This dataset consists of data products derived from broadband signal detection lists that have been processed for the certified infrasound stations of the International Monitoring System. More specifically, this dataset covers, among other phenomena, the upper frequency range of microbaroms (0.45-0.65 Hz) and is therefore called the ‘mb_hf’ product. The temporal resolution (time step and window length) is 15 min. For processing the infrasound data, the Progressive Multi-Channel Correlation (PMCC) array processing algorithm with a one-third octave frequency band configuration between 0.01 and 4 Hz has been used. The detected signals from the most dominant directions in terms of number of arrivals within a time window and the product-specific frequency range are summarized at predefined time steps. Along with several detection parameters such as the back azimuth, apparent velocity, or mean frequency, additional quantities for assessing the relative quality of the detection parameters are provided. The dataset is available as a compressed .zip file containing the yearly data products (.nc files, NetCDF format) of all certified stations (since 2003). Further information on the processing and details about the open-access data products can be found in: Hupe et al. (2022), IMS infrasound data products for atmospheric studies and civilian applications, Earth System Science Data, doi:10.5194/essd-14-4201-2022
Aktueller Begriff des wissenschaftlichen Dienstes des Deutschen Bundestages. 2 Seiten. Auszug der ersten drei Seiten: Aktueller Begriff Weltraummüll Seitdem im Jahr 1957 mit Sputnik 1 das erste Raumfahrzeug das Raumfahrtzeitalter einläutete, wurden tausende Raketen und Satelliten für wissenschaftliche, kommerzielle und militärische Zwecke in Erdumlaufbahnen gebracht. Jeder dieser Flugkörper verursacht früher oder später Ab- fallprodukte. Unter dem Begriff Weltraummüll (engl.: orbital debris) werden Überreste der Raum- fahrt zusammengefasst, die den Planeten weiterhin umkreisen oder auf die Erde zurückfallen, in der Atmosphäre verglühen bzw. geplant ins Meer stürzen. Dazu zählen u.a. ausgediente Satelliten, abgetrennte Raketenteile und Bruchstücke von explodierten Raumflugkörpern. Aber auch abge- platzte Lackteile, bei Weltraumspaziergängen verlorene Werkzeuge oder Schlackepartikel aus Feststoffraketenmotoren stellen eine Gefahr für die Raumfahrt dar. Politische Initiativen für einen besseren Umgang mit Weltraummüll bedürfen der internationalen Koordination. Gefährdung Die US-Raumfahrtbehörde NASA verfolgt ständig alle Abfall-Objekte, die groß genug sind, um beobachtet zu werden, und führt über ihre Anzahl und ihre jeweiligen Flugbahnen in Katalogen Buch. Sie beziffert derzeit 17.000 Abfall-Stücke, die größer als zehn Zentimeter sind und im erd- nahen Weltraum ihre Bahnen ziehen. Dazu kommen geschätzte 200.000 Objekte mit einer Größe zwischen einem und zehn Zentimetern sowie Millionen Schrottteilchen mit geringeren Durchmes- sern. All diese Objekte bewegen sich mit hohen Geschwindigkeiten – je nach Höhe 7-10 Kilometer pro Sekunde, also 25.000-36.000 km/h –, da sie anderenfalls auf die Erde zurückfallen würden. Sie stellen deshalb eine Bedrohung für Raumschiffe, aktive Satelliten und die Internationale Raumstation ISS dar. Das rasante Tempo bewirkt, dass bereits kleine Objekte allein aufgrund ihrer Bewegung eine Energie besitzen, die mit der einer Handgranate vergleichbar ist. Daher können im schlimmsten Fall schon Einschläge von millimeterkleinen Objekten einen Satelliten unbrauchbar machen. Eine weitere Gefahr geht von dem sogenannten Kaskadeneffekt aus. Bei jedem Einschlag oder Zusammenstoß im All entstehen neue Trümmerteile, die durch die Kollision in die unterschiedlichs- ten Umlaufbahnen geraten und wiederum eine neue Gefahr darstellen. Der Weltraummüll könnte sich daher, wenn die Zahl der Schrottteilchen eine gewisse Höhe überschritten hat, im Zuge weite- rer Kollisionen beschleunigt selbst vermehren. Ereignisse der letzten Jahre zeigen, dass die Gefährdung real ist: Im März 2009 musste die Inter- nationale Raumstation ISS zwei konkreten Bedrohungen durch heranfliegende Objekte begegnen, indem einmal ein Ausweichmanöver vorgenommen, einmal die Astronauten in die angedockte So- jus-Kapsel evakuiert wurden. Mitte Februar 2009 kollidierten über Sibirien der ausgediente russi- sche Militärsatellit „Kosmos 2251“ und ein amerikanischer Iridium-Kommunikationssatellit. Zwar kommen Beinahe-Kollisionen häufiger vor, und werden teils durch Ausweichmanöver vermieden. Dieses unvorhergesehene Ereignis stellte jedoch die erste tatsächliche Kollision zweier Satelliten auf Erdumlaufbahnen dar. Die Trümmerwolke besteht aus vielen hundert Einzelteilen. Zuvor hatte China im Januar 2007 eine Mittelstreckenrakete als Anti-Satellitenwaffe (ASAT) getestet, mit der der chinesische Wettersatellit Fengyun 1C absichtlich zerstört wurde. Das Resultat dieses Tests waren tausende neue Schrottteile, die sich nun im erdnahen Orbit befinden und wiederum andere Raumfahrzeuge gefährden. Nr. 31/09 (31. März 2009) ______________________________________________________________________________ Das Dokument gibt nicht notwendigerweise die Auffassung des Deutschen Bundestages oder seiner Verwaltung wieder und ist urheberrechtlich geschützt. Eine Verwertung bedarf der Zustimmung durch die Leitung der Abteilung W.[.. next page ..]-2- Die Wahrscheinlichkeit einer Kollision von Weltraumschrott mit einem Raumflugkörper hängt von dessen Größe, seiner Umlaufbahn, seiner Aufenthaltsdauer sowie der Dichte der Schrottstücke ab. Besonders gefährdet ist der erdnahe Orbit (low earth orbit - LEO) in einigen hundert Kilometern Höhe. Hier bewegen sich sowohl die meisten Satelliten als auch der Hauptteil des Schrotts. Dieser Bereich wird von der bemannten Raumfahrt, astronomischen Satelliten (Hubble-Teleskop) sowie Erderkundungs-, Spionage- und Wettersatelliten bevorzugt genutzt. Im medium earth orbit (MEO) zwischen 1.000 und 20.000 Kilometern Höhe sind vor allem die Kommunikations- und Navigati- onssatelliten angesiedelt. Der geostationäre Orbit (GEO) 36.000 km über dem Äquator ist dadurch ausgezeichnet, dass die Umlaufzeit um die Erde auf dieser Höhe genau 24 Stunden beträgt, so dass die hier stationierten Satelliten in Bezug auf die Erdoberfläche ortsfest sind. Daher befinden sich hier besonders viele Satelliten für Telefon, Radio- und Fernsehprogramme. Gegenmaßnahmen Die effektivste Maßnahme zur Vermeidung von Weltraummüll wäre es, Raumfahrzeuge so zu kon- struieren, dass die Anzahl der über ihre gesamte Lebensdauer entstehenden Abfallteile auf ein Minimum reduziert wird. Eine einfache Maßnahme zur Erhöhung der passiven Sicherheit liegt hin- gegen in der Entwicklung spezieller Schutzschilde für Raumfahrzeuge. Weitere bereits gängige Vorsichtsmaßnahmen sind z.B. das Ablassen von Treibstoff bei ausgedienten Raumfahrzeugen zur Vermeidung ungewollter Explosionen. Außerdem ist es mittlerweile Standard, dass aktive erd- nahe Satelliten eine gewisse Menge an Zusatztreibstoff mit sich führen, der ausschließlich für Aus- weichmanöver während der Betriebsdauer des Satelliten vorgesehen ist. Space Shuttles und die ISS haben hierbei den Vorteil, dass sie immer wieder neu mit Treibstoff versorgt werden. Damit Ausweichmanöver überhaupt durchgeführt werden können, ist es allerdings notwendig, die Schrottteile zu erkennen und ihre Flugbahnen zu verfolgen. Deshalb sammelt die NASA Beobach- tungen von kosmischen Abfallstücken im „US Space Surveillance Network“. Auch die Europäische Weltraumagentur (ESA) verfolgt Pläne zum Aufbau eines eigenen Überwachungszentrums für Weltraummüll. Detektiert werden können Bruchstücke mit modernen Radaranlagen oder Telesko- pen. Des Weiteren existieren internationale Richtlinien, die festlegen, dass Raumfahrzeuge und Raketenstufen von ihrer Umlaufbahn entfernt werden müssen, sobald ihr Auftrag beendet ist. Demnach sollten Satelliten auf dem geostationären Orbit noch genügend Treibstoff übrig behalten, um sich selbst auf einen 300 km höheren „Friedhofsorbit“ bringen zu können. Hier sind Kollisionen unwahrscheinlicher. Eine Alternative für niedriger fliegende Satelliten liegt darin, ihre Flugbahn nach und nach gezielt abzusenken, bis sie durch den Reibungswiderstand in der oberen Atmo- sphäre nach einer gewissen Zeit (z.B. 25 Jahre) automatisch verglühen. Rechtliche Situation Zur Entwicklung des Weltraumrechts schuf die Generalversammlung der Vereinten Nationen 1959 den Weltraumausschuss COPUOS (Committee on the Peaceful Uses of Outer Space), der sich mit der Ausarbeitung einer internationalen Rechtsordnung für den Weltraum befassen sollte. Im Jahr 1993 wurde zudem mit dem Inter-Agency Space Debris Coordination Committee (IADC) ein inter- nationals Gremium verschiedener Luft- und Raumfahrtbehörden geschaffen, in dem neben ESA und NASA u.a. das Deutsche Zentrum für Luft- und Raumfahrt (DLR) mitwirkt. Auf IADC- Richtlinien aufbauend konnten im Jahr 2007 Richtlinien zur Verringerung des Weltraumschrotts von den Vereinten Nationen verabschiedet werden. Das Europäische Parlament forderte in einer Entschließung vom Juli 2008 einen EU- Verhaltenskodex für Weltraumobjekte in Form eines rechtsverbindlichen Dokuments. Auch der Deutsche Bundestag hat sich bereits in der vergangenen Wahlperiode mit dem Thema Weltraum- schrott auseinandergesetzt (BT-Drs. 15/1371). Dabei wurden kooperative Maßnahmen in Bezug auf die Vermeidung von Weltraumschrott sowie zur Verringerung der Wahrscheinlichkeit von Kolli- sionen zwischen Weltraumobjekten empfohlen. Quellen und weiterführende Literatur / Links: - UN Committee on the Peaceful Uses of Outer Space: http://www.oosa.unvienna.org/oosa/COPUOS/copuos.html - Richtlinien der UN / COPUOS 2007: http://www.oosa.unvienna.org/pdf/reports/ac105/AC105_890E.pdf - IADC - Inter-Agency Space Debris Coordination Committee: http://www.iadc-online.org/ - ESA – Europ. Weltraumorganisation: „Im Orbit wird es eng“. www.esa.int/esaCP/ESA4CE7708D_Germany_0.html - NASA – National Aeronautics and Space Administration (USA), Orbital Debris Program Office. Im Internet: http://www.orbitaldebris.jsc.nasa.gov/ - Raumfahrer Net e.V. http://www.raumfahrer.net/raumfahrt/raumsonden/Weltraumschrott.shtml - Spiegel Online. https://www.spiegel.de/wissenschaft/weltall/0,1518,418813,00.html - TU Braunschweig: www.ilr.ing.tu-bs.de/forschung/raumfahrt/spacedebris Verfasser/in: Dr. Daniel Lübbert, Gregor Strate, Prakt. Julia Tenner, Fachbereich WD 8, Umwelt, Naturschutz, Reaktorsicherheit, Bildung und Forschung
This dataset consists of data products derived from broadband signal detection lists that have been processed for the certified infrasound stations of the International Monitoring System. More specifically, this dataset covers the dominant frequency range of microbaroms (0.15-0.35 Hz) and is therefore called the ‘mb_lf’ product. The temporal resolution (time step and window length) is 15 min. For processing the infrasound data, the Progressive Multi-Channel Correlation (PMCC) array processing algorithm with a one-third octave frequency band configuration between 0.01 and 4 Hz has been used. The detected signals from the most dominant directions in terms of number of arrivals within a time window and the product-specific frequency range are summarized at predefined time steps. Along with several detection parameters such as the back azimuth, apparent velocity, or mean frequency, additional quantities for assessing the relative quality of the detection parameters are provided. The dataset is available as a compressed .zip file containing the yearly data products (.nc files, NetCDF format) of all certified stations (since 2003). Further information on the processing and details about the open-access data products can be found in: Hupe et al. (2022), IMS infrasound data products for atmospheric studies and civilian applications, Earth System Science Data, doi:10.5194/essd-14-4201-2022
Der vom Landeserdbebendienst bearbeitete historische Erdbebenkatalog beinhaltet Angaben zu Erdbeben in und um Baden-Württemberg: vom Jahr 1000 bis 1899 alle im Katalog bekannten Erdbeben und für die Jahre 1900 bis 1993 die Ereignisse, die mindestens eine Magnitude von 3 oder eine Intensität von IV erreichten.Alle Ereignisse liegen im Gebiet 47.3°N bis 50.0°N und 7.2°E bis 10.75°E, und können mit einer gewissen Wahrscheinlichkeit als Erdbeben identifiziert werden. Explosionen und andere Ereignisse wie Felsstürze etc. sind nicht enthalten. Im vorinstrumentellen Zeitalter stammen die Informationen aus Berichten und Meldungen unzähliger Quellen. Nicht spürbare Erdbeben sind also per se nicht enthalten. Bei der Erstellung des Katalogs wurde auf eine Vielzahl anderer Zusammenstellungen (Kataloge) zurück gegriffen. Die entsprechende Autorenschaft oder verantwortliche Agentur wird jeweils aufgeführt.
Atombomben auf Hiroshima und Nagasaki: Bedeutung für den Strahlenschutz Im August 1945 wurden in der Endphase des Zweiten Weltkrieges zum ersten und einzigen Mal Atomwaffen in einem militärischen Konflikt eingesetzt . Die erste von zwei amerikanischen Atombomben wurde am 6. August über der japanischen Stadt Hiroshima abgeworfen. Der zweite Bombenangriff auf die Stadt Nagasaki erfolgte drei Tage später. Das heutige Wissen über die gesundheitlichen Risiken ionisierender Strahlung basiert zu einem wichtigen Teil auf den Beobachtungen an den Überlebenden der Atombombenabwürfe. Insbesondere auf den Ergebnissen der sogenannten Life Span Study, einer epidemiologischen Kohortenstudie an den Atombombenüberlebenden. Die Studienergebnisse bilden eine wichtige Grundlage für den Strahlenschutz, insbesondere für die Festlegung von Grenzwerten. Auch in Zukunft sind wichtige Erkenntnisse aus dieser Studie zu erwarten. Historie Atombombenabwürfe: Auswirkungen Historie Friedensdenkmal in Hiroshima: Gedenkstätte für den ersten kriegerischen Einsatz einer Atombombe Während des Pazifikkriegs zwischen Japan und China beschloss die amerikanische Regierung, den Export von Erdöl und Stahl nach Japan einzuschränken, um die Kriegsausweitung nach Südostasien zu verhindern. Dieses wirtschaftliche Embargo führte am 7. Dezember 1941 zum japanischen Angriff auf Pearl Harbor und zur Ausweitung des Pazifikkrieges auf Amerika. Die USA begannen daraufhin im Jahr 1942 mit der Entwicklung und dem Bau der Atombombe ("Manhattan Project"), die im Juli 1945 in Los Alamos erfolgreich getestet wurde ("Trinity Test"). Nach fast vier Jahren andauernder Kriegsführung und der Ablehnung eines Kapitulationsultimatums seitens Japans bat die US-Militärführung um die Erlaubnis für den Einsatz der Atombombe. Obwohl viele an der Entwicklung beteiligte Wissenschaftler davon abrieten, wurde 1945 beschlossen, die Atombombe einzusetzen. Als Ziel für den Abwurf am 6. August wurde Hiroshima gewählt. Es war Sitz des Hauptquartiers der 2. Hauptarmee Japans und diente gleichzeitig zur Lagerung kriegswichtiger Güter. Zudem befand sich dort kein Kriegsgefangenenlager (mit US-Insassen). Als Ziel für den Abwurf der zweiten Atombombe am 9. August war ursprünglich die für die Rüstungsindustrie wichtige Stadt Kokura vorgesehen. Wegen schlechter Sicht wurde jedoch Nagasaki angeflogen, das Sitz des Rüstungskonzerns Mitsubishi war. Atombombenabwürfe: Auswirkungen Durch die Druck- und Hitzewellen (von mindestens 6.000 °C ) waren Sekunden nach den Abwürfen 80% der Innenstädte völlig zerstört. Die daraufhin aufsteigenden Atompilze bestanden aus aufgewirbeltem Staub und Asche, an die sich radioaktive Teilchen anhefteten. Diese Staubwolke ging ca. 20 Minuten später als radioaktiver Niederschlag (sogenannter Fall-out ) auf die Umgebung nieder. Die Opfer der Atombombenabwürfe kamen zum einen unmittelbar durch die Explosion ums Leben, zum anderen verstarben sie an den Akut- und Spätschäden der ionisierenden Strahlung. Eine eindeutige Unterscheidung der Todesursachen nach Verbrennungen, Verletzungen oder Strahlung war unmöglich, da auch die Druck- und Hitzewellen eine Rolle spielten. Da alle wichtigen Aufzeichnungen und Register in den Städten zerstört wurden, ist die genaue Anzahl der durch die Explosion Getöteten bis heute unklar. Nach Schätzungen starben in Hiroshima bis zu 80.000 und in Nagasaki bis zu 40.000 Menschen direkt, ebenso viele wurden verletzt. Abschätzung der Einwohnerzahl sowie der akuten Todesfälle in beiden Städten zum Zeitpunkt des Abwurfes bis 4 Monate danach Stadt Geschätzte Einwohnerzahl zum Zeitpunkt der Abwürfe Geschätzte Anzahl akuter Todesfälle Hiroshima 340.000 bis 350.000 90.000 bis 166.000 Nagasaki 250.000 bis 270.000 60.000 bis 80.000 Quelle: www.rerf.jp Die Anzahl der Überlebenden, die ionisierender Strahlung ausgesetzt waren, wurde in einem Zensus der japanischen Regierung auf etwa 280.000 Personen geschätzt. Als Maß für die Strahlenbelastung der Überlebenden verwendet die Radiation Effects Research Foundation (RERF) die mittlere, gewichtete Strahlendosis des Darms (Gewichtung: Gamma- Dosis des Darms + 10*Neutronen- Dosis des Darms). Diese hängt vom Aufenthaltsort zum Zeitpunkt der Explosion ab und steigt mit der Nähe zum Zentrum der Explosion (dem sogenannten Hypozentrum) stark an. Schätzung der mittleren gewichteten Strahlendosis der Überlebenden in Abhängigkeit von der Distanz zum Hypozentrum in beiden Städten Gewichtete Strahlendosis des Darms in Gray ( Gy ) Distanz Hypozentrum Hiroshima Distanz Hypozentrum Nagasaki 0,005 Gy 2.500 m 2.700 m 0,05 Gy 1.900 m 2.050 m 0,1 Gy 1.700 m 1.850 m 0,5 Gy 1.250 m 1.450 m 1 Gy 1.100 m 1.250 m Quelle: www.rerf.jp Epidemiologische Studien Um die Effekte von ionisierender Strahlung auf den Menschen zu erforschen, wurde 1950 eine Kohortenstudie ( Life Span Study ) begonnen, in die ca. 120.000 Überlebende einbezogen wurden. Zudem wurden mit Teilen dieser Kohorte folgende kleinere Kohortenstudien durchgeführt: eine Studie mit 20.000 Teilnehmenden, die regelmäßig körperlichen Untersuchungen unterzogen werden ( The Adult Health Survey ) eine Studie mit 77.000 Nachkommen von Überlebenden (F1-Studie) eine Studie mit 3.600 Teilnehmenden, die der ionisierenden Strahlung vor ihrer Geburt (in utero) ausgesetzt waren (In-utero study ) sowie eine Studie, in der anhand von 1.703 vorhandenen Blutproben von Überlebenden genetische Veränderungen erforscht werden. Die Life Span Study hat wegen ihrer großen Studienpopulation, einer relativ präzisen individuellen Dosisabschätzung, einem langen Beobachtungszeitraum und der Beobachtung zahlreicher Krankheiten eine große Bedeutung für die Erforschung der gesundheitlichen Auswirkungen ionisierender Strahlung . Im Jahr 2009 waren insgesamt ca. 38 % der Studienpopulation noch am Leben (Altersdurchschnitt 78 Jahre). Von denen, die zum Zeitpunkt der Abwürfe unter 10 Jahre alt waren, lebten im Jahr 2009 noch ca. 83 % . 2 Akute Strahlenschäden ( deterministische Strahlenwirkungen) Unmittelbar nach den Atombombenabwürfen erlitten die Betroffenen akute Strahlenschäden, sogenannte deterministische Strahlenwirkungen . Dabei handelt es sich um Gewebereaktionen, die durch das massive Absterben von Zellen verursacht werden und erst oberhalb einer Schwellendosis auftreten. Zu den deterministischen Strahlenwirkungen gehören beispielsweise die akute Strahlenkrankheit und Fehlbildungen nach Bestrahlung in-utero. Spätschäden (stochastische Strahlenwirkungen) Jahre bis Jahrzehnte nach den Atombombenabwürfen traten bei den Überlebenden Spätschäden, sogenannte stochastische Strahlenwirkungen (wie z.B. Krebs, Leukämien und genetische Wirkungen ), auf. Diese können auch von Strahlendosen verursacht werden, die unterhalb der Schwelle für deterministische Strahlenwirkungen liegen. Stochastisch bedeutet, dass diese Wirkungen nur mit einer bestimmten Wahrscheinlichkeit auftreten. Sie resultieren aus DNA -Mutationen (Schädigungen der Erbsubstanz der Zellen), die Krebs oder Leukämien auslösen können und die erst nach Jahren als klinisches Krankheitsbild in Erscheinung treten. Mutationen in den Ei- und Samenzellen (Keimzellen) können in den nachfolgenden Generationen Fehlbildungen oder Erbkrankheiten zur Folge haben. In den epidemiologischen Studien werden diese stochastischen Strahlenwirkungen untersucht. Bedeutung für den Strahlenschutz Die Daten aus verschiedenen epidemiologischen Studien werden von nationalen und internationalen wissenschaftlichen Gremien, wie der japanisch-amerikanischen Radiation Effects Research Foundation (RERF), ausgewertet und spielen eine wichtige Rolle für die Bewertung des Strahlenrisikos, z. B. durch das wissenschaftliche Komitee über die Effekte der atomaren Strahlung der Vereinten Nationen ( UNSCEAR ) und auch durch die deutsche Strahlenschutzkommission ( SSK ). Die Ergebnisse der Life Span Study , der größten Studie an Atombombenüberlebenden, bilden eine wichtige Grundlage für die Abschätzung strahlenbedingter Risiken und die Ableitung von Grenzwerten für Strahlenbelastungen und Strahlenschutzregelungen. Da die Atombombenüberlebenden jedoch einer hohen akuten Strahlenexposition ausgesetzt waren, ist die Abschätzung der Risiken durch niedrige oder chronische Strahlenexpositionen (wie sie heute eher relevant sind) aufgrund dieser Daten schwierig und wird bis heute kontrovers diskutiert. Die Aussagekraft der Life Span Study steigt mit zunehmender Beobachtungsdauer und es ist mit einer noch genaueren Beschreibung der Dosis-Wirkungs-Beziehung zu rechnen ( z. B. hinsichtlich Alters- und Geschlechtsunterschieden bei der Wirkung ionisierender Strahlung ). Literatur 1 Hsu, W. L., D. L. Preston, M. Soda, H. Sugiyama, S. Funamoto, K. Kodama, A. Kimura, N. Kamada, H. Dohy, M. Tomonaga, M. Iwanaga, Y. Miyazaki, H. M. Cullings, A. Suyama, K. Ozasa, R. E. Shore and K. Mabuchi (2013). The incidence of leukemia, lymphoma and multiple myeloma among atomic bomb survivors : 1950-2001 . Radiat Res 179(3): 361-382. 2 Grant, E. J., A. Brenner, H. Sugiyama, R. Sakata, A. Sadakane, M. Utada, E. K. Cahoon, C. M. Milder, M. Soda, H. M. Cullings, D. L. Preston, K. Mabuchid and K. Ozasa (2017). Solid Cancer Incidence among the Life Span Study of Atomic Bomb Survivors: 1958–2009. Radiat Res 187(5): 513-537. 3 Preston, D. L., E. Ron, S. Tokuoka, S. Funamoto, N. Nishi, M. Soda, K. Mabuchi and K. Kodama (2007). Solid cancer incidence in atomic bomb survivors: 1958-1998 . Radiat Res 168(1): 1-64. 4 Ozasa, K., Y. Shimizu, A. Suyama, F. Kasagi, M. Soda, E. J. Grant, R. Sakata, H. Sugiyama and K. Kodama (2012). Studies of the mortality of atomic bomb survivors, Report 14, 1950-2003: an overview of cancer and noncancer diseases . Radiat Res 177(3): 229-243. Stand: 04.08.2025
This dataset consists of data products derived from broadband signal detection lists that have been processed for the certified infrasound stations of the International Monitoring System. More specifically, within the CTBT-relevant infrasound range (around 0.01-4 Hz), this dataset covers higher frequencies (1-3 Hz) and is therefore called the ‘hf’ product. The temporal resolution (time step and window length) is 5 min. For processing the infrasound data, the Progressive Multi-Channel Correlation (PMCC) array processing algorithm with a one-third octave frequency band configuration between 0.01 and 4 Hz has been used. The detected signals from the most dominant directions in terms of number of arrivals within a time window and the product-specific frequency range are summarized at predefined time steps. Along with several detection parameters such as the back azimuth, apparent velocity, or mean frequency, additional quantities for assessing the relative quality of the detection parameters are provided. The dataset is available as a compressed .zip file containing the yearly data products (.nc files, NetCDF format) of all certified stations (since 2003). Further information on the processing and details about the open-access data products can be found in: Hupe et al. (2022), IMS infrasound data products for atmospheric studies and civilian applications, Earth System Science Data, doi:10.5194/essd-14-4201-2022
Eine Substitution fossiler durch biogene Rohstoffe für stoffliche Anwendungen ist ein maßgeblicher Schritt zur Reduktion der anthropogenen CO2 Emissionen. Dabei sollte Biomasse im Sinne der Bioökonomie möglichst ganzheitlich und effizient genutzt werden, um die Flächeneffizient und den Beitrag zur Eindämmung des Klimawandels zu maximieren. Die hochwertige Verwendung von bisher kaum genutzten landwirtschaftlichen Reststoffen ist eine vielversprechende Methode zur Effizienzsteigerung. Die stoffliche Nutzung von Agrarreststoffen ist allerdings problematisch. Biogene Stoffe haben stets eine schwankenden Produktqualität. Deshalb ist eine Vorbehandlung und Auftrennung der Reststoffe auf verwertbare Bestandteile notwendig und ein entscheidender Schritt für die Weiternutzung. Deutschland und Taiwan stellen zwei Technologieführer mit hohem Umweltbewusstsein in ihrer jeweiligen Klimazone dar. Deutschland befindet sich in der gemäßigten Klimazone, während Taiwan sich in der (sub-)tropischen Klimazone befindet. Besonders vielversprechende landwirtschaftliche Reststoffe, die sich für eine stofflich Nutzung eignen und daher untersucht werden sollen, sind in der gemäßigten Klimazone Getreidestroh und in der (sub-)tropischen Klimazone Kakao- und Bananenschalen, sowie Reisstroh. Zudem fallen Tomatenpflanzenreste in beiden Klimazonen an. Im angestrebten Projekt wird der landwirtschaftliche Reststoff zunächst in einem hydrothermalen Aufbereitungsverfahren aufgeschlossen, um die anaerob kaum abzubauenden Fasern von den sehr gutvergärbaren Bestandteilen zu trennen. Dies wird in Deutschland mittels Thermodruckhydrolyse realisiert und in Taiwan mittel Überkritischer Wassermethode. Anschließend folgt eine Auftrennung in einem Flüssig/Fest-Separator. Der faserreiche Feststoff soll als Torfersatzprodukt und als Substrat zur mikrobiellen Zelluloseproduktion genutzt werden. Torf findet insbesondere im Gartenbau Anwendung, da er diverse Vorteile besitzt. Allerdings bildet sich Torf in Mooren nur sehr langsam und zur Gewinnung müssen die CO2-bindende Moore entwässert werden. Im Projekt soll untersucht werden in wie weit die produzierten Fasern Torf ersetzen können. Ein zweiter zu untersuchender Ansatz im Projekt ist es die Feststofffraktion als Nährmedium für Bakterienkulturen zu verwenden, die gezielt mikrobielle Zellulose produzieren. Die Flüssigkeit soll mithilfe innovativer zweistufiger Biogasanlage energetisch genutzt werden soll. Die Nutzung der Organik zur Biogasproduktion soll die Prozessenergie der energieintensiven Aufbereitung bereitstellen. Der TS-Gehalt der flüssigen Fraktion ist sehr gering, was bei herkömmlichen volldurchmischten Reaktoren eine lange Verweilzeit und somit ein sehr großes Reaktorvolumen verursacht. Um diese Nachteile zu reduzieren, sollen im Projekt zweistufige Reaktorsysteme untersucht werden. Während in Taiwan beide Fermenter volldurchmischt betrieben werden, wird in Deutschland der Methanreaktor als Festbettfermenter ausgeführt.
Anlage 10/2 - Einzelausnahme Nummer für die innerstaatliche Beförderung von Kampfmitteln mit chemischen Kampfstoffen mit Straßenfahrzeugen Hiermit wird für [Name und Anschrift des Antragstellers] gemäß § 5 [Absatz 6 oder 7] 1) der Gefahrgutverordnung Straße, Eisenbahn und Binnenschifffahrt ( GGVSEB ) in der jeweils geltenden Fassung 2) und gemäß § 46 Absatz 2 der Straßenverkehrs-Ordnung in der jeweils geltenden Fassung 2) in Verbindung mit der Allgemeinverfügung der BAM zur Klassifizierung von Kampfmitteln für die innerstaatliche Beförderung gefährlicher Güter auf der Straße durch die staatlichen Kampfmittelräumdienste der Länder - Allgemeinverfügung Kampfmittel - vom 27. Juni 2011 ( VkBl. 2011 Seite 454) für die innerstaatliche Beförderung gefährlicher Güter auf der Straße folgende Ausnahme zugelassen: I. Abweichungen Abweichend von Absatz 2.2.1.1.2 Unterabsatz 1, Absatz 2.2.1.2.2, Unterabschnitt 4.1.1.3, Abschnitt 4.1.4, Unterabschnitt 5.2.1.5 und Kapitel 6.1 der Anlagen A und B zu dem Übereinkommen vom 30. September 1957 über die internationale Beförderung gefährlicher Güter auf der Straße ( ADR ) in der jeweils geltenden Fassung 2) und abweichend von § 35 bis 35c der GGVSEB dürfen die in der Anlage aufgeführten Kampfmittel mit chemischen Kampfstoffen vom Zwischenlager [Anschrift] zur Entsorgungsstätte [Anschrift] am [Datum] in der Zeit vom [Zeitangabe] bis [Zeitangabe] auf der Straße befördert werden, wenn die nachstehenden Nebenbestimmungen eingehalten werden. 1) = Anpassung nach Betroffenheit des Ressorts. 2) = Bitte Datum und Fundstelle der letzten Neufassung oder Änderung konkret angeben. II. Nebenbestimmungen 1. Bedingungen 1.1 Fahrzeug/Transportbehälter Die Kampfmittel mit chemischen Kampfstoffen sind mit den nachfolgend genannten explosionsdruckstoßfesten Transportkugeln 3) /Transportbehältern 4) mit einem für die Umsetzung der vorgesehenen Explosivstoffmasse entsprechenden Dichtheitsverhältnis in einem dafür zugelassenen Sprengstoffäquivalent sowie auf einem darauf ausgerichteten Fahrzeug zu befördern: Transportkugel/-behälter 5) Bauart: Hersteller: Typ: Herstellungs-Nummer: Zugelassenes Sprengstoffäquivalent: Transportfahrzeug/Anhänger Amtliches Kennzeichen des Transportfahrzeugs: Amtliches Kennzeichen des Anhängers: 1.2 Mengenbegrenzung Es ist durch geeignete Maßnahmen sicherzustellen, dass die Menge des nach Nummer 1.1 angegebenen Sprengstoffäquivalents eingehalten wird. Hierzu zählen z. B. gesicherte Datenblätter oder grundsätzlich aussagefähige Röntgenbilder der Kampfmittel, anhand der die Nettoexplosivstoffmasse zu bestimmen ist. 1.3 Verwendung eines Anhängers Bei Verwendung eines Anhängers dürfen nur Kraftfahrzeuge eingesetzt werden, bei denen die zulässige Anhängelast ausreichend ist. Kraftfahrzeuge, bei denen die Anhängelast nur mit Einschränkungen der Steigfähigkeit erreicht wird, dürfen nicht eingesetzt werden. 1.4 Bestimmung der Fahrstrecke Die Beförderung ist der Entsorgungsstätte (Empfänger) unter Angabe der geplanten Eintreffzeit anzuzeigen. Vor Antritt der Fahrt ist in eigener Verantwortung des Antragstellers zu überprüfen, ob die Beförderung auf der vorgeschriebenen Fahrstrecke durchgeführt werden kann. Gegebenenfalls erforderliche Nutzung von Umleitungsstrecken darf nur dann erfolgen, wenn dies gefahrlos möglich ist. 1.5 Verwendung der Transportkugel/des Transportbehälters Die Transportkugel/der Transportbehälter ist vor jeder Beförderung durch eine Fachkundige Person hinsichtlich der Funktionsfähigkeit zu überprüfen. Die Dichtungen sind bei Beschädigungen bzw. gemäß Herstellerangabe zu erneuern. Nach Zwischenfällen wie Unfällen oder Explosionen ist eine zusätzliche Dichtigkeitskontrolle zu veranlassen. 1.6 Transportführer Bei der Beförderung von Kampfmitteln mit chemischen Kampfstoffen ist immer ein "Transportführer" (Fachkundige Person mit zusätzlicher Fachkunde für den Umgang mit Kampfmitteln mit chemischen Kampfstoffen) einzusetzen. Fahren die Fahrzeuge in einer Kolonne, reicht es aus, wenn sich nur auf einem Fahrzeug ein Transportführer befindet. Dieser kann sich auch in einem Begleitfahrzeug (Fahrzeug ohne Kampfstoffbeladung) befinden. Er muss über eine Schulung gemäß Abschnitt 8.2.1 ADR verfügen. Die Bescheinigung nach Unterabschnitt 8.2.2.8 ADR ist mitzuführen. 1.7 Fahrzeugbesatzung Die Fahrzeugbesatzung besteht mindestens aus einem Fahrzeugführer und einem weiteren Mitglied der Fahrzeugbesatzung, das in der Lage sein muss, den Fahrzeugführer abzulösen. Fahrzeugführer und ein weiteres Mitglied der Fahrzeugbesatzung müssen an einer Schulung gemäß Kapitel 8.2 ADR (Basiskurs und Aufbaukurs Klasse 1) erfolgreich teilgenommen haben und im Besitz einer gültigen ADR-Schulungsbescheinigung gemäß Unterabschnitt 8.2.2.8 ADR sein. Diese Bescheinigung ist mitzuführen. 1.8 Begleitfahrzeuge Die Beförderungseinheiten mit Kampfmitteln mit chemischen Kampfstoffen sind auf Autobahnen durch ein dahinter und auf sonstigen Straßen mit Gegenverkehr durch ein davor und ein dahinter fahrendes mehrspuriges Fahrzeug der zuständigen Einsatzkräfte zu begleiten. 1.9 Zusätzliche persönliche Schutzausrüstung In der Beförderungseinheit und in den Begleitfahrzeugen sind mitzuführen: mindestens eine Notfallfluchtmaske nach Abschnitt 5.4.3 ADR mit gültig geprüften stoffgeeigneten Filtern für jedes Mitglied der Fahrzeugbesatzung und Kampfstoffmessgerät (nur in einem Begleitfahrzeug). 1.10 Fahrtunterbrechung Wird eine Fahrtunterbrechung notwendig, so ist eine Mindestentfernung von 300 m von bewohnten Orten oder Menschenansammlungen einzuhalten. Während eines Gewitters oder wenn sich ein Gewitter in gefährlicher Nähe befindet, haben die Fahrzeuge die Fahrt zu unterbrechen. Die Fahrzeuge sind möglichst auf einem geeigneten Platz abseits des fließenden Verkehrs abzustellen. Die Fahrzeugbesatzung hat das Fahrzeug zu verlassen und trotzdem weiterhin zu überwachen. 1.11 Kennzeichnung Die Beförderungseinheit ist gemäß Abschnitt 8.1.3 in Verbindung mit Absatz 5.3.2.1.1 ADR mit orangefarbenen Tafeln zu kennzeichnen. Zusätzlich ist das Fahrzeug mit dem Transportbehälter mit Großzetteln (Placards) gemäß Absatz 5.3.1.1.1 in Verbindung mit Unterabschnitt 5.3.1.5 ADR nach Muster 1 ergänzt um die Unterklasse 1.2, Verträglichkeitsgruppe K sowie zusätzlich nach Muster 6.1 zu kennzeichnen. 1.12 Rauchverbot Während der Beförderung (Ortsveränderung) gilt ein absolutes Rauchverbot. 1.13 Beladung Die Beladung der Transportkugel/des Transportbehälters mit Kampfmitteln mit chemischen Kampfstoffen hat nach den jeweiligen Angaben des Herstellers der Transportkugel/des Transportbehälters zu erfolgen. 1.14 Ersthelfer Es ist sicherzustellen, dass der Transportführer und die Fahrzeugbesatzung der Beförderungseinheit über eine Ersthelferausbildung mit zusätzlicher Unterweisung über das Verhalten bei Unfällen mit giftigen Stoffen verfügen. 1.15 Fernmeldemittel In der Beförderungseinheit und ggf. in den Begleitfahrzeugen sind geeignete Fernmeldemittel zur schnellen Verbindungsaufnahme mitzuführen und einsatzbereit zu halten. 1.16 Verpackungen Die Kampfmittel mit chemischen Kampfstoffen sind in gasdichte Verpackungen zu verstauen und so in der Transportkugel/in dem Transportbehälter zu fixieren, dass schädliche Lageveränderungen während der Beförderung ausgeschlossen sind. 2. Auflagen Diese Einzelausnahme oder eine Kopie der Einzelausnahme ist bei jeder Beförderung mitzuführen und bei einer Kontrolle zuständigen Personen unaufgefordert zur Prüfung vorzulegen. 3) = Zugelassene Behälter nach Stand 5/2013 sind: MECV-- Mobile Explosion Containment Vessel 5 (bitte anpassen). 4) = Zugelassene Behälter nach Stand 5/2013 sind: BOFOS Dynasafe AB (bitte anpassen). 5) = Exakte Modelldaten eintragen. III. Widerrufsvorbehalt Diese Ausnahmezulassung erfolgt unter dem Vorbehalt des jederzeitigen Widerrufs für den Fall, dass sich die auferlegten Sicherheitsvorkehrungen als unzureichend zur Einschränkung der von der Beförderung ausgehenden Gefahren erweisen.] Ort, Datum Stempel, Unterschrift Anlage: Kampfmittel mit chemischen Kampfstoffen [beifügen] Stand: 19. Juni 2025
Vulkanische Gasemissionen sind bedeutsam für die lokale sowie globale Atmosphärenchemie. Die Entdeckung der Halogenchemie in Vulkanfahnen brachte neue Erkenntnisse über die Dynamik von Vulkanen und gibt möglicherweise Aufschluss über deren Eruptionspotential. Mehrere Feldmessungen führten zu großen Erfolgen in der Erforschung von reaktiven Halogenspezies (z. B. BrO, OClO, ClO). Jedoch ergaben sich auch viele Unklarheiten über die zugrundeliegenden Mechanismen und Umweltparameter wie Spurengas- und Aerosolzusammensetzung der Vulkanfahne, relative Feuchte oder der Bedeutung von potentieller NOX Emission. Der Einfluss sowie die Bedeutung dieser Parameter bezüglich der Halogenaktivierung (Umwandlung von Halogeniden in reaktive Halogenspezies (RHS)) ist essentiell für die Interpretation der Messdaten, um, z.B. (1) Rückschlüsse über die magmatischen Prozesse zu ziehen und Vorhersagen über Eruptionen mithilfe des Verhältnisses BrO zu SO2 zu machen, oder (2) den Einfluss auf die Zerstörung von Ozon, die Oxidation von Quecksilber oder die Verringerung der Lebensdauer von Methan in der Atmosphäre zu quantifizieren. Dieses Projekt soll dazu dienen, anhand eines vereinfachten Modells einer Vulkanfahne (SiO2 und Schwefelaerosole, H2O, CO2, SO2, HCl, HBr) unter kontrollierten Bedingungen die vulkanische Halogenchemie besser zu verstehen. Dazu soll in einer aus Teflon bestehenden Atmosphärensimulationskammer an der Universität Bayreuth Messungen durchgeführt werden. Die zur Messung der kritischen Parameter benötigten Instrumente können leicht in das Kammersystem integriert werden. RHS (BrO, ClO, OClO) werden mittels eines White Systems (Multi-Reflektionszelle) und Cavity Enhanced-DOAS nachgewiesen. Zum Nachweis anderer Halogenspezies (Br2, Cl2, HOBr und BrCl) wird FAPA-MS (Flowing Atmospheric-Pressure Afterglow Mass Spectrometry) verwendet. SO2, CO2, NOX und O3 werden mittels standardisierter Gasanalysatoren gemessen. Die Analyse der Zusammensetzung von Aerosolen insbesondere deren aufgenommene Menge an Halogenen wird durch Filterproben sowie Ionenchromatographie und SEM-EDX (Scanning Electron Microscope - Energy Dispersive X-ray Detector) gewährleistet. Die Kombination der verschiedenen Messtechniken ermöglicht die Erforschung von bisher schlecht Verstandenen heterogenen Reaktionen, welche höchstwahrscheinlich die Halogenaktivierung beeinflussen. Insbesondere die Einflüsse von (1) NOX und O3, (2) Ausgangsverhältnis HCl zu HBr, (3) relative Feuchte sowie (4) die Zusammensetzung der Vulkanaschepartikel (in Hinblick auf komplexere, reale Vulkanasche) auf die RHS Chemie, insbesondere des Mechanismus der sog. 'Brom-Explosion', werden innerhalb des vorgeschlagenen Projektes untersucht. Die Messergebnisse werden, gestützt durch das Chemie Box Modell CAABA/MECCA, in einem größeren Kontext interpretiert und werden helfen die natürlichen Vulkanprozesse besser zu verstehen.
Hinweise zu Absatz 4.3.4.1.1 Tankcodierung "F" und 6.8.2.2.3 ADR / RID Explosionsdruckstoßfestigkeit (ehemals TRT 006) Allgemeiner Hinweis: Das hier beschriebene Verfahren des Nachweises der Explosionsdruckstoßfestigkeit ist ein zulässiges Alternativverfahren zum Nachweis nach DIN EN 14460. Tanks sind explosionsdruckstoßfest, wenn sie so gebaut sind, dass sie einer Explosion infolge eines Flammendurchschlags standhalten können, ohne dass sie undicht werden, wobei jedoch Verformungen zulässig sind. Der für den Nachweis der Explosionsdruckstoßfestigkeit maßgebliche Explosionsdruck ist stoffabhängig und abhängig von dem Ausgangsdruck, bei dem die Zündung im Tank erfolgt. Bei Transporttanks ist davon auszugehen, dass eine störungsbedingte Zündung durch eine betriebsmäßig freie Öffnung erfolgt. Für den Ausgangsdruck kann daher der Atmosphärendruck von 1000 mBar angesetzt werden. Für den Ausgangsdruck von 1000 mBar weist ein Gemisch von 8,0 Volumen-% Ethylen in Luft unter allen bislang untersuchten Stoffen 1) den höchsten Explosionsdruck von 9,7 Bar (absolut) auf. Ein Tank gilt auch als explosionsdruckstoßfest, wenn in einer experimentellen Prüfung an einem Baumuster eine Explosion mit dem o. g. Gemisch unter atmosphärischen Ausgangsbedingungen vom Tank ertragen wird, ohne dass er undicht wird, wobei jedoch Verformungen zulässig sind. Die Prüfung wird von der Bundesanstalt für Materialforschung und -prüfung, Berlin oder der Physikalisch-Technischen Bundesanstalt, Braunschweig durchgeführt. Ein Tank gilt ferner als explosionsdruckstoßfest, wenn die Berechnung aller drucktragenden Teile des Tanks auf der Grundlage eines maximalen Explosionsdruckes von mindestens 9,7 Bar (absolut) nach den Maßgaben der Europäischen Norm EN 14025 durchgeführt wird. Unter Berücksichtigung der guten Verformungsfähigkeit der eingesetzten Tankwerkstoffe (Bruchdehnung nach Absatz 6.8.2.1.12, 6.8.3.1.1 ADR/RID) ist eine Sicherheit gegen die Zugfestigkeit ( R m ) von 1,3 ausreichend. Gewölbte End- und Trennböden von Tanks können bei Einhaltung der nachfolgenden Bedingungen als explosionsdruckstoßfest betrachtet werden, auch wenn die Berechnung nach dem vorgenannten Regelwerk eine höhere Wanddicke als die des zylindrischen Teils angeben würde: der zylindrische Teil und der Boden sind aus einheitlichem Werkstoff, die Wanddicke ist für einen Prüfdruck von mindestens 4 Bar ausgelegt, die Wanddicke ist nicht kleiner als die Wanddicke des zylindrischen Teils, die sich aufgrund ihrer Auslegung auf die Explosionsdruckstoßfestigkeit ergibt, andere Zuschläge müssen ebenfalls Berücksichtigung finden. Ein Tank gilt auch als explosionsdruckstoßfest, wenn nachgewiesen ist, dass er einem Wasserdruckversuch mit dem 1,3-fachen des höchsten auftretenden Explosionsdruckes standhält, ohne dass er undicht wird, wobei jedoch Verformungen zulässig sind. Die Nachweise nach Nummer 3 und 4 gelten nur für Tanks ohne Einbauten, die den Tankquerschnitt nennenswert einschränken (insbesondere Schwallwände), die zu einer weiteren Druckerhöhung im Explosionsverlauf führen können. 1) Ausgenommen sind solche Stoffe, die zum Selbstzerfall neigen. Stand: 19. Juni 2025
| Origin | Count |
|---|---|
| Bund | 195 |
| Land | 28 |
| Zivilgesellschaft | 4 |
| Type | Count |
|---|---|
| Chemische Verbindung | 1 |
| Daten und Messstellen | 4 |
| Ereignis | 25 |
| Förderprogramm | 127 |
| Gesetzestext | 2 |
| Software | 1 |
| Text | 36 |
| unbekannt | 28 |
| License | Count |
|---|---|
| geschlossen | 51 |
| offen | 166 |
| unbekannt | 5 |
| Language | Count |
|---|---|
| Deutsch | 209 |
| Englisch | 31 |
| Resource type | Count |
|---|---|
| Archiv | 4 |
| Bild | 2 |
| Datei | 27 |
| Dokument | 20 |
| Keine | 132 |
| Multimedia | 1 |
| Webdienst | 2 |
| Webseite | 69 |
| Topic | Count |
|---|---|
| Boden | 127 |
| Lebewesen und Lebensräume | 161 |
| Luft | 138 |
| Mensch und Umwelt | 222 |
| Wasser | 114 |
| Weitere | 188 |