Atombomben auf Hiroshima und Nagasaki: Bedeutung für den Strahlenschutz Im August 1945 wurden in der Endphase des Zweiten Weltkrieges zum ersten und einzigen Mal Atomwaffen in einem militärischen Konflikt eingesetzt . Die erste von zwei amerikanischen Atombomben wurde am 6. August über der japanischen Stadt Hiroshima abgeworfen. Der zweite Bombenangriff auf die Stadt Nagasaki erfolgte drei Tage später. Das heutige Wissen über die gesundheitlichen Risiken ionisierender Strahlung basiert zu einem wichtigen Teil auf den Beobachtungen an den Überlebenden der Atombombenabwürfe. Insbesondere auf den Ergebnissen der sogenannten Life Span Study, einer epidemiologischen Kohortenstudie an den Atombombenüberlebenden. Die Studienergebnisse bilden eine wichtige Grundlage für den Strahlenschutz, insbesondere für die Festlegung von Grenzwerten. Auch in Zukunft sind wichtige Erkenntnisse aus dieser Studie zu erwarten. Historie Atombombenabwürfe: Auswirkungen Historie Friedensdenkmal in Hiroshima: Gedenkstätte für den ersten kriegerischen Einsatz einer Atombombe Während des Pazifikkriegs zwischen Japan und China beschloss die amerikanische Regierung, den Export von Erdöl und Stahl nach Japan einzuschränken, um die Kriegsausweitung nach Südostasien zu verhindern. Dieses wirtschaftliche Embargo führte am 7. Dezember 1941 zum japanischen Angriff auf Pearl Harbor und zur Ausweitung des Pazifikkrieges auf Amerika. Die USA begannen daraufhin im Jahr 1942 mit der Entwicklung und dem Bau der Atombombe ("Manhattan Project"), die im Juli 1945 in Los Alamos erfolgreich getestet wurde ("Trinity Test"). Nach fast vier Jahren andauernder Kriegsführung und der Ablehnung eines Kapitulationsultimatums seitens Japans bat die US-Militärführung um die Erlaubnis für den Einsatz der Atombombe. Obwohl viele an der Entwicklung beteiligte Wissenschaftler davon abrieten, wurde 1945 beschlossen, die Atombombe einzusetzen. Als Ziel für den Abwurf am 6. August wurde Hiroshima gewählt. Es war Sitz des Hauptquartiers der 2. Hauptarmee Japans und diente gleichzeitig zur Lagerung kriegswichtiger Güter. Zudem befand sich dort kein Kriegsgefangenenlager (mit US-Insassen). Als Ziel für den Abwurf der zweiten Atombombe am 9. August war ursprünglich die für die Rüstungsindustrie wichtige Stadt Kokura vorgesehen. Wegen schlechter Sicht wurde jedoch Nagasaki angeflogen, das Sitz des Rüstungskonzerns Mitsubishi war. Atombombenabwürfe: Auswirkungen Durch die Druck- und Hitzewellen (von mindestens 6.000 °C ) waren Sekunden nach den Abwürfen 80% der Innenstädte völlig zerstört. Die daraufhin aufsteigenden Atompilze bestanden aus aufgewirbeltem Staub und Asche, an die sich radioaktive Teilchen anhefteten. Diese Staubwolke ging ca. 20 Minuten später als radioaktiver Niederschlag (sogenannter Fall-out ) auf die Umgebung nieder. Die Opfer der Atombombenabwürfe kamen zum einen unmittelbar durch die Explosion ums Leben, zum anderen verstarben sie an den Akut- und Spätschäden der ionisierenden Strahlung. Eine eindeutige Unterscheidung der Todesursachen nach Verbrennungen, Verletzungen oder Strahlung war unmöglich, da auch die Druck- und Hitzewellen eine Rolle spielten. Da alle wichtigen Aufzeichnungen und Register in den Städten zerstört wurden, ist die genaue Anzahl der durch die Explosion Getöteten bis heute unklar. Nach Schätzungen starben in Hiroshima bis zu 80.000 und in Nagasaki bis zu 40.000 Menschen direkt, ebenso viele wurden verletzt. Abschätzung der Einwohnerzahl sowie der akuten Todesfälle in beiden Städten zum Zeitpunkt des Abwurfes bis 4 Monate danach Stadt Geschätzte Einwohnerzahl zum Zeitpunkt der Abwürfe Geschätzte Anzahl akuter Todesfälle Hiroshima 340.000 bis 350.000 90.000 bis 166.000 Nagasaki 250.000 bis 270.000 60.000 bis 80.000 Quelle: www.rerf.jp Die Anzahl der Überlebenden, die ionisierender Strahlung ausgesetzt waren, wurde in einem Zensus der japanischen Regierung auf etwa 280.000 Personen geschätzt. Als Maß für die Strahlenbelastung der Überlebenden verwendet die Radiation Effects Research Foundation (RERF) die mittlere, gewichtete Strahlendosis des Darms (Gewichtung: Gamma- Dosis des Darms + 10*Neutronen- Dosis des Darms). Diese hängt vom Aufenthaltsort zum Zeitpunkt der Explosion ab und steigt mit der Nähe zum Zentrum der Explosion (dem sogenannten Hypozentrum) stark an. Schätzung der mittleren gewichteten Strahlendosis der Überlebenden in Abhängigkeit von der Distanz zum Hypozentrum in beiden Städten Gewichtete Strahlendosis des Darms in Gray ( Gy ) Distanz Hypozentrum Hiroshima Distanz Hypozentrum Nagasaki 0,005 Gy 2.500 m 2.700 m 0,05 Gy 1.900 m 2.050 m 0,1 Gy 1.700 m 1.850 m 0,5 Gy 1.250 m 1.450 m 1 Gy 1.100 m 1.250 m Quelle: www.rerf.jp Epidemiologische Studien Um die Effekte von ionisierender Strahlung auf den Menschen zu erforschen, wurde 1950 eine Kohortenstudie ( Life Span Study ) begonnen, in die ca. 120.000 Überlebende einbezogen wurden. Zudem wurden mit Teilen dieser Kohorte folgende kleinere Kohortenstudien durchgeführt: eine Studie mit 20.000 Teilnehmenden, die regelmäßig körperlichen Untersuchungen unterzogen werden ( The Adult Health Survey ) eine Studie mit 77.000 Nachkommen von Überlebenden (F1-Studie) eine Studie mit 3.600 Teilnehmenden, die der ionisierenden Strahlung vor ihrer Geburt (in utero) ausgesetzt waren (In-utero study ) sowie eine Studie, in der anhand von 1.703 vorhandenen Blutproben von Überlebenden genetische Veränderungen erforscht werden. Die Life Span Study hat wegen ihrer großen Studienpopulation, einer relativ präzisen individuellen Dosisabschätzung, einem langen Beobachtungszeitraum und der Beobachtung zahlreicher Krankheiten eine große Bedeutung für die Erforschung der gesundheitlichen Auswirkungen ionisierender Strahlung . Im Jahr 2009 waren insgesamt ca. 38 % der Studienpopulation noch am Leben (Altersdurchschnitt 78 Jahre). Von denen, die zum Zeitpunkt der Abwürfe unter 10 Jahre alt waren, lebten im Jahr 2009 noch ca. 83 % . 2 Akute Strahlenschäden ( deterministische Strahlenwirkungen) Unmittelbar nach den Atombombenabwürfen erlitten die Betroffenen akute Strahlenschäden, sogenannte deterministische Strahlenwirkungen . Dabei handelt es sich um Gewebereaktionen, die durch das massive Absterben von Zellen verursacht werden und erst oberhalb einer Schwellendosis auftreten. Zu den deterministischen Strahlenwirkungen gehören beispielsweise die akute Strahlenkrankheit und Fehlbildungen nach Bestrahlung in-utero. Spätschäden (stochastische Strahlenwirkungen) Jahre bis Jahrzehnte nach den Atombombenabwürfen traten bei den Überlebenden Spätschäden, sogenannte stochastische Strahlenwirkungen (wie z.B. Krebs, Leukämien und genetische Wirkungen ), auf. Diese können auch von Strahlendosen verursacht werden, die unterhalb der Schwelle für deterministische Strahlenwirkungen liegen. Stochastisch bedeutet, dass diese Wirkungen nur mit einer bestimmten Wahrscheinlichkeit auftreten. Sie resultieren aus DNA -Mutationen (Schädigungen der Erbsubstanz der Zellen), die Krebs oder Leukämien auslösen können und die erst nach Jahren als klinisches Krankheitsbild in Erscheinung treten. Mutationen in den Ei- und Samenzellen (Keimzellen) können in den nachfolgenden Generationen Fehlbildungen oder Erbkrankheiten zur Folge haben. In den epidemiologischen Studien werden diese stochastischen Strahlenwirkungen untersucht. Bedeutung für den Strahlenschutz Die Daten aus verschiedenen epidemiologischen Studien werden von nationalen und internationalen wissenschaftlichen Gremien, wie der japanisch-amerikanischen Radiation Effects Research Foundation (RERF), ausgewertet und spielen eine wichtige Rolle für die Bewertung des Strahlenrisikos, z. B. durch das wissenschaftliche Komitee über die Effekte der atomaren Strahlung der Vereinten Nationen ( UNSCEAR ) und auch durch die deutsche Strahlenschutzkommission ( SSK ). Die Ergebnisse der Life Span Study , der größten Studie an Atombombenüberlebenden, bilden eine wichtige Grundlage für die Abschätzung strahlenbedingter Risiken und die Ableitung von Grenzwerten für Strahlenbelastungen und Strahlenschutzregelungen. Da die Atombombenüberlebenden jedoch einer hohen akuten Strahlenexposition ausgesetzt waren, ist die Abschätzung der Risiken durch niedrige oder chronische Strahlenexpositionen (wie sie heute eher relevant sind) aufgrund dieser Daten schwierig und wird bis heute kontrovers diskutiert. Die Aussagekraft der Life Span Study steigt mit zunehmender Beobachtungsdauer und es ist mit einer noch genaueren Beschreibung der Dosis-Wirkungs-Beziehung zu rechnen ( z. B. hinsichtlich Alters- und Geschlechtsunterschieden bei der Wirkung ionisierender Strahlung ). Literatur 1 Hsu, W. L., D. L. Preston, M. Soda, H. Sugiyama, S. Funamoto, K. Kodama, A. Kimura, N. Kamada, H. Dohy, M. Tomonaga, M. Iwanaga, Y. Miyazaki, H. M. Cullings, A. Suyama, K. Ozasa, R. E. Shore and K. Mabuchi (2013). The incidence of leukemia, lymphoma and multiple myeloma among atomic bomb survivors : 1950-2001 . Radiat Res 179(3): 361-382. 2 Grant, E. J., A. Brenner, H. Sugiyama, R. Sakata, A. Sadakane, M. Utada, E. K. Cahoon, C. M. Milder, M. Soda, H. M. Cullings, D. L. Preston, K. Mabuchid and K. Ozasa (2017). Solid Cancer Incidence among the Life Span Study of Atomic Bomb Survivors: 1958–2009. Radiat Res 187(5): 513-537. 3 Preston, D. L., E. Ron, S. Tokuoka, S. Funamoto, N. Nishi, M. Soda, K. Mabuchi and K. Kodama (2007). Solid cancer incidence in atomic bomb survivors: 1958-1998 . Radiat Res 168(1): 1-64. 4 Ozasa, K., Y. Shimizu, A. Suyama, F. Kasagi, M. Soda, E. J. Grant, R. Sakata, H. Sugiyama and K. Kodama (2012). Studies of the mortality of atomic bomb survivors, Report 14, 1950-2003: an overview of cancer and noncancer diseases . Radiat Res 177(3): 229-243. Stand: 04.08.2025
Umweltbildung und Waldpädagogik sind wichtige Schwerpunkte der Arbeit der Berliner Forsten. Die neun Berliner Waldschulen und das Lehrkabinett der Berliner Forsten tragen entscheidend und generationenübergreifend zur Wertschätzung und Erhaltung unserer wertvollen Naturlandschaften bei. Der Wald schult die Sinne und setzt sie in Beziehung zur Umwelt. Er steht im Mittelpunkt des Sehens, Fühlens, Riechens, Hörens und Tastens. Wir können von ihm mit jedem Schritt etwas über uns, über Tiere und Pflanzen, über Staaten und Gesellschaften, über Familien, über Geschichte und Traditionen, über Kreisläufe und Klima und manchmal auch etwas über Stille lernen. Für mehr Informationen zu den einzelnen Standorten klicken Sie bitte unten auf den jeweiligen Ort. Einführung – grüner Lernort Wald Mehr zu den waldpädagogischen Angeboten erfahren Sie hier. Weitere Informationen Das Besondere an Waldschulen ist, dass es sich nicht um Schulen im Wald handelt. Hier gibt es keinen Leistungsvergleich und keinen Lehrplan, kein Pausenklingeln und kein Klassenzimmer unter Eichen und Buchen. Der Wald wird vielmehr als Lebensschule vor allem für heranwachsende Menschen begriffen. Mit dem Blog „Waldentdeckenberlin.org“ möchten die Waldschulen dazu anregen, die vielen verschiedenen Möglichkeiten zu nutzen, sich mit dem Wald und der Natur zu beschäftigen. Denn Umweltbildung und Waldpädagogik werden u.a. vor dem Hintergrund der Klimakrise weiter an Bedeutung gewinnen. Im Kinderblog „Wilma Wusel entdeckt…“ können Kinder und ihre Familien miterleben, was Wilma im Wald alles erlebt und beobachtet. Gemeinsam können die Geschichten nachgelesen und nacherlebt werden. Interessante Links und vor allem die jeweiligen Detektiv- und Entdeckerblätter stehen zu jeder Folge bereit. Der Familienpodcast „Waldfunk“ enthält spannende Geschichten zu den jahreszeitlichen Besonderheiten: Von der Explosion des Lebens im Frühjahr über die Macht von Sommergewittern, von Fragen, warum Bäume eigentlich Blätter verlieren bis hin zu Überlebensstrategien von Wildtieren im Winter. Im „Pädagog*innen-Bereich“ finden alle, die mit ihrer Kitagruppe oder Klasse Wald und Natur erkunden möchten, Anregungen und Unterstützung z.B. in Form von Unterrichtsmaterialien. Zum Blog der Berliner Waldschulen Selbst tätig werden Die Berliner Waldschulen bieten Stellen für ein Freiwilliges Ökologisches Jahr und verschiedene Praktika an. Weitere Informationen Rucksack-Waldschule Mistkäfer Rucksack-Waldschule Eichhörnchen Im Lageplan sind die Gebiete eingezeichnet, die die Rucksack-Waldschulen abdecken.
Vulkanische Gasemissionen sind bedeutsam für die lokale sowie globale Atmosphärenchemie. Die Entdeckung der Halogenchemie in Vulkanfahnen brachte neue Erkenntnisse über die Dynamik von Vulkanen und gibt möglicherweise Aufschluss über deren Eruptionspotential. Mehrere Feldmessungen führten zu großen Erfolgen in der Erforschung von reaktiven Halogenspezies (z. B. BrO, OClO, ClO). Jedoch ergaben sich auch viele Unklarheiten über die zugrundeliegenden Mechanismen und Umweltparameter wie Spurengas- und Aerosolzusammensetzung der Vulkanfahne, relative Feuchte oder der Bedeutung von potentieller NOX Emission. Der Einfluss sowie die Bedeutung dieser Parameter bezüglich der Halogenaktivierung (Umwandlung von Halogeniden in reaktive Halogenspezies (RHS)) ist essentiell für die Interpretation der Messdaten, um, z.B. (1) Rückschlüsse über die magmatischen Prozesse zu ziehen und Vorhersagen über Eruptionen mithilfe des Verhältnisses BrO zu SO2 zu machen, oder (2) den Einfluss auf die Zerstörung von Ozon, die Oxidation von Quecksilber oder die Verringerung der Lebensdauer von Methan in der Atmosphäre zu quantifizieren. Dieses Projekt soll dazu dienen, anhand eines vereinfachten Modells einer Vulkanfahne (SiO2 und Schwefelaerosole, H2O, CO2, SO2, HCl, HBr) unter kontrollierten Bedingungen die vulkanische Halogenchemie besser zu verstehen. Dazu soll in einer aus Teflon bestehenden Atmosphärensimulationskammer an der Universität Bayreuth Messungen durchgeführt werden. Die zur Messung der kritischen Parameter benötigten Instrumente können leicht in das Kammersystem integriert werden. RHS (BrO, ClO, OClO) werden mittels eines White Systems (Multi-Reflektionszelle) und Cavity Enhanced-DOAS nachgewiesen. Zum Nachweis anderer Halogenspezies (Br2, Cl2, HOBr und BrCl) wird FAPA-MS (Flowing Atmospheric-Pressure Afterglow Mass Spectrometry) verwendet. SO2, CO2, NOX und O3 werden mittels standardisierter Gasanalysatoren gemessen. Die Analyse der Zusammensetzung von Aerosolen insbesondere deren aufgenommene Menge an Halogenen wird durch Filterproben sowie Ionenchromatographie und SEM-EDX (Scanning Electron Microscope - Energy Dispersive X-ray Detector) gewährleistet. Die Kombination der verschiedenen Messtechniken ermöglicht die Erforschung von bisher schlecht Verstandenen heterogenen Reaktionen, welche höchstwahrscheinlich die Halogenaktivierung beeinflussen. Insbesondere die Einflüsse von (1) NOX und O3, (2) Ausgangsverhältnis HCl zu HBr, (3) relative Feuchte sowie (4) die Zusammensetzung der Vulkanaschepartikel (in Hinblick auf komplexere, reale Vulkanasche) auf die RHS Chemie, insbesondere des Mechanismus der sog. 'Brom-Explosion', werden innerhalb des vorgeschlagenen Projektes untersucht. Die Messergebnisse werden, gestützt durch das Chemie Box Modell CAABA/MECCA, in einem größeren Kontext interpretiert und werden helfen die natürlichen Vulkanprozesse besser zu verstehen.
Halogenradikale spielen eine Schlüsselrolle in der Chemie der polaren Grenzschicht. Alljährlich im Frühjahr beobachtet man riesige Flächen von mehreren Millionen Quadratkilometern mit stark erhöhten Konzentrationen von reaktivem Brom, welches von salzhaltigen Oberflächen in der Arktis und Antarktis emittiert werden. Dieses Phänomen ist auch als Bromexplosion bekannt. Des Weiteren detektieren sowohl boden- als auch satellitengestützte Messungen signifikante Mengen von Jodoxid über der Antarktis, jedoch nicht in der Arktis. Die Gründe für diese Asymmetrie sind nach wie vor unbekannt, aber das Vorhandensein von nur wenigen ppt reaktiven Jods in der antarktischen Grenzschicht sollte einen signifikanten Einfluss auf das chemische Gleichgewicht der Atmosphäre haben und zu einer Verstärkung des durch Brom katalysierten Ozonabbaus im polaren Frühjahr haben. Der Schwerpunkt der Aktivitäten im Rahmen von HALOPOLE III wird auf der Untersuchung von wichtigen Fragestellungen liegen, die im Rahmen der Vorgängerprojekte HALOPOLE I und II im Bezug auf die Quellen, Senken und Transformationsprozesse von reaktiven Halogenverbindungen in Polarregionen aufgetreten sind. Basierend sowohl auf der synergistischen Untersuchung der bislang gewonnen Daten aus Langzeit - und Feldmessungen sowie auf neuartigen Messungen in der Antarktis sind die wesentlichen Schwerpunkte: (1) Die Untersuchung einer im Rahmen von HALOPOLE II aufgetretenen eklatanten Diskrepanz zwischen aktiven und passiven Messungen DOAS Messungen von IO. (2) Eine eingehende Analyse der DOAS Langzeitmessungen von der Neumayer Station und Arrival Heights (Antarktis) sowie Alert (Kanada) bezüglich Meteorologie, Ursprung der Luftmassen, Vertikalverteilung, sowie des Einflusses von Schnee, Meereis und Eisblumen auf die Freisetzung von reaktiven Halogenverbindungen. (3) Die Untersuchung der kleinskaligen räumlicher und zeitlichen Variation von BrO auf der Basis einer detaillierten Analyse der flugzeuggebundenen MAX-DOAS Messungen während der BROMEX 2012 Kampagne in Barrow/Alaska. (4) Die Analyse der kürzlich in der marginalen Eiszone der Antarktis auf dem Forschungsschiff Polarstern durchgeführten Messungen im Hinblick auf die horizontale und vertikale Verteilung von BrO und IO, sowie den Einfluss der Halogenchemie auf den Ozon- und Quecksilberhaushalt. (5) Weitere detaillierte Untersuchungen des Einflusses von Halogenradikalen, insbesondere Chlor und Jod, auf das chemische Gleichgewicht der polaren Grenzschicht auf der Basis einer Messkampagne in Halley Bay, Antarktis. (6) Detailliertere Langzeit-Messungen von Halogenradikalen und weiteren Substanzen auf der Neumayer Station mittels eines neuen Langpfad-DOAS Instruments welches im Rahmen dieses Projektes entwickelt wird. Zusätzlich zu den bereits existierenden MAX-DOAS Messungen werden diese eine ganzjährige Messungen des vollen Tagesganges sowie die Untersuchung nicht nur der Brom- und Jodchemie, sondern auch der Chlorchemie ermöglichen.
Viele der Elektrizität produzierenden geothermalen Felder Island liegen in der Nähe oder gar innerhalb von Kratern, gebildet durch dampfgetriebene Eruptionen. Kraflas geotermales Feld ist ein typisches Beispiel solch einer wertvollen Infrastruktur mit einem ungewissen Gefahrenpotential. Die dampf-getriebene (phreatische) Vití-Eruption fand direkt vor der effusiven Spalteneruption der Mývatn Fires (1724-29) statt: Auslöser der Eruption und Ursache für ihre Lage weit abseits der Hauptspalten für die Magmenförderung sind unbekannt. Unter diesem Aspekt werfen die Funde der Bohrung IDDP-1 - eine rhyolitische Schmelze in etwa 2km Tiefe unterhalb der Krafla Caldera und einer konduktiven Grenzschicht (CBL), welche das Magma von dem darüberliegenden hydrothermalen System trennt - eine Schlüsselfrage auf: Falls sich die Intrusion während der letzten Spalteneruption, den Krafla Fires (1975-84) bildete, warum kam es dann diesmal zu keiner explosiven Eruption (wie bei Vití)? Bisherige Arbeiten legen Nahe, dass vorallem die Gesteinspermeabilität darüber entscheidet ob ein unter Überdruck stehendes Fluid sein Umgebungsgestein fragmentiert oder ob es aufgrund von effektiver Ausströmung entweichen kann. Eine Lage wie die CBL mit unbekannter Permeabilität, kann eine vorzügliche lithologische Barriere oberhalb der rhyolitischen Magma darstellen. Das hier beantragte Forschungsvorhaben hat das Verständnis des magma/hydrothermalen Systems und seiner Auswirkungen auf potentielle vulkanische Gefahrenmomente zum Ziel, wie ebenfalls in dem wissenschaftlichen Programm des KMDP-Bohrprojektes verankert. Die zwei synergetisch verknüpften Kernpunkte dieses Antrags sind: (i) die Bestimmung der Belastbarkeit und Reaktion der CBL auf P-T-Perturbationen zum Beispiel aufgrund schneller/stufenweiser Dekompression (natürlicher Art sowie durch Produktion induziert), oder langsamer bis schneller Erwärmung (Magmenintrusion), sowie (ii) die Bestimmung des Zeitmaßstabes bei welchem die CBL ihr Verhalten von Verformung (belastbar) zu spröder Reaktion (Bruch) verändern. Daten und Proben von Bohrprojekten bieten eine einmalige Gelegenheit unser Verständnis der Rolle der Permeabilität solcher CBLs um einen Magmenkörper herum voranzutreiben. Wir wollen diese Wissenslücke schließen durch die Verknüpfung eines neuen Datensatzes zu Gesteinen aus der KMDP Bohrung mit Laborexperimenten zum Dekompression-Explosion Verhalten dieser Gesteine. Mit einer der weltgrößten Stoßrohrapparatus für vulkanische Fragestellungen planen wir verschiedene Szenarien der Reaktion der CBL auf kontrollierte schnelle Dekompression, sowie auf schnelle bzw. Langsame Heizprozesse zu simulieren.
Der Vertrag über das umfassende Verbot von Nuklearversuchen (Kernwaffenteststopp-Vertrag: CTBT) und seine Überwachung Der Vertrag über das umfassende Verbot von Nuklearversuchen ( CTBT ) ist eines der zentralen internationalen Abkommen zur Verhinderung der Weiterverbreitung von Kernwaffen. Der CTBT wurde 1996 zur Unterzeichnung ausgelegt. Von den 44 Staaten ( sog. Annex 2-Staaten), die den Vertrag ratifizieren müssen, bevor er in Kraft treten kann, fehlen bis heute drei Länder, die den Vertrag noch unterzeichnen und ratifizieren müssen. Mit der De-Ratifizierung des Vertrages durch Russland Ende 2023 sind es nunmehr sechs Länder, die den Kernwaffenteststopp-Vertrag zwar unterschrieben, jedoch nicht ratifiziert haben. Die Organisation zur Überwachung des Kernwaffenteststopp-Vertrags ( CTBTO ) überwacht die Einhaltung des Vertrags mit seismischen Messungen, Radioaktivitätsmessungen und Spezialmikrophonen in den Ozeanen und der Atmosphäre. Mehrere Dutzend untereinander vernetzte Messstationen weltweit können geringste Spuren von Radioaktivität in der Luft erfassen. Das BfS beteiligt sich mit Radioaktivitätsüberwachungen an der Kontrolle und betreibt die einzige Station für hochempfindliche Radioaktivitätsmessungen in Mitteleuropa auf dem Schauinsland bei Freiburg. Der umfassende Kernwaffenteststopp-Vertrag ( engl. Comprehensive Nuclear-Test-Ban Treaty , CTBT ) ist eines der zentralen internationalen Abkommen zur Verhinderung der Weiterverbreitung von Kernwaffen. Obwohl er noch nicht in Kraft getreten ist, wird seit über 2 Jahrzehnten ein weltweites Messnetz zu Überwachung des Teststopps aufgebaut und erfolgreich betrieben. Der Kernwaffenteststopp-Vertrag Überwachung des Kernwaffenteststopp-Vertrags Der Kernwaffenteststopp-Vertrag Anzahl der weltweit durchgeführten Kernwaffen-Versuche bis 2022. Seit 2017 wurden keine Kernwaffenversuche mehr durchgeführt. Beginn der Kernwaffentests Mit dem sogenannten "Trinity"-Test am 16. Juli 1945 in den USA wurde zum ersten Mal in der Menschheitsgeschichte eine Nuklearwaffe gezündet. Einen Monat später erfolgte der erste militärische Einsatz durch die Abwürfe der Nuklearwaffen über Hiroshima und Nagasaki am Ende des zweiten Weltkrieges. Trotz früher Überlegungen zu einer internationalen Kontrolle von spaltbarem Material für den Bau von Kernwaffen erlangten weitere Nationen die Fähigkeit zur Herstellung dieser Waffen (Sowjetunion: 1949, Vereinigtes Königreich: 1952). In den 1950er Jahren begannen die USA und die Sowjetunion mit dem Testen sogenannter thermonuklearer Waffen (umgangssprachlich "Wasserstoffbomben"), die eine höhere Sprengkraft besitzen und entsprechend größere Mengen an radioaktivem Fallout produzieren. Partieller Teststopp-Vertrag Unter anderem führte die Kritik an diesen Tests dazu, dass sich 1963 die USA , die Sowjetunion und das Vereinigte Königreich über ein Verbot von Tests in der Atmosphäre, unter Wasser und im Weltraum verständigten. Dies wurde in einem internationalen Vertrag, dem partiellen Teststopp-Vertrag niedergelegt ( engl. Partial Nuclear Test-Ban Treaty , PTBT). Frankreich (erster Test 1960) und China (erster Test 1964) unterschrieben diesen Vertrag jedoch nicht und führten noch bis 1980 Kernwaffentests in der Atmosphäre durch. Vom partiellen zum umfassenden Teststopp Das Internationale Messnetz IMS Quelle: CTBTO https://www.ctbto.org/map/ Die Unterzeichnerstaaten des PTBT hielten sich an die Vertragsregeln, wodurch die Zahl der atmosphärischen (oberirdischen) Tests, und der damit verbundene radioaktive Fallout verringert werden konnte. Die Gesamtzahl aller Atomwaffen-Tests verringerte sich jedoch nicht, sie wurden jetzt nur mehrheitlich unter der Erdoberfläche durchgeführt. Bis heute wurden über 2.000 Kernwaffentests gezählt. Auf diplomatischer Ebene wurde nach dem Inkrafttreten des PTBT über einen umfassenden Teststopp-Vertrag diskutiert und 1976 die sogenannte " Group of Scientific Experts " (GSE) eingerichtet. Ihre Aufgabe war es zu klären, ob und wie die Einhaltung eines solchen Vertrags geprüft werden kann, denn ein verlässliches Verifikationssystem ist eine entscheidende Voraussetzung dafür, dass sich Staaten völkerrechtlich an ein Verbot binden. Über die Möglichkeiten und Grenzen der Verifikation (wissenschaftliche Nachweisführung) liefen die Meinungen zunächst weit auseinander. Umfassender Kernwaffenteststopp-Vertrag Es dauerte bis zum Ende des Kalten Krieges, bis formelle Verhandlungen bei den Vereinten Nationen in der Genfer Abrüstungskonferenz aufgenommen wurde. Die Beratungen, an denen auch Experten des BfS maßgeblich beteiligt waren, konnten bereits zwei Jahre später abgeschlossen und der umfassende Kernwaffenteststopp-Vertrag (Comprehensive Nuclear-Test-Ban Treaty, CTBT ) 1996 zur Unterzeichnung ausgelegt werden. Die Verhandlungsparteien wollten sicherstellen, dass die Unterzeichner des Vertrags erst dann bindende Verpflichtungen eingehen, wenn alle Staaten mit nukleartechnischen Einrichtungen – und damit der theoretischen Fähigkeit zum Kernwaffenbau - beigetreten sind. Daher enthält das Dokument eine Liste mit 44 Staaten ( sog. Annex 2-Staaten), die den Vertrag ratifizieren müssen, bevor er in Kraft tritt. Bis heute fehlen von diesen 44 Staaten drei, die den Vertrag vor Inkrafttreten unterzeichnen und ratifizieren müssen (Indien, Nordkorea, Pakistan) sowie seit 2023, mit der De-Ratifizierung des Vertrages in Russland, sechs Länder, die den Vertrag zwar unterschrieben, jedoch noch nicht ratifiziert haben (Ägypten, China, Iran, Israel, USA, Russland). Umsetzung des Kernwaffenteststopp-Vertrags Wenn der Zeitpunkt des Inkrafttretens erreicht wird, muss die Verifikation des Verbots sofort möglich sein. Daher wurde in Wien die sogenannte Vorbereitende Kommission für den CTBT gegründet, deren Aufgabe insbesondere der Aufbau eines internationalen Monitoring-Netzwerks mit 337 Messstationen ist. Mit Hilfe dieses Messnetzes kann die Vertragseinhaltung verlässlich überwacht werden. Daneben bereitet die Organisation zur Überwachung des Internationalen Kernwaffenteststopp-Vertrags ( CTBTO ) Vor-Ort-Inspektionen konzeptionell vor, entwickelt dafür Messmethoden und führt Übungen durch. Überwachung des Kernwaffenteststopp-Vertrags Die Organisation zur Überwachung des Internationalen Kernwaffenteststopp-Vertrags ( CTBTO ) überwacht die Einhaltung des Vertrages mit seismischen Messungen, Radioaktivitätsmessungen und Spezialmikrophonen in den Ozeanen und der Atmosphäre. Das Bundesamt für Strahlenschutz ( BfS ) beteiligt sich mit Messungen radiaktiver Stoffe in der Atmosphäre an der Kontrolle und unterstützt das Auswärtige Amt durch fachliche Auswertung und Bewertung der Daten. Überwachung des Internationalen Kernwaffenteststopp-Vertrags Die CTBTO ist als internationales Netzwerk darauf ausgerichtet, weltweit geheime Kernwaffentests aufzuspüren. Seismische Messungen können einen ersten Hinweis auf einen unterirdischen Atomwaffentest geben. Mit einer zeitlichen Verzögerung können bei einem Atomwaffentest entstehende radioaktive Edelgase durch das Erdreich in die Atmosphäre gelangen. Wenn dies geschieht, lassen sich diese Gase mit den hoch empfindlichen Radioaktivitätsmessstationen der CTBTO nachweisen und auf einen Atomwaffentest zurückführen. Mehrere Dutzend dieser untereinander vernetzten Messstationen weltweit können geringste Spuren von Radioaktivität in der Luft erfassen. Das Bundesamt für Strahlenschutz betreibt die einzige Station für hochempfindliche Radioaktivitätsmessungen in Mitteleuropa auf dem Schauinsland bei Freiburg. Weltweites Überwachungssystem Die Vertragsorganisation mit Sitz in Wien baut zurzeit mit Hilfe der Signatarstaaten ein weltweites Überwachungssystem mit einem Netz von 321 Messstationen und 16 Laboren auf. Es ist in der Lage, eine nukleare Explosion an jedem Ort der Erde mit hoher Wahrscheinlichkeit zu entdecken, zu identifizieren und auch zu lokalisieren. Dieses System beruht auf 170 Seismographen in der Erde, 11 Unterwassermikrophonen in den Ozeanen, 60 Infraschallmikrophonen in der Atmosphäre und 80 Spurenmessstationen für Radioaktivität in der Luft Eine dieser Spurenmessstationen ist die Station Schauinsland des BfS (Radionuklidstation RN33). Zur Qualitätssicherung werden die 80 Radionuklidstationen durch 16 Radionuklidlaboratorien ergänzt. Die Bedeutung von Radioaktivitätsmessungen Die drei geophysikalischen Techniken - Seismik , Infraschall und Hydroakustik - können zeitnah Explosionen mit einer Stärke über 1 Kilotonne Trinitrotoluol (TNT) Äquivalent (Maßeinheit für die bei einer Explosion freiwerdende Energie) registrieren und lokalisieren. Die Radionuklid -Messtechnik hat anschließend die Aufgabe, den nuklearen Charakter einer Explosion zweifelsfrei nachzuweisen. Detoniert ein nuklearer Sprengkörper, dann entsteht eine Vielzahl radioaktiver Spaltprodukte . Die meisten so gebildeten Radionuklide kommen in der Natur nicht vor und unterscheiden sich auch deutlich in ihrer Zusammensetzung von Radioaktivität aus Kernkraftwerken. Eine Eingrenzung von Freisetzungsort und Freisetzungszeit ist zusätzlich mit Hilfe von atmosphärischen Ausbreitungsrechnungen möglich. Was wird gemessen? An allen im Endausbau des Messnetzes vorgesehenen 80 Radionuklidmessstationen wird die Luft auf Spuren von an Luftstaub gebundenen Gammastrahlern untersucht. An 40 der 80 Stationen, darunter auch auf der Station Schauinsland, wird zusätzlich nach radioaktiven Isotopen des Edelgases Xenon (Xenon-131m, Xenon-133, Xenon-133m und Xenon-135) gefahndet. Mindestanforderungen an die technische Ausstattung der Messstationen Aerosole Edelgase (radioaktives Xenon) Messtechnik Reinstgermaniumdetektor Reinstgermaniumdetektor oder Beta-/Gamma-Koinzidenz Luftdurchsatz mindestens 500 Kubikmeter pro Stunde mindestens 0,4 Kubikmeter pro Stunde Nachweisgrenze 10 bis 30 Microbecquerel pro Kubikmeter Luft bezogen auf Barium-140 1 Millibecquerel pro Kubikmeter Luft bezogen auf Xenon-133 Radioaktive Edelgase wurden in das Messnetz einbezogen, weil diese auch bei unterirdischen und verdeckten Kernwaffentests in die Atmosphäre entweichen können und damit das Risiko für einen potentiellen Vertragsbrecher erhöhen, entdeckt zu werden. Wichtig ist hierbei, dass anhand der isotopenspezifischen Messungen zwischen Radioaktivität aus zivilen Quellen und aus eventuellen Kernwaffentests - die eine Vertragsverletzung darstellen würden - unterschieden werden kann. Auswertung der Daten Sämtliche Messdaten werden über VPN oder ein satellitengestütztes Kommunikationssystem an das Internationale Datenzentrum ( IDC ) der CTBTO in Wien übermittelt. Dort werden sie ausgewertet, an die Unterzeichnerstaaten verteilt und archiviert. Stand: 04.08.2025
Origin | Count |
---|---|
Bund | 200 |
Land | 30 |
Type | Count |
---|---|
Chemische Verbindung | 1 |
Ereignis | 25 |
Förderprogramm | 126 |
Gesetzestext | 1 |
Software | 1 |
Text | 37 |
unbekannt | 35 |
License | Count |
---|---|
geschlossen | 57 |
offen | 162 |
unbekannt | 6 |
Language | Count |
---|---|
Deutsch | 212 |
Englisch | 30 |
Resource type | Count |
---|---|
Archiv | 4 |
Bild | 2 |
Datei | 26 |
Dokument | 22 |
Keine | 131 |
Multimedia | 1 |
Webdienst | 2 |
Webseite | 71 |
Topic | Count |
---|---|
Boden | 132 |
Lebewesen und Lebensräume | 143 |
Luft | 143 |
Mensch und Umwelt | 225 |
Wasser | 119 |
Weitere | 207 |