<p>Silvester: ohne (viel) Schall und Rauch ins neue Jahr</p><p>So starten Sie möglichst unbeschwert und umweltfreundlich ins neue Jahr</p><p><ul><li><strong>Schauen Sie lieber zu:</strong> Das ist die umweltfreundliche, kostengünstige und entspannte Alternative, ein Feuerwerk an Silvester zu genießen.</li><li>Bevorzugen Sie gut durchlüftete Standorte und halten Sie Abstand zu brennenden Feuerwerkskörpern.</li></ul><p>Wenn Sie selbst ein Feuerwerk abbrennen möchten:</p><ul><li>Kaufen Sie nur Feuerwerkskörper mit <strong>CE-Zeichen</strong>.</li><li><strong>Nehmen Sie Rücksicht</strong> auf Nachbarn und (Haus-)Tiere.</li><li>Räumen Sie den Abfall Ihres Feuerwerks zeitnah weg und <strong>entsorgen</strong> Sie diesen ordnungsgemäß.</li></ul></p><p>Wenn Sie selbst ein Feuerwerk abbrennen möchten:</p><p>Gewusst wie</p><p>Raketen und Böller gehören zum Jahreswechsel für viele Menschen fest zur Tradition. Der kurzen Freude am Feuerwerk stehen an Silvester sehr hohe gesundheitsgefährdende Feinstaubbelastungen sowie Gefährdungen durch Lärm und Explosionen gegenüber. Hierdurch verursachte Verbrennungen, Augenverletzungen und Hörschädigungen sind leider keine Seltenheit. Hinzu kommen vermüllte Straßen und Parks durch Feuerwerkskörper, die Städte und Gemeinden jedes Jahr vor große Herausforderungen stellen.</p><p><strong>Zuschauen statt Zündeln: </strong>Toll ein anderer macht‘s – darauf können Sie sich beim Silvesterfeuerwerk in Deutschland verlassen. Konkurrieren Sie deshalb nicht mit Ihren Nachbarn um das größte und teuerste Feuerwerk, sondern honorieren Sie deren Einsatz – durch Zuschauen. Das ist nicht nur entspannter, sondern spart Ihnen auf alle Fälle Kosten, schont die Umwelt und gibt Ihnen Zeit und Gelegenheit, mit Nachbarn gemütlich zu reden und auf das neue Jahr anzustoßen. Gegebenenfalls können Sie auch mit einem Spaziergang zu Aussichtspunkten einen besseren Blick auf das Geschehen erhalten und über den "Qualmwolken" stehen. Eine Alternative zum eigenen Feuerwerk stellen auch zentral organisierte Feuerwerke auf kommunaler Ebene dar.</p><p><strong>Abstand halten und gut durchlüftete Standorte bevorzugen: </strong>Halten Sie ausreichend Abstand zu brennenden Feuerwerkskörpern und zu größeren Menschenansammlungen. So schützen Sie sich vor möglichen Verletzungen und gesundheitlichen Beeinträchtigungen. In engen Gassen und Straßenzügen setzt sich Feinstaub besonders stark fest. Außerdem wird der Schall deutlich verstärkt. Aus Sicherheits- und Gesundheitsgründen sollten Sie deshalb solche Engstellen meiden.</p><p>Wenn Sie selbst ein Feuerwerk abbrennen möchten</p><p><strong>Produkte mit CE-Zeichen kaufen: </strong>Beim Kauf von Feuerwerk steht Sicherheit an erster Stelle. Achten Sie darauf, nur Produkte mit CE-Zeichen zu wählen – idealerweise aus Deutschland. Sie erkennen in Deutschland hergestellte Produkte daran, dass neben dem CE-Zeichen die vierstellige Zahl 0589 gedruckt ist. Dies ist die Kennnummer für die deutsche Prüfstelle BAM (Bundesanstalt für Materialforschung und -prüfung). Bevorzugen Sie möglichst geräuscharmes Feuerwerk. Es kann für stimmungsvolle Effekte sorgen und trotzdem die Lärmbelastung für Menschen und Tiere im Vergleich zu anderem Feuerwerk deutlich reduzieren.</p><p><strong>Rücksicht auf Nachbarn und (Haus)Tiere nehmen:</strong> Raketen und Böller verursachen Lärm, Schadstoffe und "dicke Luft". Dementsprechend gilt: Je weniger, desto besser. Jede Rakete, die nicht gezündet wird, bedeutet weniger Feinstaub in der Luft, weniger Lärm in der Nacht und weniger Müll auf den Straßen. Achten Sie beim Abbrennen von Feuerwerk auf ausreichend Abstand zu Menschen(gruppen). Nutzen Sie für das Feuerwerk gut durchlüftete und schalloffene Orte. Bedenken Sie, das die Silvesterknallerei für Haustiere wie Hunde und Katzen eine Qual ist, da sie ein feines Gehör haben.</p><p><strong>Feuerwerksreste entsorgen: </strong>Das Verbot, Müll auf Straßen, öffentlichen Plätzen oder in der Landschaft zu entsorgen, gilt auch an Silvester. Räumen Sie deshalb die Reste Ihres Feuerwerks zeitnah und vollständig auf. Abgebrannte und abgekühlte Feuerwerkskörper (z. B. Mehrschussbatterien aus Pappe) gehören in den Restmüll. Auch wenn sie äußerlich harmlos wirken, enthalten sie oft noch giftige Rückstände und dürfen deshalb nicht ins Altpapier oder in die Wertstofftonne. Nicht vollständig abgebrannte Feuerwerkskörper enthalten noch explosionsgefährliche Stoffe. Die BAM empfiehlt deshalb, diese als Sonderabfall in einem Wertstoffhof abzugeben.</p><p><strong>Was Sie noch tun können:</strong></p><p>Hintergrund</p><p><strong>Umweltsituation: </strong>Feinstaub ist gesundheitsgefährdend. Die Silvesternacht ist in Deutschland in der Regel die Zeit mit der höchsten Feinstaubbelastung im Jahr. Allein in dieser Nacht werden nur durch das Abbrennen von Feuerwerkskörpern fast ein Prozent der gesamten Jahresemissionen von Feinstaub (<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM10#alphabar">PM10</a>) verursacht. Bei <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM25#alphabar">PM2,5</a>-Emissionen sind es sogar rund 2 Prozent. PM10-Stundenwerte um 1.000 Mikrogramm Feinstaub pro Kubikmeter Luft (µg/m³) sind in der ersten Stunde des neuen Jahres in Großstädten keine Ausnahme. Mehr Informationen zur Feinstaubbelastung an Silvester finden Sie auf unserer Themenseite <a href="https://www.umweltbundesamt.de/themen/luft/luftschadstoffe/feinstaub/feinstaub-durch-silvesterfeuerwerk">"Feinstaub durch Silvesterfeuerwerk"</a> oder in unserem Hintergrundpapier <a href="https://www.umweltbundesamt.de/publikationen/silvesterfeuerwerk-einfluss-auf-mensch-umwelt">"Silvesterfeuerwerk: Einfluss auf Mensch und Umwelt"</a>.</p><p>Das Abbrennen von Feuerwerkskörpern verursacht hohe Feinstaubbelastungen in Deutschland: rund 2.050 Tonnen PM10 pro Jahr, davon 1.700 Tonnen PM2,5. Rund 75 Prozent dieser Emissionen erfolgen in der Silvesternacht. Diese Mengen entsprechen knapp einem Prozent der insgesamt in Deutschland freigesetzten PM10-Menge pro Jahr bzw. 2 Prozent bei PM2,5. Die errechneten Emissionen beruhen auf den statistisch gemeldeten Import- und Exportmengen der in Deutschland zugelassenen Feuerwerkskörper.</p><p>Wie schnell die Feinstaubbelastung nach dem Silvesterfeuerwerk abklingt, hängt vor allem von den Wetterverhältnissen ab. Kräftiger Wind hilft, die Schadstoffe rasch zu verteilen. Bei windschwachen Wettersituationen mit eingeschränktem vertikalen Luftaustausch verbleiben die Schadstoffe jedoch über viele Stunden in der Luft und reichern sich in den unteren Atmosphärenschichten an.</p><p>Die enormen Müllmengen, die am Neujahrstag auf Straßen und Plätzen liegen, stellen Städte und Gemeinden jedes Jahr vor große Herausforderungen.</p><p>Neben den sichtbaren Auswirkungen gibt es auch stille Opfer: Viele Haustiere reagieren panisch auf die lauten Knallgeräusche, und auch Wildtiere leiden unter dem plötzlichen Lärm und Licht – was zu erheblichen Störungen ihres natürlichen Verhaltens führen kann.</p><p>Silvester ist aber auch gefährlich für unser Gehör. Denn unser Ohr ist zwar ein exzellentes, aber auch empfindliches Wahrnehmungsorgan. Sehr laute Knalle und Explosionen durch Feuerwerk können unmittelbar zu dauerhaften Gehörschäden führen. In Deutschland erleiden jährlich zirka 8.000 Menschen zu Silvester Schädigungen des Innenohrs durch Feuerwerkskörper. Viele dieser Menschen behalten bleibende Schäden.</p><p><strong>Gesetzeslage: </strong>Die gesetzliche Grundlage für das Abfeuern von Feuerwerkskörpern stellt die Erste Verordnung zum Sprengstoffgesetz (1. SprengV) dar. Darin ist in § 22 (1) festgehalten, dass der Verkauf von Feuerwerkskörpern an Verbraucher*innen jeweils nur vom 29. bis 31. Dezember erlaubt ist. Abgebrannt werden dürfen Feuerwerkskörper nur am 31. Dezember und 1. Januar durch volljährige Personen (§ 23 (2)). In unmittelbarer Nähe von Kirchen, Krankenhäusern, Kinder- und Altersheimen sowie besonders brandempfindlichen Gebäuden oder Anlagen ist das Abbrennen von pyrotechnischen Gegenständen generell verboten (§ 23 (1).</p>
Der vom Landeserdbebendienst bearbeitete historische Erdbebenkatalog beinhaltet Angaben zu Erdbeben in und um Baden-Württemberg, auf dieser Ebene vom Jahr 1000 bis 1899. Kartenmäßig dargestellt sind alle Ereignisse im Gebiet 47.3°N bis 50.0°N und 7.2°E bis 10.75°E, die mit einer gewissen Wahrscheinlichkeit als Erdbeben identifiziert werden können. Explosionen und andere Ereignisse wie Felsstürze etc. sind in dieser Darstellung nicht enthalten. Im vorinstrumentellen Zeitalter stammen die Informationen aus Berichten und Meldungen unzähliger Quellen. Nicht spürbare Erdbeben sind also per se nicht enthalten. Bei der Erstellung des Katalogs wurde auf eine Vielzahl anderer Zusammenstellungen (Kataloge) zurück gegriffen. Die entsprechende Autorenschaft oder verantwortliche Agentur wird jeweils aufgeführt.
Der vom Landeserdbebendienst bearbeitete historische Erdbebenkatalog beinhaltet Angaben zu Erdbeben in und um Baden-Württemberg: vom Jahr 1000 bis 1899 alle im Katalog bekannten Erdbeben und für die Jahre 1900 bis 1993 die Ereignisse, die mindestens eine Magnitude von 3 oder eine Intensität von IV erreichten.Alle Ereignisse liegen im Gebiet 47.3°N bis 50.0°N und 7.2°E bis 10.75°E, und können mit einer gewissen Wahrscheinlichkeit als Erdbeben identifiziert werden. Explosionen und andere Ereignisse wie Felsstürze etc. sind nicht enthalten. Im vorinstrumentellen Zeitalter stammen die Informationen aus Berichten und Meldungen unzähliger Quellen. Nicht spürbare Erdbeben sind also per se nicht enthalten. Bei der Erstellung des Katalogs wurde auf eine Vielzahl anderer Zusammenstellungen (Kataloge) zurück gegriffen. Die entsprechende Autorenschaft oder verantwortliche Agentur wird jeweils aufgeführt.
This dataset consists of data products derived from broadband signal detection lists that have been processed for the certified infrasound stations of the International Monitoring System. More specifically, within the CTBT-relevant infrasound range (around 0.01-4 Hz), this dataset covers higher frequencies (1-3 Hz) and is therefore called the ‘hf’ product. The temporal resolution (time step and window length) is 5 min. For processing the infrasound data, the Progressive Multi-Channel Correlation (PMCC) array processing algorithm with a one-third octave frequency band configuration between 0.01 and 4 Hz has been used. The detected signals from the most dominant directions in terms of number of arrivals within a time window and the product-specific frequency range are summarized at predefined time steps. Along with several detection parameters such as the back azimuth, apparent velocity, or mean frequency, additional quantities for assessing the relative quality of the detection parameters are provided. The dataset is available as a compressed .zip file containing the yearly data products (.nc files, NetCDF format) of all certified stations (since 2003). Further information on the processing and details about the open-access data products can be found in: Hupe et al. (2022), IMS infrasound data products for atmospheric studies and civilian applications, Earth System Science Data, doi:10.5194/essd-14-4201-2022
This dataset consists of data products derived from broadband signal detection lists that have been processed for the certified infrasound stations of the International Monitoring System. More specifically, this dataset covers the dominant frequency range of microbaroms (0.15-0.35 Hz) and is therefore called the ‘mb_lf’ product. The temporal resolution (time step and window length) is 15 min. For processing the infrasound data, the Progressive Multi-Channel Correlation (PMCC) array processing algorithm with a one-third octave frequency band configuration between 0.01 and 4 Hz has been used. The detected signals from the most dominant directions in terms of number of arrivals within a time window and the product-specific frequency range are summarized at predefined time steps. Along with several detection parameters such as the back azimuth, apparent velocity, or mean frequency, additional quantities for assessing the relative quality of the detection parameters are provided. The dataset is available as a compressed .zip file containing the yearly data products (.nc files, NetCDF format) of all certified stations (since 2003). Further information on the processing and details about the open-access data products can be found in: Hupe et al. (2022), IMS infrasound data products for atmospheric studies and civilian applications, Earth System Science Data, doi:10.5194/essd-14-4201-2022
This dataset consists of data products derived from broadband signal detection lists that have been processed for the certified infrasound stations of the International Monitoring System. More specifically, this dataset covers, among other phenomena, the upper frequency range of microbaroms (0.45-0.65 Hz) and is therefore called the ‘mb_hf’ product. The temporal resolution (time step and window length) is 15 min. For processing the infrasound data, the Progressive Multi-Channel Correlation (PMCC) array processing algorithm with a one-third octave frequency band configuration between 0.01 and 4 Hz has been used. The detected signals from the most dominant directions in terms of number of arrivals within a time window and the product-specific frequency range are summarized at predefined time steps. Along with several detection parameters such as the back azimuth, apparent velocity, or mean frequency, additional quantities for assessing the relative quality of the detection parameters are provided. The dataset is available as a compressed .zip file containing the yearly data products (.nc files, NetCDF format) of all certified stations (since 2003). Further information on the processing and details about the open-access data products can be found in: Hupe et al. (2022), IMS infrasound data products for atmospheric studies and civilian applications, Earth System Science Data, doi:10.5194/essd-14-4201-2022
Hinweise zu Absatz 4.3.4.1.1 Tankcodierung "F" und 6.8.2.2.3 ADR / RID Explosionsdruckstoßfestigkeit (ehemals TRT 006) Allgemeiner Hinweis: Das hier beschriebene Verfahren des Nachweises der Explosionsdruckstoßfestigkeit ist ein zulässiges Alternativverfahren zum Nachweis nach DIN EN 14460. Tanks sind explosionsdruckstoßfest, wenn sie so gebaut sind, dass sie einer Explosion infolge eines Flammendurchschlags standhalten können, ohne dass sie undicht werden, wobei jedoch Verformungen zulässig sind. Der für den Nachweis der Explosionsdruckstoßfestigkeit maßgebliche Explosionsdruck ist stoffabhängig und abhängig von dem Ausgangsdruck, bei dem die Zündung im Tank erfolgt. Bei Transporttanks ist davon auszugehen, dass eine störungsbedingte Zündung durch eine betriebsmäßig freie Öffnung erfolgt. Für den Ausgangsdruck kann daher der Atmosphärendruck von 1000 mBar angesetzt werden. Für den Ausgangsdruck von 1000 mBar weist ein Gemisch von 8,0 Volumen-% Ethylen in Luft unter allen bislang untersuchten Stoffen 1) den höchsten Explosionsdruck von 9,7 Bar (absolut) auf. Ein Tank gilt auch als explosionsdruckstoßfest, wenn in einer experimentellen Prüfung an einem Baumuster eine Explosion mit dem o. g. Gemisch unter atmosphärischen Ausgangsbedingungen vom Tank ertragen wird, ohne dass er undicht wird, wobei jedoch Verformungen zulässig sind. Die Prüfung wird von der Bundesanstalt für Materialforschung und -prüfung, Berlin oder der Physikalisch-Technischen Bundesanstalt, Braunschweig durchgeführt. Ein Tank gilt ferner als explosionsdruckstoßfest, wenn die Berechnung aller drucktragenden Teile des Tanks auf der Grundlage eines maximalen Explosionsdruckes von mindestens 9,7 Bar (absolut) nach den Maßgaben der Europäischen Norm EN 14025 durchgeführt wird. Unter Berücksichtigung der guten Verformungsfähigkeit der eingesetzten Tankwerkstoffe (Bruchdehnung nach Absatz 6.8.2.1.12, 6.8.3.1.1 ADR/RID) ist eine Sicherheit gegen die Zugfestigkeit ( R m ) von 1,3 ausreichend. Gewölbte End- und Trennböden von Tanks können bei Einhaltung der nachfolgenden Bedingungen als explosionsdruckstoßfest betrachtet werden, auch wenn die Berechnung nach dem vorgenannten Regelwerk eine höhere Wanddicke als die des zylindrischen Teils angeben würde: der zylindrische Teil und der Boden sind aus einheitlichem Werkstoff, die Wanddicke ist für einen Prüfdruck von mindestens 4 Bar ausgelegt, die Wanddicke ist nicht kleiner als die Wanddicke des zylindrischen Teils, die sich aufgrund ihrer Auslegung auf die Explosionsdruckstoßfestigkeit ergibt, andere Zuschläge müssen ebenfalls Berücksichtigung finden. Ein Tank gilt auch als explosionsdruckstoßfest, wenn nachgewiesen ist, dass er einem Wasserdruckversuch mit dem 1,3-fachen des höchsten auftretenden Explosionsdruckes standhält, ohne dass er undicht wird, wobei jedoch Verformungen zulässig sind. Die Nachweise nach Nummer 3 und 4 gelten nur für Tanks ohne Einbauten, die den Tankquerschnitt nennenswert einschränken (insbesondere Schwallwände), die zu einer weiteren Druckerhöhung im Explosionsverlauf führen können. 1) Ausgenommen sind solche Stoffe, die zum Selbstzerfall neigen. Stand: 19. Juni 2025
Eine Substitution fossiler durch biogene Rohstoffe für stoffliche Anwendungen ist ein maßgeblicher Schritt zur Reduktion der anthropogenen CO2 Emissionen. Dabei sollte Biomasse im Sinne der Bioökonomie möglichst ganzheitlich und effizient genutzt werden, um die Flächeneffizient und den Beitrag zur Eindämmung des Klimawandels zu maximieren. Die hochwertige Verwendung von bisher kaum genutzten landwirtschaftlichen Reststoffen ist eine vielversprechende Methode zur Effizienzsteigerung. Die stoffliche Nutzung von Agrarreststoffen ist allerdings problematisch. Biogene Stoffe haben stets eine schwankenden Produktqualität. Deshalb ist eine Vorbehandlung und Auftrennung der Reststoffe auf verwertbare Bestandteile notwendig und ein entscheidender Schritt für die Weiternutzung. Deutschland und Taiwan stellen zwei Technologieführer mit hohem Umweltbewusstsein in ihrer jeweiligen Klimazone dar. Deutschland befindet sich in der gemäßigten Klimazone, während Taiwan sich in der (sub-)tropischen Klimazone befindet. Besonders vielversprechende landwirtschaftliche Reststoffe, die sich für eine stofflich Nutzung eignen und daher untersucht werden sollen, sind in der gemäßigten Klimazone Getreidestroh und in der (sub-)tropischen Klimazone Kakao- und Bananenschalen, sowie Reisstroh. Zudem fallen Tomatenpflanzenreste in beiden Klimazonen an. Im angestrebten Projekt wird der landwirtschaftliche Reststoff zunächst in einem hydrothermalen Aufbereitungsverfahren aufgeschlossen, um die anaerob kaum abzubauenden Fasern von den sehr gutvergärbaren Bestandteilen zu trennen. Dies wird in Deutschland mittels Thermodruckhydrolyse realisiert und in Taiwan mittel Überkritischer Wassermethode. Anschließend folgt eine Auftrennung in einem Flüssig/Fest-Separator. Der faserreiche Feststoff soll als Torfersatzprodukt und als Substrat zur mikrobiellen Zelluloseproduktion genutzt werden. Torf findet insbesondere im Gartenbau Anwendung, da er diverse Vorteile besitzt. Allerdings bildet sich Torf in Mooren nur sehr langsam und zur Gewinnung müssen die CO2-bindende Moore entwässert werden. Im Projekt soll untersucht werden in wie weit die produzierten Fasern Torf ersetzen können. Ein zweiter zu untersuchender Ansatz im Projekt ist es die Feststofffraktion als Nährmedium für Bakterienkulturen zu verwenden, die gezielt mikrobielle Zellulose produzieren. Die Flüssigkeit soll mithilfe innovativer zweistufiger Biogasanlage energetisch genutzt werden soll. Die Nutzung der Organik zur Biogasproduktion soll die Prozessenergie der energieintensiven Aufbereitung bereitstellen. Der TS-Gehalt der flüssigen Fraktion ist sehr gering, was bei herkömmlichen volldurchmischten Reaktoren eine lange Verweilzeit und somit ein sehr großes Reaktorvolumen verursacht. Um diese Nachteile zu reduzieren, sollen im Projekt zweistufige Reaktorsysteme untersucht werden. Während in Taiwan beide Fermenter volldurchmischt betrieben werden, wird in Deutschland der Methanreaktor als Festbettfermenter ausgeführt.
Vulkanische Gasemissionen sind bedeutsam für die lokale sowie globale Atmosphärenchemie. Die Entdeckung der Halogenchemie in Vulkanfahnen brachte neue Erkenntnisse über die Dynamik von Vulkanen und gibt möglicherweise Aufschluss über deren Eruptionspotential. Mehrere Feldmessungen führten zu großen Erfolgen in der Erforschung von reaktiven Halogenspezies (z. B. BrO, OClO, ClO). Jedoch ergaben sich auch viele Unklarheiten über die zugrundeliegenden Mechanismen und Umweltparameter wie Spurengas- und Aerosolzusammensetzung der Vulkanfahne, relative Feuchte oder der Bedeutung von potentieller NOX Emission. Der Einfluss sowie die Bedeutung dieser Parameter bezüglich der Halogenaktivierung (Umwandlung von Halogeniden in reaktive Halogenspezies (RHS)) ist essentiell für die Interpretation der Messdaten, um, z.B. (1) Rückschlüsse über die magmatischen Prozesse zu ziehen und Vorhersagen über Eruptionen mithilfe des Verhältnisses BrO zu SO2 zu machen, oder (2) den Einfluss auf die Zerstörung von Ozon, die Oxidation von Quecksilber oder die Verringerung der Lebensdauer von Methan in der Atmosphäre zu quantifizieren. Dieses Projekt soll dazu dienen, anhand eines vereinfachten Modells einer Vulkanfahne (SiO2 und Schwefelaerosole, H2O, CO2, SO2, HCl, HBr) unter kontrollierten Bedingungen die vulkanische Halogenchemie besser zu verstehen. Dazu soll in einer aus Teflon bestehenden Atmosphärensimulationskammer an der Universität Bayreuth Messungen durchgeführt werden. Die zur Messung der kritischen Parameter benötigten Instrumente können leicht in das Kammersystem integriert werden. RHS (BrO, ClO, OClO) werden mittels eines White Systems (Multi-Reflektionszelle) und Cavity Enhanced-DOAS nachgewiesen. Zum Nachweis anderer Halogenspezies (Br2, Cl2, HOBr und BrCl) wird FAPA-MS (Flowing Atmospheric-Pressure Afterglow Mass Spectrometry) verwendet. SO2, CO2, NOX und O3 werden mittels standardisierter Gasanalysatoren gemessen. Die Analyse der Zusammensetzung von Aerosolen insbesondere deren aufgenommene Menge an Halogenen wird durch Filterproben sowie Ionenchromatographie und SEM-EDX (Scanning Electron Microscope - Energy Dispersive X-ray Detector) gewährleistet. Die Kombination der verschiedenen Messtechniken ermöglicht die Erforschung von bisher schlecht Verstandenen heterogenen Reaktionen, welche höchstwahrscheinlich die Halogenaktivierung beeinflussen. Insbesondere die Einflüsse von (1) NOX und O3, (2) Ausgangsverhältnis HCl zu HBr, (3) relative Feuchte sowie (4) die Zusammensetzung der Vulkanaschepartikel (in Hinblick auf komplexere, reale Vulkanasche) auf die RHS Chemie, insbesondere des Mechanismus der sog. 'Brom-Explosion', werden innerhalb des vorgeschlagenen Projektes untersucht. Die Messergebnisse werden, gestützt durch das Chemie Box Modell CAABA/MECCA, in einem größeren Kontext interpretiert und werden helfen die natürlichen Vulkanprozesse besser zu verstehen.
| Origin | Count |
|---|---|
| Bund | 201 |
| Land | 31 |
| Zivilgesellschaft | 4 |
| Type | Count |
|---|---|
| Chemische Verbindung | 1 |
| Daten und Messstellen | 4 |
| Ereignis | 25 |
| Förderprogramm | 127 |
| Gesetzestext | 2 |
| Software | 1 |
| Text | 40 |
| unbekannt | 31 |
| License | Count |
|---|---|
| geschlossen | 57 |
| offen | 168 |
| unbekannt | 4 |
| Language | Count |
|---|---|
| Deutsch | 216 |
| Englisch | 31 |
| Resource type | Count |
|---|---|
| Archiv | 4 |
| Bild | 2 |
| Datei | 27 |
| Dokument | 23 |
| Keine | 131 |
| Multimedia | 1 |
| Webdienst | 4 |
| Webseite | 72 |
| Topic | Count |
|---|---|
| Boden | 131 |
| Lebewesen und Lebensräume | 142 |
| Luft | 142 |
| Mensch und Umwelt | 229 |
| Wasser | 116 |
| Weitere | 215 |