Das Projekt "Viren-Infektionen des Menschen durch die Umwelt: Validierung neuer molekularbiologischer Verfahren" wird/wurde gefördert durch: Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit (BMUB), Umweltbundesamt (UBA). Es wird/wurde ausgeführt durch: Ruhr-Universität Bochum - Verwaltung der Medizinischen Einrichtungen - Dezernat 7.Über neu entwickelte Nachweisverfahren werden immer mehr humanpathogene, durch Wasser überragbare Viren erkannt, die über fäkale Verunreinigungen in Gewässer gelangen können. Epidemiologische Studien lassen vermuten, dass die beim Baden in Badegewässern beobachteten Gesundheitsrisiken (Durchfallerkrankungen) hauptsächlich durch Viren verursacht werden. Bakterielle Indikatoren (z.B.E.coli) haben sich als mikrobiologische Indikatoren für fäkale Verunreinigungen von Gewässern durchaus bewährt, haben jedoch den Nachteil, dass sie mit dem Vorkommen von Viren nicht zuverlässig korrelieren. Eine Verbesserung der hygienisch-mikrobiologischen Situation durch wasserwirtschaftliche Maßnahmen darf daher nicht nur auf die Reduktion der Indikatorbakterien ausgerichtet sein, sondern sollte auch Krankheitserreger, insbesondere Viren erfassen. Dazu sind ergänzende, quantitative Maßstäbe für eine belastbare Bewertung des Vorkommens viraler Erreger notwendig. Untersuchungen von Viren in Umweltproben sind methodisch anspruchsvoll und erfordern die Festlegung definierter Mess- und Bewertungsvorschriften. Methode: Basierend auf den bisher sehr heterogenen und größtenteils nichtvalidierten Methoden zum Nachweis von Viren in Gewässern sollen Kriterien erarbeitet werden, um Mindestanforderungen zum Nachweis von Viren in Umweltproben zu definieren, die als belastbare Grundlage für die Erstellung von Risikobewertungen dienen können. Dies beinhaltet sowohl die Auswahl repräsentativer Referenzerregern, die Qualitätssicherung der virologischen und molekularbiologischenNachweismethoden, die Praktikabilität der Messmethoden unter Normalbedingungen und in Belastungssituationen, sowie die Bewertung der Messergebnisse für die Festlegung von Wasserqualitätszielen. Ziel: Die Gewährleistung validierter Messergebnisse über dasVorkommen von Viren in Gewässern zur Erstellung von Systemanalysen und daraus abgeleiteter Risikobewertungen für die Einhaltung nationaler Gesundheitsziele.
Schwimmen und Baden ist ausgesprochen gesund, und die Sorge vor Gesundheitsgefahren sollte das Vergnügen daran nicht trüben – weder im Gewässer noch im Becken. Dazu kann man auch selbst beitragen, im Sinne der Baderegeln, die man schon in der Schule gelernt hat. Worauf müssen aber die Behörden achten? Die am besten bekannten Risiken beim Schwimmen und Baden sind Badeunfälle: Sie passieren meist, wenn das eigene Leistungsvermögen überschätzt wird, durch Sprünge in zu flaches Wasser oder anderes riskantes Verhalten – insbesondere unter Alkoholeinfluss. In Badegewässern kommen Gefährdungen durch Strömung oder Schifffahrt hinzu. Baden in Gewässern In Deutschland gibt es ca. 2000 Badegewässer. Die überwiegende Zahl der Badestellen liegt an Seen oder an den Küsten von Nord- und Ostsee, nur ein kleiner Teil an Flüssen. Da natürliche Gewässer eine vielfältige Nutzung erfahren, gibt es in Badegewässern auch mikrobiologische Risiken durch Einträge aus Kläranlagen und dem Oberflächenabfluss landwirtschaftlicher Flächen zu beachten. Besonders nach Starkregenfällen kann es deshalb zu einem erhöhten Vorkommen fäkaler Verunreinigungen und somit Krankheitserregern kommen. Insbesondere Flüsse sind davon betroffen und daher meist nicht zum Baden geeignet. Ein weiteres Gesundheitsrisiko in Gewässern können Massenentwicklungen von Cyanobakterien („Blaualgenblüten“) sein. Sie scheiden giftige Stoffe aus, die unter anderem Übelkeit und Hautreitzungen hervorrufen können. Baden in Schwimmbädern In das Badewasser von Schwimmbädern werden durch die Badegäste Verunreinigungen und Mikroorganismen (z.B. Bakterien) eingebracht. Die Mehrzahl dieser Mikroorganismen ist harmlos. Es können aber auch Erreger übertragbarer Krankheiten darunter sein. Die Verunreinigungen und Mikroorganismen werden in der Badewasseraufbereitung ständig aus dem Badewasser entfernt. Danach wird dem gereinigten Badewasser Chlor oder Hypochlorit zur Desinfektion zugegeben, bevor es zurück ins Becken geleitet wird. Die Desinfektion bewirkt, dass von den Krankheitserregern, die ein Badegast möglicherweise ins Wasser abgibt, innerhalb von 30 Sekunden nur noch einer von10.000 infektiös sind. In Kleinbadeteichen fehlt diese schnelle Desinfektion. Deshalb kommt es hier auf eine deutlich geringere Badegastdichte an, um das Infektionsrisiko zu verhindern. In Schwimm- und Badebecken entstehen aus Chlor und Schweiß oder Urin Desinfektionsnebenprodukte - insbesondere wenn die Badegäste nicht kurz vorher duschen und die Toilette benutzen. Aufgaben des Umweltbundesamtes Aufgabe des UBA ist es, die wissenschaftlichen Grundlagen und Maßstäbe für die Wasserqualität stets aktuell zu halten und weiterzuentwickeln. Es bewertet unter Anderem gesundheitliche Risiken, die mit der Desinfektion von Schwimmbeckenwasser – oder mit ihrem Fehlen – einhergehen können. Wir entwickeln Konzepte, wie solche Risiken zu vermeiden und zu beherrschen sind. Dabei unterliegt das UBA im Bereich der Schwimm- und Badebecken sowie der Kleinbadeteiche der Fachaufsicht des Bundesministeriums für Gesundheit. Zusammen mit dem Gesundheitsministerium nutzt es die Beratung durch die Badewasserkommission. Im Bereich der Badegewässer unterliegt das UBA der Fachaufsicht des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit. Wir führen die jährlich von den Bundesländern erhobenen Daten zur Qualität der Badegewässer zusammen. Dann prüfen wir sie auf Plausibilität leiten sie an die EU-Kommission weiter, die den Badegewässerbericht daraus erstellt. Forschung Wichtige Grundlage für die Aufgaben des UBA ist die eigene Laborforschung an den Standorten Bad Elster und Berlin. Hier untersuchen die Beschäftigten das Vorkommen von Krankheitserregern, geeignete Nachweismethoden, Vorkommen und Toxikologie von Desinfektionsnebenprodukten, Vorkommen von toxischen Cyanobakterien und bewerten die Risiken.
Das Projekt "Molekularbiologische Analytik fäkaler Wasserverunreinigungen - FWF UNIFIED" wird/wurde ausgeführt durch: Technische Universität Wien, Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften (E166).Die Verfügbarkeit von Wasser mit ausreichender Qualität hat eine enorme Bedeutung für die Gesundheit der Menschen. Seit den bahnbrechenden Arbeiten von Robert Koch, vor mehr als 100 Jahren, basiert die Analyse der mikrobiologischen Wasserqualität vorwiegend auf kultivierungsabhängigen Nachweisen von Indikatororganismen. In diesem Zusammenhang liefern fäkale Standardindikatoren wie etwa Escherichia coli oder Enterokokken wichtige Informationen über den generellen Grad der fäkalen Beeinflussung in Wasser. Aussagen über die Herkunft der fäkalen Verschmutzung (z.B. Tier vs. Mensch) sind in der Regel jedoch nicht möglich. Steigende Anforderungen im Bereich der mikrobiologischen Gefährdungs- und Risikoanalyse lassen die umfassende Analyse fäkaler Belastungen in Wasser und Gewässern (d.h. Quantifizierung der fäkalen Verschmutzungen und gleichzeitige Zuordnung zu möglichen Verursachern) immer bedeutender werden. Die alleinige Anwendung fäkaler Standardindikatoren wird diesem Anspruch jedoch nicht gerecht. Abundante bestandsbildende intestinale Bakterien (BIB) stellen diesbezüglich vielversprechende alternative Indikatoren dar. Erste Hinweise deuten darauf hin, dass BIB abgrenzbare phylogenetische Linien im Vergleich zu mikrobiellen Populationen in der Umwelt (z.B. in anaeroben Böden und Sedimenten) darstellen und darüber hinaus eine starke Wirtsanpassung, aufgrund co-evolutionärer Vorgänge, besitzen. Ihre überaus große genetische Diversität konnte jedoch aufgrund methodischer Restriktionen in der Vergangenheit nicht aufgelöst werden. Alternative molekularbiologische Methoden zur Detektion und Herkunftsbestimmung fäkaler Belastungen basieren daher auf einer völlig unzureichenden Datenbasis. Das ZIEL des vorgelegten Forschungsantrages ist eine molekulare öko-phylogenetische Grundlage zum Vorkommen und Verteilung von BIB Gemeinschaften in Wirbeltieren zu schaffen und ihre Eignung als molekulare Marker zur Analyse fäkaler Kontamination zu testen. Die Verwirklichung dieses Zieles wird durch Anwendung revolutionärer DNA-Sequenzierungstechniken, umfassender bioinformatischer Werkzeuge und einer durch Hypothesen geleiteten Forschung gewährleistet. In PHASE - 1 wird eine molekulare ultra-hochauflösende 16S-rRNA-Gen Sequenzdatenbank erstellt. Dabei werden Fäkalproben von Säugetieren, Mensch, Vögeln, Reptilien, Amphibien und Fischen als auch Umweltproben (vor allem Böden), aus genau charakterisierten Bereichen, analysiert. In PHASE - 2 wird eine umfassende Analyse der erhobenen Daten, die Etablierung der molekularen öko-phylogenetischen Sequenzgrundlage und die Überprüfung der Hypothesen durchgeführt (Abgrenzbarkeit, Wirtsanpassung und Co-Evolution von BIB und Wirten). Darüber hinaus wird die Möglichkeit des Designs molekularer Analysemethoden zur umfassenden Analyse fäkaler Verschmutzungen aufgrund der etablierten Datenbasis getestet. Die vorgeschlagenen Forschungsaktivitäten sollen erstmals eine systematische molekularbiologische Grundlage und ein Verständnis zu
Das Projekt "Fäkales Sourcetracking entlang des kommunalen Abwasserpfades" wird/wurde gefördert durch: Der Wissenschaftsfonds (FWF). Es wird/wurde ausgeführt durch: Technische Universität Wien, Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften (E166).Seit den bahnbrechenden Arbeiten von Robert Koch vor mehr als 100 Jahren, basiert die Analyse der mikrobiologischen Wasserqualität vorwiegend auf kultivierungsabhängigen Nachweisen von Indikatororganismen. In diesem Zusammenhang liefern fäkale Standardindikatoren (z.B. E.coli, Enterokokken) Information über den generellen Grad der fäkalen Beeinflussung von Wasser. Aussagen über die Herkunft der Verschmutzung (z.B. Tier vs. Mensch) sind in der Regel jedoch nicht möglich. Für das zielgerichtete Management von Wasserressourcen wird in neuerer Zeit jedoch dem Herkunftsnachweis fäkaler Beeinträchtigungen (sogenanntes mikrobielles Source Tracking) immer größere Bedeutung zugemessen. Wirtsspezifische genetische Bacteroidetes 16S rRNA Marker (GeBaM) stellen diesbezüglich eine vielversprechende Möglichkeit zur Realisierung des sogenannten quantitativen mikrobiellen Source Trackings (QMST) dar. Der Schwerpunkt der Forschungsarbeiten war jedoch bis dato auf die Entwicklung von quantitativen PCR Verfahren zum genetischen GeBaM Nachweis gelegt. Obwohl das Wissen über Vorkommen, Persistenz und Resistenz von GeBaM eine wesentliche Voraussetzung von QMST Anwendungen in aquatischen Habitaten darstellt, ist derzeit kaum Information diesbezüglich vorhanden - grundlegender Wissensbedarf ist daher gegeben. Das eingereichte Forschungsprojekt hat den kommunalen Abwasserpfad (d.h. Abwasserableitung - Abwassereinigung - Vorfluter - Gewässer) als bedeutenden Faktor fäkaler Kontamination von Gewässern/Wasserressourcen zum Gegenstand. Das quantitative Vorkommen und Verhalten von GeBaM aus kommunalen Abwasserquellen soll im Zuge der Abwasserreinigung und dem Eintrag in den Vorfluter studiert werden. Im Detail werden folgende Fragestellung untersucht: i) quantitatives Vorkommen von unspezifischen und human spezifischen intestinalen g/h-GeBaM im Abwasser in Abhängigkeit der angeschlossenen Einwohnerzahl, Art der Kanalisation und Jahreszeit; ii) quantitatives Verhalten von GeBaM im Zuge unterschiedlicher Bedingungen während der Abwasserreinigung im Vergleich zu Standardindikatoren und ausgewählten Krankheitserregern; iii) Schicksal von GeBaM im Verlauf der Schlammstabilisierung und Entsorgung; iv) Effekte der weiterführende Abwasserreinigung (d.h. Membranfiltration, Ozonierung, UV-Behandlung) auf die GeBaM Konzentration; v) Untersuchung der ökologischen Faktoren die die Persistenz von GeBaM in Vorflutern bestimmen; sowie vi) Etablierung und Validierung einfacher Modelle zur Vorhersage der Persistenz von GeBaM in Vorflutern/Gewässern gemäßigter Breitengrade. Bei der Abwasserentsorgung liegt der Untersuchungsschwerpunkt auf Anlagentypen die im österreichischen und bayerischen Raum von Bedeutung sind. Die Ergebnisse sollen die grundlegende wissenschaftliche Basis für zukünftige QMST Anwendungen im Bereich zielgerichtetes Management von Wasserressourcen im urbanen Raum der gemäßigten Klimazone etablieren.
Das Projekt "Transport und Verbleib von Fäkalkeimen in Fließgewässern nach Mischwasserentlastungen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Karlsruher Institut für Technologie (KIT), Engler-Bunte-Institut, Lehrstuhl für Wasserchemie und Wassertechnologie.Das zentrale Ziel des Projektes ist die Verknüpfung der Transportprozesse in Fließgewässern mit den Vorgängen in der Biozönose. Am Beispiel der Isar sollen die Wechselwirkungen pathogener Keime aus fäkalen Verunreinigungen in der Bulkphase von Fließgewässern mit dem benthischen Biofilm untersucht und aufgeklärt werden. Die Hauptprozesse sollen durch Labor- und Felduntersuchungen quantifiziert, kinetisch formuliert sowie anschließend in das mathematische Modell zur Simulation des Keimwachstums und -transportverhaltens integriert werden. Vorangegangene Untersuchungen haben aufgezeigt, dass Biofilme für den Rückhalt von pathogenen Keimen in Trinkwassersysteme eine Rolle spielen. Bisher existieren jedoch nur begrenzt Informationen über den Beitrag des benthischen Biofilms in Fließgewässern zum Rückhalt von Pathogenen. Im Vergleich zur Bulkphase eines Wasserkörpers bietet der Biofilm, ähnlich wie das Sediment, ein erhöhtes Angebot an Nährstoffen und Kohlenstoffverbindungen (Huminstoffe). Zusätzlich stellt der Biofilm einen Schutz vor hohen Strahlungsintensitäten (UV-Anteil des Sonnenlichtes) und Strömungsbedingungen der Bulkphase dar. Daher ist davon auszugehen, dass die günstigen Bedingungen im Biofilm die Entwicklung eines sogenannten Reservoir für pathogene Keime begünstigen können. Für die Aufklärung der Wechselwirkungen mit dem Biofilmkompartiment soll neben dem Übergang der Keime aus der Bulkphase in den benthischen Biofilm auch der Verbleib der Keime im Biofilm mittels einer Labor-Versuchsanlage (Fließrinne; Länge = 1 m, Breite = 0,1 m), Konfokaler Laser-Scanning-Mikroskopie (CLSM) und Particle Image Velocimetry (PIV) von Tracer-Keimen untersucht werden. Ergänzend erfolgt die Quantifizierung der Indikatorkeime (Fäkalkoliforme und Enterokokken) mit Hilfe klassischer Verfahren wie Filtrations- und Kultivierungstechniken, als auch real time-PCR und Mikrotiterplatten. Zusätzlich zu den Laborversuchen, wird im Sommer eine Natur-Versuchsrinne (Länge = 10 m, Breite = 0,5 m) in Betrieb gesetzt, um die Sedimentationsraten und Verteilung der Indikatororganismen zu bestimmen. Anhand der erhobenen Messdaten wird ein Modell entwickelt, welches die wesentlichen Transport- und Verteilungsprozesse pathogener Keime im Fließgewässer abbildet. Wechselwirkungen zwischen Bulkphase und Biofilm werden unter Integration einer Absterbekinetik ebenfalls durch das Modell beschrieben. So soll der Verbleib von mikrobiellen (Indikator-)Keimen - und damit die mögliche Belastung mit Pathogenen - in einem durch festes Sohlsubtrat geprägtem Gewässer zuverlässig abgebildet werden.
Das Projekt "Mikrobiologisch-hygienischer Zustand des Neusiedlersees - Pilotstudie Hydrologie - Hyd-POD" wird/wurde ausgeführt durch: Technische Universität Wien, Institut für Wasserbau und Ingenieurhydrologie (E222).Im vergangenen Jahr (2013) kam es aufgrund des neu anzuwendenden Beurteilungsverfahrens der mikrobiologisch-hygienischen Wasserqualität gemäß EU-Badegewässerrichtlinie am Neusiedler See in Podersdorf zur Einstufung einer mangelhaften Badewasserqualität. Aus diesem Grund wurde erst kürzlich die Erstellung eines mikrobiologisch-hygienischen Gesamtkonzeptes für den Neusieder See dringend angeraten (Kirschner et al 2014). Aus hydrologischer Sicht ist die detaillierte Erfassung und Erklärung des Abwassersystems in Podersdorf eine notwendige Voraussetzung für die Frachtberechnungen der einzelnen möglichen Quellen der vorhandenen mikrobiologischen Fäkalkontamination. Diese Bearbeitungen bilden den Schwerpunkt dieses Projektes.
Neue Regeln bei der Ãberwachung der Badegewässer Ab der Badesaison 2008 werden die Badegewässer in Deutschland gemäß der neuen EG-Badegewässerrichtlinie überwacht. Die neue Richtlinie fordert von den Mitgliedstaaten ein Umdenken vom passiven Überwachen zum aktiven Management der Badestellen für einen besseren Schutz der Badenden. So muss für jedes Badegewässer ein so genanntes Badegewässerprofil erstellt werden, das – unter anderem – alle Verschmutzungsquellen, die die Qualität des Wassers beeinflussen könnten, aufzeigt. Baden in Gewässern im Freien macht Spaß und ist gesund. Aber: Abwässer oder Abschwemmungen von landwirtschaftlichen Flächen dürfen Badegewässer nicht so stark verschmutzen, dass Krankheitserreger bei Badenden Erkrankungen auslösen können. Seit 1976 gibt es daher eine EG-Richtlinie „über die Qualität der Badegewässer”. Diese überwacht und verbessert die Qualität der Badegewässer in Europa. Neben physikalisch-chemischen Parametern gab es nach dieser Richtlinie bislang hauptsächlich zwei mikrobiologische Parameter zur Überwachung der Wasserqualität: „ Escherichia coli ” und „coliforme Bakterien”. Erhöhte Konzentrationen von „ E. coli ” deuten auf fäkale Verunreinigungen und damit auf das Vorhandensein von Krankheitserregern im Badegewässer hin. „Coliforme Bakterien” können sich bei günstigen Umweltbedingungen im Badegewässer vermehren und sind daher kein eindeutiger Anzeiger für Krankheitserreger. Eher weisen sie auf eine allgemeine Verschmutzung der Badegewässer hin. Deshalb werden sie in der neuen Richtlinie nicht mehr zur Überwachung herangezogen. Badegewässer, die nach der EG-Richtlinie überwacht werden, müssen bei der EU-Kommission angemeldet werden. Jedes Jahr werden die Ergebnisse zur hygienischen Qualität der Badegewässer in einem Badegewässeratlas veröffentlicht. Die Wasserqualität der Badegewässer in Deutschland hat sich seit Inkrafttreten der EU-Badegewässerrichtlinie 1976 sehr verbessert und ist seit 2001 auf hohem Niveau stabil. Im Durchschnitt halten 94 Prozent der Badestellen an Binnengewässern die mikrobiologischen Grenzwerte ein, 80 Prozent die strengeren Leitwerte für sehr gute Wasserqualität. Bei Küstenbadegewässern waren es sogar 98 beziehungsweise 88 Prozent. Im Jahr 2007 gab es vor allem bei den Küstengewässern einen Einbruch bei der Wasserqualität. Das lag hauptsächlich an dem Parameter „coliforme Bakterien”. Nur 92,1 Prozent der Binnenbadegewässer und 93,7 Prozent der Küstenbadegewässer erfüllten die Grenzwerte. Schuld war wahrscheinlich das Wetter mit einem sehr warmen Frühling und einem verregnetem Sommer. Die Folge waren günstige Wassertemperaturen für das Wachstum bestimmter „coliformer Bakterien” sowie Regenfälle, die vermehrt Verunreinigungen in die Badegewässer spülten. In Deutschland gab es 2007 1.939 gemeldete Badegewässer, davon 1.589 Binnengewässer und 350 Küstengewässer an Nord- und Ostsee. Die Zahl der Badegewässer ist nicht konstant. Jedes Jahr werden einige Badegewässer abgemeldet und andere angemeldet. Die Abmeldung kann vielfältige Ursachen haben wie Baumaßnahmen, Nutzungsänderung oder eine zu geringe Zahl von Badenden. Im April 2006 leitete die EU-Kommission gegen Deutschland und elf weitere Mitgliedsstaaten ein Vertragsverletzungsverfahren ein. Grund: Die EU-Kommission meint, die hohe Zahl an abgemeldeten Badegewässern sei auf die schlechte Wasserqualität zurückzuführen; Gewässer würden gezielt abgemeldet, um schlechte Ergebnisse im Badegewässeratlas zu vermeiden, obwohl die Badestellen weiterhin aktiv genutzt würden. Deutschland entkräftete diese Vorwürfe und begründete in einem Bericht an die Kommission jede Abmeldung eines Badegewässers seit 1992 ausführlich. Die Reaktion der Kommission dazu steht noch aus. Die neue EG-Badegewässerrichtlinie enthält viele Neuerungen für einen besseren Schutz der Badenden: Ein Wermutstropfen ist in der neuen Richtlinie enthalten: Die Grenzwerte für Binnengewässer sind doppelt so hoch wie für Küstengewässer. Damit hat sich der Schutz der Badenden vor schlechter Wasserqualität in Binnengewässern in der neuen Richtlinie nicht verbessert.
Das Projekt "Struktur der Microbiota von Quellen fäkaler Verunreinigung - IntMicro" wird/wurde gefördert durch: Der Wissenschaftsfonds (FWF). Es wird/wurde ausgeführt durch: Technische Universität Wien, Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften (E166).Weltweit sind Wasserressourcen starken Beeinträchtigungen durch fäkale Verunreinigungen ausgesetzt. So haben im Moment mehr als 1,1 Milliarden Menschen keinen Zugang zu sicherem Trinkwasser. Die Untersuchung der mikrobiologischen Wasserqualität basiert seit über einem Jahrhundert auf der Kultivierung von Fäkalindikatoren. Die zunehmende Notwendigkeit die Herkunft, die Natur und das Ausmaß fäkaler Kontamination genau zu bestimmen führte in den letzten Jahren zur Entwicklung von Methoden der Herkunftsbestimmung (microbial faecal source tracking, MST) mit denen es im Gegensatz zu klassischen Indikatoren möglich ist die Verursacher des Eintrages zu identifizieren. Genetische Marker für den Nachweis verursacherspezifischer Bakterien des Phylums Bacteroidetes gelten momentan in diesem Feld als vielversprechender Ansatz. Die Definition dieser Marker fußt allerdings auf einer unzureichenden Menge an DNA-Sequenzinformation was dazu führt, dass sie oft nicht ausreichend spezifisch für ihre Zielgruppen sind und für viele solche Gruppen (z.B. Vögel) noch gar keine Marker definiert werden konnten. Ziel dieses Projektes ist es die qualitative und quantitative Zusammensetzung der fäkalen, bakteriellen Gemeinschaft von Säugetieren und Vögeln zu bestimmen. Die Auswahl der zu beprobenden Wirtstierarten richtet sich dabei an der Hypothese aus, dass die Coevolution des Wirtes und der intestinalen Gemeinschaft der Haupteinflussfaktor für die Zusammensetzung der Gemeinschaften ist. Demzufolge werden alle in Österreich zugänglichen Ordnungen der Mammalia und Avia in der Untersuchung enthalten sein um einen breiten phylogenetischen Fokus zu wahren. Zusätzlich werden auch weitere potentielle Einflussfaktoren (Ernährung, Lebensraum, Domestizierung) sowie die Bedeutung einzelner Tierarten als Quelle fäkaler Verunreinigung im Rahmen der Probenauswahl Berücksichtigung finden. Nach Extraktion der DNA aus den ca. 200 zu untersuchenden Proben und der PCR-Amplifikation eines Teils des 16S rRNA Gens der Bakteriengemeinschaft werden diese einer Sequenzbestimmung mittels 454 Pyrosequenzierung zugeführt. Die damit gewonnen 4 Millionen partiellen 16S rRNA Gensequenzen aus 200 Gemeinschaften werden in einer Datenbank auf ihre a-Diversität, Phylotypabundanz, -frequenz und 'reichtum geprüft. Um die Rolle der Coevolution und anderer Faktoren, die zur Ausbildung distinkter fäkaler Gemeinschaften beigetragen haben könnten, zu bestimmen, werden die Sequenzdatensätze einer vergleichenden Analyse der divergenz-basierenden ß-Diversität mittels UniFrac Metrik unterzogen werden. Die erstellte Datenbank und deren Analyse wird die Identifikation von Phylotypen oder ganzer Äste von Phylotypen erlauben die spezifisch für Gruppen von Wirtstieren sind. Weiters ist die Definition von Markern auf verschiedenen Wirts-Spezifitätsniveaus möglich, z.B. allgemeiner Fäkalmarker Mammalia- Artiodactyla Ruminantia Bovidae Bovinae. Auf diese Weise schafft die eingereichte Studie eine solide Basis für die Formulie
Das Projekt "Strukture der fäkalen Microbiota von Säugetieren und Vögeln als Basis für mikrobielle Verursacheridentifikation" wird/wurde gefördert durch: Österreichische Akademie der Wissenschaften. Es wird/wurde ausgeführt durch: Technische Universität Wien, Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften (E166).Weltweit sind Wasserressourcen starken Beeinträchtigungen durch fäkale Verunreinigungen ausgesetzt. So haben im Moment mehr als 1,1 Milliarden Menschen keinen Zugang zu sicherem Trinkwasser. Die Untersuchung der mikrobiologischen Wasserqualität basiert seit über einem Jahrhundert auf der Kultivierung von Fäkalindikatoren. Die zunehmende Notwendigkeit die Herkunft, die Natur und das Ausmaß fäkaler Kontamination genau zu bestimmen führte in den letzten Jahren zur Entwicklung von Methoden der Herkunftsbestimmung (microbial faecal source tracking, MST) mit denen es im Gegensatz zu klassischen Indikatoren möglich ist die Verursacher des Eintrages zu identifizieren. Genetische Marker für den Nachweis verursacherspezifischer Bakterien des Phylums Bacteroidetes gelten momentan in diesem Feld als vielversprechender Ansatz. Die Definition dieser Marker fußt allerdings auf einer unzureichenden Menge an DNA-Sequenzinformation was dazu führt, dass sie oft nicht ausreichend spezifisch für ihre Zielgruppen sind und für viele solche Gruppen (z.B. Vögel) noch gar keine Marker definiert werden konnten. Ziel dieses Projektes ist es die qualitative und quantitative Zusammensetzung der fäkalen, bakteriellen Gemeinschaft von Säugetieren und Vögeln zu bestimmen. Die Auswahl der zu beprobenden Wirtstierarten richtet sich dabei an der Hypothese aus, dass die Coevolution des Wirtes und der intestinalen Gemeinschaft der Haupteinflussfaktor für die Zusammensetzung der Gemeinschaften ist. Demzufolge werden alle in Österreich zugänglichen Ordnungen der Mammalia und Avia in der Untersuchung enthalten sein um einen breiten phylogenetischen Fokus zu wahren. Zusätzlich werden auch weitere potentielle Einflussfaktoren (Ernährung, Lebensraum, Domestizierung) sowie die Bedeutung einzelner Tierarten als Quelle fäkaler Verunreinigung im Rahmen der Probenauswahl Berücksichtigung finden. Nach Extraktion der DNA aus den ca. 200 zu untersuchenden Proben und der PCR-Amplifikation eines Teils des 16S rRNA Gens der Bakteriengemeinschaft werden diese einer Sequenzbestimmung mittels 454 Pyrosequenzierung zugeführt. Die damit gewonnen 4 Millionen partiellen 16S rRNA Gensequenzen aus 200 Gemeinschaften werden in einer Datenbank auf ihre a-Diversität, Phylotypabundanz, -frequenz und reichtum geprüft. Um die Rolle der Coevolution und anderer Faktoren, die zur Ausbildung distinkter fäkaler Gemeinschaften beigetragen haben könnten, zu bestimmen, werden die Sequenzdatensätze einer vergleichenden Analyse der divergenz-basierenden ß-Diversität mittels UniFrac Metrik unterzogen werden. Die erstellte Datenbank und deren Analyse wird die Identifikation von Phylotypen oder ganzer Äste von Phylotypen erlauben die spezifisch für Gruppen von Wirtstieren sind. Weiters ist die Definition von Markern auf verschiedenen Wirts-Spezifitätsniveaus möglich, z.B. allgemeiner Fäkalmarker Mammalia- Artiodactyla Ruminantia Bovidae Bovinae. Auf diese Weise schafft die eingereichte Studie eine solide Basis für die Formulier
Das Projekt "Verbundverfahren zur Detektion von Mikroorganismen im Trinkwasser" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität München, Institut für Wasserchemie und Chemische Balneologie, Lehrstuhl für Analytische Chemie und Wasserchemie.Laut Trinkwasserverordnung dürfen im Wasser keine Krankheitserreger sein, die eine Schädigung der menschlichen Gesundheit verursachen können. Die derzeit für Routineuntersuchungen angewandten mikrobiologischen Methoden sind zu zeitaufwendig, um alle infrage kommenden pathogenen Keime separat nachzuweisen. Als Indikatorkeime für eine Fäkalverunreinigung werden nur die Keimzahlen von Escherichia coli und den coliformen Keimen bestimmt. Die Microarray-Technologie kommt in der Bioanalytik bereits in den Forschungsfeldern zum Einsatz, wo es auf hohe Informationsdichte ankommt. Sie hätte das Potential, mit einem Microarray-Chip alle relevanten pathogenen Keime zu delektieren. In diesem Forschungsvorhaben soll gezeigt werden, dass aus dem Trinkwasser mit einem quasikontinuierlichen Verbundverfahren, bestehend aus Querstrom- Mikrofiltration (Anreicherung), immunmagnetischer Separation (Vorselektion) und einem parallelen Immunsensor-Array (PASA; zum definitiven Nachweis) pathogene Keime von Escherichia coli und von coliformen Keime bestimmbar sind. Die Querstrom-Mikrofiltration dient als schnelle Voranreicherungsmethode. Die Mikroorganismen werden in Suspension gehalten und können unbeschadet auf einer magnetischen Säule selektiert werden. Die immunmagnetische Separation geschieht über superparamagnetische Nanopartikel, an die Antikörper gekoppelt werden. Eingesetzt werden kommerziell erhältliche polyklonale Antikörper, die gegen Escherichia coli bzw. gegen die coliforme Keime Klebsiella sp., Salmonella sp. und Campylobacter sp. gerichtet sind. Eine säulenbasierte immunmagnetische Separation hat einen entscheidenden Vorteil für den quasikontinuierlichen Prozess. Es kann ein Immunoassay im Sandwich- Format durchgeführt werden, bei dem die Markierungs- und Reinigungsschritte auf der Säule geschehen. Das Nachweissystem wird nicht mit der Matrix und dem überschüssigen Reagenz belastet. Als Nachweissystem kommt eine Fließinjektionstechnik in Form des parallelen Immunsensor-Arrays (PASA) zum Einsatz. Die Unterscheidung einzelner pathogener und nichtpathogener Stämme soll über hochspezifische monoklonale Antikörper erfolgen, die im Microarray-Format immobilisiert werden. Die Signale, die eine Kontamination anzeigen, werden durch Chemilumineszenz generiert und über eine CCD-Kamera quantitativ registriert.
Origin | Count |
---|---|
Bund | 15 |
Land | 5 |
Type | Count |
---|---|
Förderprogramm | 10 |
Text | 8 |
unbekannt | 2 |
License | Count |
---|---|
geschlossen | 10 |
offen | 10 |
Language | Count |
---|---|
Deutsch | 20 |
Englisch | 6 |
Resource type | Count |
---|---|
Dokument | 4 |
Keine | 11 |
Webseite | 7 |
Topic | Count |
---|---|
Boden | 15 |
Lebewesen & Lebensräume | 20 |
Luft | 15 |
Mensch & Umwelt | 20 |
Wasser | 20 |
Weitere | 20 |