelände entlang der Küsten befinden, erfordern numerische Modelle dieser Eismassen geeignete räumliche Auflösungen, die nicht von Eisschildmodellen erreicht werden können. Kalbende Gletscher tragen in besonderem Maße zum Gesamtmassenverlust bei. Über den Zeitraum 2003-2008 trugen die peripheren Gletscher 14% zum grönlandweiten Eismassenverlust bei. Ihr Beitrag zum Meeresspiegelanstieg wird Prognosen zufolge in Zukunft weiter ansteigen, wobei aktuell verfügbare Projektionen unter Annahme einer Klimaentwicklung entlang des RCP 8.5 einen Eismassenverlust von bis zu ~50% im 21. Jahrhundert vorhersagen. Es existiert eine deutliche regionale Variabilität, die eine komplexe Kombination von atmosphärischen und ozeanischen Antriebsmechanismen widerspiegelt. Nichtsdestotrotz ist keines der aktuell verfügbaren regionalskaligen Gletschermodelle in der Lage, ozeanische Einflüsse auf die Frontalablation an den kalbenden Gletscherzungen explizit aufzulösen. Abgesehen von zwei Modellen wird Frontalablation sogar vollständig ignoriert. Folglich existieren auch bisher keinerlei Abschätzungen bezüglich der Mengen von Frontalablation an Grönlands peripheren Gletschern, weder für Vergangenheit, Gegenwart, noch Zukunft.Das Ziel des Projektes ist die Erstellung von CMIP6-basierten Projektionen der zukünftigen Entwicklung von Grönlands peripheren Gletschern im 21. Jahrhundert unter besonderer Berücksichtigung von kalbenden Gletschern. Wir werden sowohl Schmelzwasserabflüsse als auch Beiträge zum Meeresspiegelanstieg quantifizieren. Wir werden das Open Global Glacier Model (OGGM) dahingehend weiterentwickeln, dass es in seinem Frontalablationsmodul ozeanische Antriebsmechanismen berücksichtigt. Dies wird durch spezielle Downscaling-Routinen für Klima- und Ozeandaten unterstützt werden. Wir werden die Modelperformance von OGGM in Abhängigkeit von verschiedenen räumlichen Auflösungen der Antriebsdaten im Detail evaluieren, um herauszufinden, ob und inwieweit die Anwendung optimierter Skalenübergänge von der großen synoptischen hinunter auf die kleinere, lokale Skala der peripheren Gletscher dazu beiträgt, die Modelperformance zu steigern. Die Ergebnisse des Projektes werden ein gesteigertes Maß an Verständnis bezüglich der atmosphärischen und ozeanischen Einflüsse auf die Entwicklung der peripheren Gletscher Grönlands liefern. Weiterhin werden wird Empfehlungen bezüglich der optimalen Komplexität zukünftiger, regionalskaliger Gletschermodellierungen abgeben und dabei besonders kalbende Gletscher berücksichtigen.
norganische Funktionsmaterialien spielen innerhalb der Schlüsseltechnologien des 21. Jahrhunderts, etwa im Bereich der Informationstechnik oder der Energieerzeugung und -speicherung, eine zentrale Rolle. Dabei sind komplex strukturierte multifunktionelle Materialien auf rein anorganischer Basis sowie im Verbund mit organischen Anteilen zur Weiterentwicklung dieser Technologien von wesentlicher Bedeutung. Die Erzeugung solcher Materialien mit definierter Struktur und Stöchiometrie über die konventionelle Prozesstechnik, die in der Regel bei erhöhten Temperaturen und/oder Drücken sowie unter erheblichem verfahrenstechnischen Aufwand abläuft, stößt hierbei jedoch an ihre Grenzen. Demgemäß ist die Suche nach neuen Verfahren, die eine Generierung von diesen Materialien bei Umgebungsbedingungen und mit reduziertem prozesstechnischen Aufwand ermöglichen, derzeit Gegenstand weltweiter Forschungsanstrengungen. Für die Bildung von komplex strukturierten anorganischen Festkörpern bei Umgebungsbedingungen liefert die belebte Natur eindrucksvolle Beispiele. So entstehen durch Biomineralisationsprozesse Stoffe wie etwa Calciumphosphat oder -carbonat, deren Bildung genetisch determiniert ist und durch die Wechselwirkung mit Biomolekülen gesteuert wird, wobei unter anderem Selbstorganisationsprozesse eine Rolle spielen. Die hierdurch entstehenden anorganischen Materialien besitzen multifunktionelle Eigenschaften, wobei deren Eigenschaftsspektrum durch den Einbau von bioorganischen Komponenten erweitert wird. Wenngleich viele technisch relevante Materialien bei diesen natürlichen Prozessen keine Rolle spielen, ergeben sich hieraus unmittelbar aussichtsreiche Perspektiven zur Generierung neuer anorganischer Funktionsmaterialien durch spezifische molekulare Interaktionen zwischen bioorganischen und anorganischen Stoffen. Das Hauptziel dieses Schwerpunktprogramms ist daher die Übertragung von Prinzipien der Biomineralisation auf die Generierung von anorganischen Funktionsmaterialien und von deren Hybriden mit bioorganischen Anteilen. Zur Erreichung dieses Ziels werden Arbeiten durchgeführt (1) zur In-vitro- und In-vivo-Synthese anorganischer Funktionsmaterialien und deren Hybride mit bioorganischen Molekülen in Form von Schichten oder 3D-Strukturen, (2) zur Charakterisierung der Bildungsprozesse und der Struktur der Materialien sowie (3) zur Bestimmung und zum Design von deren physikalischen und chemischen Eigenschaften. Diese experimentellen Untersuchungen werden weiterhin durch Arbeiten zur Modellierung der Materialbildung, -struktur und -eigenschaften begleitet.
Dieses Projekt konzentriert sich auf die Identifizierung und Charakterisierung der Hangprozesse in ariden und hyperariden Regionen. Zentrale Fragen betreffen die Kontinuität/Diskontinuität und Ausmaß/Frequenz der Prozesse. Ebenso Hangbewegung, Verwitterung und Bodenbildung und deren Schwellenwerte sind zu quantifizieren. Die langfristige Erhaltung der Landschaft weist auf Prozesse/Faktoren hin, die die oberste Erdoberfläche stabilisieren, welche es zu untersuchen gilt. Der Zeitbereich über den die Hangprozesse im Arbeitsgebiet integrieren erstreckt sich vom Miozän bis zum Pleistozän, in Abhängigkeit von den langfristigen Erosionsraten.
Ziel ist es ein Netzwerk meteorologischer Stationen in der Atacama zu etablieren. Diese Arbeit wird aktiv von unseren Partnern in Chile unterstützt. Gegenwärtig gibt es nur vereinzelt meteorologische Stationen am Küstenstreifen und fast keine im Kern der Atacama Wüste. Ein weiteres Ziel ist die bodengestützten Observationen mit Fernerkundungsdaten zu vereinen. Beide Datensätze werden als Test für die Zuverlässigkeit von Klimamodellen dienen, die das heutige Klima beschreiben. Auf Basis dieser Tests werden Klimamodelle für das Klima in der Vergangenheit entwickelt. Letztere würden mit Klimaproxydaten anderer Teilprojekte verifiziert werden.
Nach über 150 Jahren umfangreicher Forschung zur Evolution früher Hominini und ihrer Umweltanpassungen sind immer noch grundlegende Fragen der Stammesgeschichte unserer Vorfahren offen. So sind die Ernährungsweisen früher (größer als 2.0 Ma) Homo sp. und Paranthropus boisei und deren Entwicklung sowie ihre Adaption an ökologische und klimatische Bedingungen noch nicht geklärt. Dies ist auf die extrem seltenen älter als 2 Ma datierten Fossilfunde von Homo und P. boisei zurückzuführen. Des Weiteren ist wenig über die Paläoökologie von Hominini-Fundstellen im Süden des Ostafrikanischen Grabens (EAR), nahe des Überganges von großen Grass- zu Baumsavannen bekannt. In Ostafrika beschränken sich Rekonstruktionen der Ernährungsweisen von Homo und Paranthropus boisei auf Fossilien aus dem östlichen Ast des EAR. Isotopendaten deuten im Turkana Becken vor ca. 2 Ma auf zwei Gruppen mit deutlichen Unterschieden in ihrer Nahrungsaufnahme: P. boisei ernährte sich vorwiegend von C4-Biomasse, während Homo vermehrt C3-Ressourcen konsumierte. Die Paläoökologie dieser Region war durch gleichbleibend heiße Temperaturen mit einer Entwicklung zunehmend offener C4-Grasslandschaften, der heutigen Somali-Masai Savanne, geprägt. Im Gegensatz zu den gut untersuchten Bereichen in Kenia, werden im Rahmen dieses Projekts zwei Hominini-Fundstellen im wenig untersuchten südlichen Teil des EAR analysiert: (1) die Plio-Pleistozänen Chiwondo/Chitimwe Sedimente (Karonga Becken, N Malawi), welche Fossilien von H. rudolfensis und P. boisei (ca. 2.4 Ma) führen, und damit die einzige Hominini-Lokalität in der heutigen bewaldeten Sambesischen Savanne sind, und (2) die Pleistozänen mit H. erectus (ca. 0.7 Ma) assoziierten Manyara Ablagerungen (Manyara Becken, N Tansania) knapp nördlich des Übergangs zur heutigen C4-dominierten Somali-Masai Grasssavanne,.Das Projekt profitiert von exzellenten, auf Geochemie spezialisierten Einrichtungen, um die Adaption früher Hominini zu untersuchen: innovative Methoden der Clumped Isotope Geochemie und U-Pb-Datierung werden ebenso angewandt wie etablierte d13C, d18O und dD Isotopenmessungen. Besonders hervorzuheben sind auch die zur Verfügung stehenden Proxys: die Senckenberg-Sammlungen, die auch einen der ältesten Funde der Gattung Homo bereitstellen, ICDP Bohrkerne vom Lake Malawi, und im Verlauf des Projektes neu gewonnene Proben. Das Projekt beinhaltet drei Arbeitspakete: I) Ernährung von H. rudolfensis und P. boisei, II) Plio-Pleistozäne Paläotemperaturen des südostafrikanischen Savannen-Ökosystems und III) Plio-Pleistozäne Paläovegetation der Manyara Sedimente. Die Ergebnisse ermöglichen einen umfassenden und innovativen Vergleich von Paläotemperaturen, Ökosystem-Strukturen und früher Hominini-Ernährung über eine Baum- und Grasslandsavannengrenze in Südostafrika hinweg. Der notwenige geochronologische Rahmen wird durch U-Pb-Datierungen geschaffen; dies werden die ersten absoluten Alter für die bisher nur grob datierten Karonga Becken Sedimente sein
Während der Tiefsee-Expedition SO 158 mit F.S 'Sonne' in das Gebiet zwischen Galapagosspreizungszentrum und -plattform sollen bodenlebende Meeresorganismen gesammelt werden. Die Auswertung wird sich auf die Schlüsselgruppen Kinorhyncha, Loricifera, Copepoda, Brachiopoda und Porifera konzentrieren, die nach den Erfahrungen bei früheren Tiefsee-Expeditionen in genügend hoher Anzahl im Weichboden und auf Steinen zu erwarten sind. Die großräumige Variabilität von Tiefsee-Tiergemeinschaften im Ostpazifik soll untersucht werden, um Aussagen über das Verbreitungsareal von Tierarten in der Tiefsee und über den Einfluß von geomorphologischen Strukturen wie dem Spreizungszentrum treffen zu können. Außerdem sollen potentielle Anpassungen (Sinnesorgane, endosymbiontische Bakterien in Darm oder Integument?) an das Leben in der Tiefsee bei den mikroskopischen Kinorhyncha und Loricifera ultastrukturell geprüft werden. Elektronenmikroskopische Arbeiten bei Kinorhyncha, Loricifera und Brachiopoda tragen zudem dazu bei, die Evolution dieser Tiergruppen besser zu verstehen.
In diesem Projekt soll die wichtige Thematik der Entfernung von NOM (Natural Organic Matter) aus Trinkwasser im Aufbereitungsprozess aus der grundlegenden Sicht der Kolloidwissenschaften untersucht werden. Dieses Thema ist eine zentrale Frage der menschlichen Gesundheit und bei Oberflächenwasser wird meist ein Polykation (cPE) zur Bindung und Präzipitation der negativ geladenen NOM Moleküle eingesetzt. Trotz der hohen Bedeutung dieser Fragestellung gibt es nur wenige fundamentale, kolloidchemische Arbeiten zu dieser Thematik. Dieser ist Ansatz dieses Projekts, in dem wir aufgereinigte Huminsäure (HA, Hauptbestandteil von NOM) als Modellsystem nehmen und seine Komplexierung mit unterschiedlich modifiziertem kationischen (quaternisierten) Chitosan (q-Chit) untersuchen wollen. Tests mit australischen Partnern haben bereits vielversprechende Resultate bei der NOM Abtrennung mit q-Chit gezeigt. Seine Hauptvorteile sind Biokompatibilität und Variabilität des molekularen Aufbaus aufgrund einfacher chemischer Modifikation. q-Chit wird hier maßgeschneidert synthetisiert, wobei Parameter wie Ladungsdichte, Mw und Hydrophobizität systematisch variiert werden. Das Phasenverhalten soll als Funktion des Mischungsverhältnisses untersucht werden, inklusive einer quantitativen Bestimmung der im Zweiphasengleichgewicht in Lösung verbleibenden Menge an HA. Dies wird ergänzt durch umfangreiche thermodynamische Untersuchungen (ITC) und der Bestimmung der mesoskopischen Struktur der gebildeten Komplexe mit Hilfe von Licht, Röntgen- und Neutronenstreuung. Wichtig ist auch die zeitliche Entwicklung der Systeme, die durch kinetische Strukturmessungen verfolgt wird. Diese umfassende thermodynamische, strukturelle und kinetische Charakterisierung soll systematische Korrelationen zwischen den cPEs und der Stärke ihrer Wechselwirkungen mit HA liefern. Hieraus soll abgeleitet werden welche molekularen Motive wichtig sind, um die Entfernung von HA aus Wasser zu optimieren. Diese Motive werden in einer optimierten Synthese entsprechend verwendet. q-Chit ist im Fokus, aber später soll auch quaternisiertes verzweigtes Polyethylenimin (PEI) eingesetzt werden, bei dem es sich um kompaktes globuläres Polykation mit hoher Ladungsdichte handelt. Sein Einfluss auf Phasenverhalten und Struktur in Mischungen mit HA soll untersucht werden, mit dem Fokus auf Mischungen in denen auch (lineares) q-Chit enthalten ist, da man einen ausgeprägten Synergismus bei der Wechselwirkung mit den sehr unterschiedlichen anionischen Molekülen der HA erwarten kann. Auf dieser Basis einer umfassenden physiko-chemischen Charakterisierung wollen wir ein solides grundlegendes Verständnis der in Mischungen aus cPE und HA vorliegenden Wechselwirkungen generieren. Dieses soll die Grundlage sein für systematische Verbesserungen bei der Entfernung von NOM aus Trinkwasser, einer der zentralen aktuellen technologischen Herausforderungen der Menschheit.
Die evolutionäre Reduktion der Mikrosporangienzahl von vier auf zwei in den Antheren von drei Arten der Gattung Microseris läßt sich bei Artkreuzungen genetisch analysieren. In einer Kreuzung haben wir ein Hauptgen und vier modifizierende Gene als Quantitative Trait Loci kartiert. Um die Evolution des Systems weiter verfolgen zu können, müssen die Gene selbst oder sehr eng gekoppelt molekulare Marker gefunden werden. In einer entsprechenden rekombinanten Inzuchtlinie soll das Hauptgen feinkartiert werden und ein Restriktionsfragment mit dem Hauptgen soll kloniert werden.
IODP Expedition 371 (Tasman Frontier Subduction Initiation and Paleogene Climate, 27. Juli bis 26. September 2017) hat 2506 m kretazische bis pleistozäne Sedimente an sechs neuen Lokationen erbohrt. Hauptziel der Expedition ist die genaue Datierung seismischer Reflektoren im Gebiet der Tasmansee und Nord-Zealandia, die für das mittlere Eozän eine großräumige konvergente Deformation mit Aufschiebungen und Hebungen nachweisen. Im ausgehenden Eozän/Oligozän wurde diese von einer beträchtlichen ( größer als 1 km) Subsidenz abgelöst, welche als Vorläufer der beginnenden Tonga-Kermadec-Subduktion angesehen wird. Möglicherweise steht dieser grundlegende tektonische Regimewechsel in kausaler Beziehung mit der globalen Klimaabkühlung nach dem Klimaoptimum des frühen Eozäns (EECO). Entscheidend könnte hierbei sein, dass der tektonische Regimewechsel mit einer signifikanten pCO2-Abnahme einherging und somit die beobachtete weltweite Abkühlung bewirkt haben könnte.Im hier beantragten Vorhaben sollen Sedimentserien des Eozän und Oligozän untersucht werden. Primäre Ziele dieses Projekts sind (1) die Entwicklung einer auf Polaritätsumkehr basierenden Chronostratigraphie der IODP Exp. 371 und Cadart-Kernbohrung (Zentral-Neukaledonien), und (2) die Datierung der tektonischen Entwicklung des Südwestpazifiks anhand der neuen Chronostratigraphie. Erste magnetische Messungen an Bord konnten belegen insbesondere an den Sites U1507, U1508, und U1511, dass die paläomagnetischen Informationen vertrauenswürdig sind und sich für Polaritäts-Magnetostratigraphie eignen.Sekundäres Ziel des Vorhabens ist (3) eine genaue Erfassung der Hämatitgehalte in den eozänen Sedimenten des Tasmanbeckens, um die Raten der chemischen Verwitterung auf dem australischen Kontinent zu rekonstruieren. Vorläufige Daten von Bohrung U1511 (Tasman-Tiefseeebene) zeigen eine relative Anreicherung des, dem australischen Kontinent entstammenden, sedimentären Hämatits während des frühen Eozäns, gefolgt von dessen Abnahme im nachfolgenden Mittel- und Späteozän. Laut Dallanave et al. (2010, Geochem. Geophys. Geosyst. 11(7)) bilden die Variationen des detritischen Hämatiteintrags die Intensität der chemischen Verwitterung im Ursprungsgebiet der Sedimente wirksam ab. Die chemische Verwitterung von Silikatmineralen, gefolgt von mariner Karbonatablagerung, ist der einzige Langzeitmechanismus, der den atmosphärischen CO2-Gehalt puffern und somit die globale Durchschnittstemperatur modulieren kann. Daher sollen in diesem Projekt die während Exp. 371 erbohrten Sedimente genutzt werden, die Intensität der chemischen Verwitterung an Land in Zeiten globalen Klimawandels zu erfassen.Erst der in diesem Projekt geplante integrale Datensatz wird ein vollständiges Bild der tektonischen und klimatischen Entwicklung auf einer gemeinsamen Zeitbasis schaffen und Licht in die Zusammenhänge zwischen Großtektonik und Globalklima werfen.
Listvenit, der aus ozeanischen Mantel-Peridotiten gebildet wurde, die über karbonathaltige Sedimente überschoben wurden, ist im Oman Ophiolit aufgeschlossen und zeigt einen Karbonatisierungsprozess im Hangenden einer Subduktionszone. Kern BT1 (MOD Mountain) des ICDP Oman Drilling Project (OdP) stellt eine einzigartige Probe karbonatisierter und serpentinisierter Peridotite (inklusive der Basis-Überschiebung) von einer ozeanischen Plattengrenze dar.Unser Ziel ist es, zu den der übergeordneten Ziele des Oman Drilling Project, zum Verständnis des Zusammenspiels von reaktionsgetriebenen und tektonischen Kräften sowie Porendruck während großmaßstäblicher Karbonatisierung beizutragen, und Hypothesen zur strukturellen Entwicklung und Fluidtransportwegen in diesem System zu testen. Zweites Ziel ist es, die Bildung von Adern in diesem komplexen Umfeld besser zu verstehen und ein fundamentales Verständnis für Brüche und Kristallwachstum in diesem System zu entwickeln. Wir planen eine mikro- und makrostrukturelle Studie der Deformations- und Reaktionsstrukturen in Listvenit und serpentinisierten Peridotiden im Oman Ophiolit, basierend auf Daten aus Kern BT1 und Aufschlüssen in der Umgebung von BT1. Mit Hilfe von optischer und Raster-Elektronenmikroskopie (ViP, CL, BIB-SEM, EDX, EBSD) in Verbindung mit Kernbeschreibungen und modernsten analytischen Daten des OdP (XRF, XRD, x-ray CT, Hyperspectral Imaging) legen wir unseren Fokus auf (i) die Mikrostruktur des 'primären' Listvenit, insbesondere der Existenz einer duktilen Scherzone vor oder während der Karbonatisierung, (ii) die verschiedenen Generationen von Störungen, Kataklasiten, Brüchen und Adern, die dieses System beeinflussen, indem wir Deformationsmechanismen und die Überprägungsgeschichte untersuchen, (iii) Mikrostrukturen in syn- und antitaxialen Adern um reaktionsinduzierte von tektonischen Brüchen zu unterscheiden, und schließlich (iv) Mikro- und Nanoporosität und Konnektivität, mit dem Ziel mögliche Fluidwege in der Matrix zu definieren.
| Origin | Count |
|---|---|
| Bund | 847 |
| Wissenschaft | 4 |
| Type | Count |
|---|---|
| Daten und Messstellen | 4 |
| Förderprogramm | 846 |
| unbekannt | 1 |
| License | Count |
|---|---|
| geschlossen | 1 |
| offen | 850 |
| Language | Count |
|---|---|
| Deutsch | 500 |
| Englisch | 518 |
| Resource type | Count |
|---|---|
| Archiv | 3 |
| Datei | 1 |
| Keine | 508 |
| Webseite | 339 |
| Topic | Count |
|---|---|
| Boden | 637 |
| Lebewesen und Lebensräume | 797 |
| Luft | 444 |
| Mensch und Umwelt | 844 |
| Wasser | 507 |
| Weitere | 851 |