Ziel dieses Projektes ist es, den nutzbaren Altersbereich für OSL-Datierungen von 200-400 ka in Richtung 1 Ma auszuweiten. Diese Ausweitung würde die zeitliche Lücke in unserem Vermögen klastische Sedimente zu datieren, zwischen Radiokohlenstoffdatierung (bis ca. 40 ka) und Bedeckungsalterdatierung (größer als 500 ka), schliessen helfen.
Das Projekt VolARC ist eines von fünf Projekten des Antrags für die zweite Phase der DFG Forschungsgruppe VolImpact (FOR 2820), deren erste Phase im Frühjahr 2019 begann. VolARC befasst sich mit wichtigen und offenen Fragen vulkanischer Effekte auf stratosphärische Aerosole und deren Einfluss auf die Strahlungsbilanz des Erdsystems. Basierend auf den Arbeiten der laufenden Phase I sollen in Phase II folgende drei Themen bearbeitet werden:(1) Konsolidierung des Verständnisses der Entwicklung stratosphärischer Aerosolparameter nach Vulkanausbrüchen und Untersuchung der Gründe für die verbleibenden Unterschiede zwischen beobachteten und modellierten stratosphärischen Aerosolparametern (Aerosolextinktionsprofile, optische Tiefe und insbesondere die Teilchengrößenverteilung stratosphärischer Aerosols), sowie Behebung der Ursachen für die Unterschiede. Insbesondere die zeitliche Entwicklung der Aerosolgrößenverteilung soll besser verstanden werden. (2) Untersuchung des Einflusses von Modellauflösung und Transport auf die Entwicklung vulkanischer Aerosolwolken in der Stratosphäre. In Phase II wird ein “Seamless Simulation”-Ansatz verwendet, der mittels mehrerer Nests eine konsistente Modellierung aller relevanten Prozesse auf den entsprechenden Skalen ermöglicht, von der initialen Entwicklung der Vulkanwolke bis hin zu globalen und längerfristigen Skalen. (3) Untersuchung der Fähigkeit von Limb- und Okkultationsinstrumenten, vulkanische Sulfataerosole in der Stratosphäre nach stärkeren Vulkanausbrüchen zu erfassen. Bereits bei relativ moderaten optischen Tiefen wird die Sichtlinie in Limb-Geometrie optisch dicht und eine robuste Bestimmung der Aerosolextinktion problematisch. Außerdem wird untersucht, ob aktuelle Satelliteninstrument in der Lage sind, eine im Rahmen von Geoengineering Aktivitäten künstliche verstärkte stratosphärische Aerosolschicht zu erfassen und zu überwachen. Diese Themen werden durch die Synergy globaler Satellitenbeobachtung stratosphärischer Aerosolparameter im optischen Spektralbereich und globaler Modellsimulationen mit expliziter Aerosolmikrophysik untersucht. Wir werden u.a. unsere eigenen Algorithmen verwenden um aus Messungen vergangener, aktueller und zukünftiger Satelliteninstrumente (bsp. OMPS-LP, SAGE III and SCIAMACHY) Aerosolparameter abzuleiten. Die Modellsimulationen werden hauptsächlich mit ICON-ART durchgeführt, aber auch MAECHAM-HAM-Simulationen werden zum Vergleich mit Messdaten und ICON-ART-Simulationen zum Einsatz kommen. Das VolARC-Projekt ist sehr gut mit den anderen vier VolImpact-Projekten vernetzt, insbesondere durch die definierten übergreifenden Forschungsthemen an denen jeweils mehrere VolImpact-Projekte beteiligt sind. Diese Themen sind: (1) die Aerosolteilchengrößenverteilung, (2) vulkanische H2O-Injektionen in die mittlere Atmosphäre und (3) Strahlungsantrieb durch vulkanische Effekte. Darüber hinaus wird VolARC alle Aktivitäten zur Seamless-Simulation in VolImpact koordinieren.
Ziel dieses Projekts ist zu untersuchen, inwieweit Verwerfungen und tektonische Hebung die Entwicklung des Abflusses im Norden Chiles beeinflusst haben. Oberflächenhebung durch Bewegung auf Verwerfungen kann die Reorganisation von Gewässernetzen erzwingen. Wir planen sowohl etablierte als auch neuartige geochronologische Techniken zu nutzen, um Verlagerungen von Abflussrinnen zu datieren. Die zentrale Frage ist, ob Abflussreorganisation in der Atacama-Wüste in erster Linie mit lokalen tektonischen Ereignissen zusammenhängt oder mit großräumigen Veränderungen des Klimas. Beide sind episodisch und beeinflussen sich möglicherweise wechselseitig in ihrer Auswirkung auf das Entwässerungsnetz.
Im letzten Jahrzehnt war der grönländische Eisschild mehreren Extremereignissen ausgesetzt, mit teils unerwartet starken Auswirkungen auf die Oberflächenmassebilanz und den Eisfluss, insbesondere in den Jahren 2010, 2012 und 2015. Einige dieser Schmelzereignisse prägten sich eher lokal aus (wie in 2015), während andere fast die gesamte Eisfläche bedeckten (wie in 2010).Mit fortschreitendem Klimawandel ist zu erwarten, dass extreme Schmelzereignisse häufiger auftreten und sich verstärken bzw. länger anhalten. Bisherige Projektionen des Eisverlustes von Grönland basieren jedoch typischerweise auf Szenarien, die nur allmähliche Veränderungen des Klimas berücksichtigen, z.B. in den Representative Concentration Pathways (RCPs), wie sie im letzten IPCC-Bericht genutzt wurden. In aktuellen Projektionen werden extreme Schmelzereignisse im Allgemeinen unterschätzt - und welche Konsequenzen dies für den zukünftigen Meeresspiegelanstieg hat, bleibt eine offene Forschungsfrage.Ziel des vorgeschlagenen Projektes ist es, die Auswirkungen extremer Schmelzereignisse auf die zukünftige Entwicklung des grönländischen Eisschildes zu untersuchen. Dabei werden die unmittelbaren und dauerhaften Auswirkungen auf die Oberflächenmassenbilanz und die Eisdynamik bestimmt und somit die Beiträge zum Meeresspiegelanstieg quantifiziert. In dem Forschungsprojekt planen wir zudem, kritische Schwellenwerte in der Häufigkeit, Intensität sowie Dauer von Extremereignissen zu identifizieren, die - sobald sie einmal überschritten sind - eine großräumige Änderung in der Eisdynamik auslösen könnten.Zu diesem Zweck werden wir die dynamische Reaktion des grönländischen Eisschilds in einer Reihe von Klimaszenarien untersuchen, in denen extreme Schmelzereignisse mit unterschiedlicher Wahrscheinlichkeit zu bestimmten Zeitpunkten auftreten, und die Dauer und Stärke prognostisch variiert werden. Um indirekte Effekte durch verstärktes submarines Schmelzen hierbei berücksichtigen zu können, werden wir das etablierte Parallel Ice Sheet Model (PISM) mit dem Linearen Plume-Modell (LPM) koppeln. Das LPM berechnet das turbulente submarine Schmelzen aufgrund von Veränderungen der Meerestemperatur und des subglazialen Ausflusses. Es ist numerisch sehr effizient, so dass das gekoppelte PISM-LPM Modell Ensemble-Läufe mit hoher Auflösung ermöglicht. Folglich kann eine breite Palette von Modellparametern und Klimaszenarien in Zukunftsprojektionen in Betracht gezogen werden.Mit dem interaktiv gekoppelten Modell PISM-LPM werden wir den Beitrag Grönlands zum Meeresspiegelanstieg im 21. Jahrhundert bestimmen, unter Berücksichtigung regionaler Veränderungen von Niederschlag, Oberflächen- und Meerestemperaturen, und insbesondere der Auswirkungen von Extremereignissen. Ein Hauptergebnis wird eine Risikokarte sein, die aufzeigt, in welchen kritischen Regionen Grönlands zukünftige extreme Schmelzereignisse den stärksten Eisverlust zur Folge hätten.
Die Kenntnis rezenter Lebensräume wird genutzt, um Modelle zur Rekonstruktion neogener und pleistozäner Habitate zu entwickeln. Es wird erwartet, dass die Nahrungsspezifität von Huftieren wichtige Hinweise liefert auf die Habitate der untersuchten Faunen. Evolutionstrends lassen sich dann mit Veränderungen im Habitat korrelieren.
Basierend auf 10 Jahren globaler Lyman-a Beobachtungen von TWINS wird vorgeschlagen, in 3D die Variation der neutralen Exosphäre der Erde verursacht von Variabilität der solaren Aktivität (nur Sonnenwind oder UV und beide gemeinsam) auf Zeitskalen von Jahren (solarer Zyklus) über Tage (27 Tage solare Rotation) bis zu Stunden (geomagnetische Stürme) zu untersuchen.Die Exosphäre ist die äußerste Region der Atmosphäre und besteht vor allem aus neutralem Wasserstoff (H). Als Übergang in den interplanetaren Raum spielt sie eine wichtige Rolle für die gesamte Entwicklung der Erdatmosphäre von der urzeitlichen Vergangenheit bis in die Zukunft, z.B. durch Verlust von H aus Oberflächenwasser in den Weltraum. Da unmittelbar der UV-Strahlung und solaren Aktivität ausgesetzt können Space Weather-Ereignisse (wie geomagnetische Stürme) signifikante Effekte auf die neutrale Exosphäre haben. Über die quantitativen Einflüsse und die relevanten physikalischen Prozesse ist bislang nur wenig bekannt.Exosphärische H-Atome streuen resonant solare Lyman-a Strahlung zurück. Die gestreute Intensität ist proportional zur lokalen H-Dichte im optisch dünnen Bereich oberhalb von 3 Re (Erdradien). Die TWINS Daten enthalten einzigartige kontinuierliche exosphärische Lyman-a Messungen in 3D aus 10 Jahren und sind erst teilweise analysiert.Es wird vorgeschlagen, mittels tomographischer und kinetischer Modelle in 3D die dynamische H-Dichtevariationen verursacht durch variierendes Space Weather auf verschiedenen Zeitskalen bei 3-8 Re zu untersuchen.Erstens soll die Entwicklung der H-Dichteverteilung über den solaren Zyklus 2008-2018 in 3D charakterisiert werden, insbesondere wie totale H-Dichte, radiale Profile und regionale Asymmetrien rund um die Erde (polar/äquatorial, Tag/Nacht usw.) an den solaren Zyklus gekoppelt sind.Zweitens soll die hoch dynamische Reaktion auf geomagnetische Stürme erstmals in 3D mit Zeitauflösung von Stunden bis ~30 min auf Basis der einzigartig großen Menge an Stürmen in den TWINS-Daten analysiert werden. Durch Monte Carlo Simulationen sollen beitragende physikalische Mechanismen bestimmt und quantifiziert werden.Drittens wird vorgeschlagen, den alleinigen Einfluss von solaren UV-Variationen bei relativ konstantem Sonnenwind zu untersuchen anhand der solaren 27 Tage UV-Variation sowie eruptiver solare UV-Ausbrüche. Im Fokus stehen hier die Effekte durch periodische und eruptive Variationen des Strahlungsdrucks bzw. der Photoionisation, insbesondere auf orbitierende H-Atome in größeren Distanzen.Die Verfügbarkeit eines 3D H-Dichtemodells mit Berücksichtigung dynamischer Variationen durch veränderliches Space Weather wäre ein großer Fortschritt im Verständnis der neutralen Exosphäre. Es besitzt auch eine große Bedeutung für kommende Missionen zur Erforschung der Magnetosphäre (wie SMILE, LEXI oder STORM) auf Basis von ENA- bzw. Soft Röntgen-Messungen, die zur Invertierung korrekte lokale exosphärische H-Dichten zu einer beliebigen Zeit benötigen.
| Origin | Count |
|---|---|
| Bund | 883 |
| Wissenschaft | 4 |
| Type | Count |
|---|---|
| Daten und Messstellen | 4 |
| Förderprogramm | 882 |
| unbekannt | 1 |
| License | Count |
|---|---|
| geschlossen | 1 |
| offen | 886 |
| Language | Count |
|---|---|
| Deutsch | 536 |
| Englisch | 531 |
| Resource type | Count |
|---|---|
| Archiv | 3 |
| Datei | 1 |
| Keine | 536 |
| Webseite | 347 |
| Topic | Count |
|---|---|
| Boden | 653 |
| Lebewesen und Lebensräume | 727 |
| Luft | 462 |
| Mensch und Umwelt | 880 |
| Wasser | 521 |
| Weitere | 887 |