Agriculture is the major contributor of nitrogen to ecosystems, both by organic and inorganic fertilizers. Percolation of nitrate to groundwater and further transport to surface waters is assumed to be one of the major pathways in the fate of this nitrogen. The quantification of groundwater and associated nitrate flux to streams is still challenging. In particular because we lack understanding of the spatial distribution and temporal variability of groundwater and associated NO3- fluxes. In this preliminary study we will focus on the identification and quantification of groundwater and associated nitrate fluxes by combining high resolution distributed fiber-optic temperature sensing (DTS) with in situ UV photometry (ProPS). DTS is a new technique that is capable to measure temperature over distances of km with a spatial resolution of ca1 m and an accuracy of 0.01 K. It has been applied successfully to identify and quantify sources of groundwater discharge to streams. ProPS is a submersible UV process photometer, which uses high precision spectral analyses to provide single substance concentrations, in our case NO3-, at minute intervals and a detection limit of less than 0.05 mg l-1 (ca.0.01 mg NO3--Nl-1). We will conduct field experiments using artificial point sources of lateral inflow to test DTS and ProPS based quantification approaches and estimate their uncertainty. The selected study area is the Schwingbach catchment in Hessen, Germany, which has a good monitoring infrastructure. Preliminary research on hydrological fluxes and field observations indicate that the catchment favors the intended study.
The sorption of anions in geotechnical multibarrier systems of planned high level waste repositories (HLWR) and of non-ionic and organic pollutants in conventional waste disposals are in the center of recent research. In aquatic systems, persistent radionuclides such as 79Se, 99Tc, 129I exist in a form of anions. There is strongly increasing need to find materials with high sorption capacities for such pollutants. Specific requirements on barrier materials are long-term stability of adsorbent under various conditions such as T > 100 C, varying hydrostatic pressure, and the presence of competing ions. Organo-clays are capable to sorb high amounts of cations, anions and non-polar molecules simultaneously having selectivity for certain ions. This project is proposed to improve the understanding of sorption and desorption processes in organo-clays. Additionally, the modification of material properties under varying chemical and thermal conditions will be determined by performing diffusion and advection experiments. Changes by sorption and diffusion will be analyzed by determining surface charge and contact angles. Molecular simulations on models of organo-clays will be conducted in an accord with experiments with aim to understand and analyze experimental results. The computational part of the project will profit from the collaboration of German partner with the group in Vienna, which has a long standing experience in a modeling of clay minerals.
Shallow groundwater of the huge deltaic systems of Asia like the Red River Delta in Vietnam is often enriched in inorganic arsenic (As), threatening the health of millions of residents. The massive abstraction of groundwater in these areas locally causes an irreversible mixing of arsenic-free groundwater resources with arsenic-rich groundwater. Increased concentrations of competitive anions, especially phosphate (PO43-), decrease the immobilization capacity of the sediments. During transport, the mobility of dissolved As in local aquifers is strongly influenced by adsorption to sedimentary and ubiquitously occurring iron(oxyhydr)oxides. Additionally, arsenic-rich groundwater is often enriched in reduced iron (Fe2+) as well, which is capable to react with iron(oxyhydr)oxides, thereby inducing mineral transformations. Such transformations permanently affect the arsenic adsorption and immobilization capacity of the sediments.Within the scope of this research project, the underlying mechanisms related to As transport and the resulting threat to arsenic-free groundwater resources will be characterized in cooperation with the Swiss Federal Institute of Aquatic Science and Technology (Eawag). The research concept aims at assessing the complex interactions within the arsenic-iron-phosphate-system under field conditions at a study site next to the Red River. First, filtration experiments using local groundwater enriched in As and PO43- will be used to determine the As adsorption capacity of different and previously geochemically characterized iron(oxyhydr)oxides. In a second step, sample carrier containing As loaded iron(oxyhydr)oxides will be introduced into surface near aquifer parts of the study site (via existing groundwater monitoring wells). These samples will be exposed to local groundwater characterized by increased As, Fe2+ and PO43- concentrations for the following nine months. Using the in situ exposition of predefined iron(oxyhydr)oxides, it will be possible to distinguish potential mineral transformations and their influences on the As immobilization capacity of the respective iron(oxyhydr)oxides. By combining the results and outcomes of the field experiments, new and important conclusions regarding the mobility of As can be drawn. The data can be used to create a hydrochemical transport model describing reactive As transport within the investigation area. In addition, the results of the in situ exposition experiments will allow to draw conclusions in respective to the long term As immobilization capacity of different iron(oxyhydr)oxides, which is an essential information regarding in situ decontamination techniques.
Hydrogen is the ideal synthetic fuel to convert chemical energy into electrical energy or into motive power because it is light weight, highly abundant and its oxidation product is vapor of water. Thus its usage helps to reduce the greenhouse gases and it conserves fossile resources. There is even a clean way to produce hydrogen by electrolysis of water by means of photo voltaics (SvW06, VSM05, PMM05). There are various possibilities to store the hydrogen for later use: Liquid and gaseous hydrogen can be stored in a pressure vessel, hydrogen can be adsorped on large surface areas of solids, and finally crystal lattices of metals or other compounds can be used as the storage system, where hydrogen is dissolved either on interstitial or on regular lattice sites by substitution (SvW06, San99). The latter process and its reversal is called hydriding respectively dehydriding. The subject of this proposal is the modeling and simulation of that process. The main problem of a rechargeable lithium-ion battery is likewise a storage problem, because in a rechargeable battery, both the anode and cathode do not directly take part in the electrochemical process that converts chemical energy into electrical energy, rather they act as host systems for the electron spending element, which is here lithium (Li). During the last month the applicant developed and exploited a mathematical model that is capable to capture the storage problem of an iron phosphate (FePO4) cathode, where the Li atoms are stored on interstitial lattice sites (DGJ07).
Do genetically modified strawberries pose a threat to wild varieties? Do genetically modified strawberries pose a threat to wild varieties? Strawberries are an important niche product in Switzerland. Breeders are experimenting with genetic engineering methods to enhance the marketability of this product. There are risks inherent in this approach since the transfer of modified genes to wild strawberries could endanger the continued existence of the wild varieties. Background Transgenic varieties of strawberry with higher yields and enhanced root development already exist. The first release trials have already begun in Italy. However, if transgenic varieties of strawberry cross-breed with wild ones, there may be negative effects. The hybrids produced in this way are often sterile, yet by back-crossing with wild types or by producing prolific numbers of offshoots they can penetrate the native flora and displace it. Objectives This project has two basic goals. First, it seeks to assess the extent to which transgenic strawberries are capable of cross-breeding with their wild relatives. Second, it seeks to investigate the possible ecological impact of such crossbreeding under various environmental conditions in order to assess the risks associated with cultivating transgenic strawberries in the open. Methods Greenhouse experiments with honey bees, the most important pollinators of strawberries, will be carried out to show whether and how efficiently natural pollination occurs between transgenic and wild strawberries. Genetic methods will be used to determine how frequently foreign pollination between cultivated and wild strawberries has already occurred in the open in the past. The possible ecological implications of this will be quantified using life history data such as growth and competitive pressure. In these experiments, transgenic and artificially cross-bred strawberries from the laboratory will be planted in various soils. Significance The cultivation of transgenic plants is associated with potential risks for their wild relatives. Scientists have warned that the latter could become extinct as a result of undesirable cross-breeding. However, to date the true extent of these risks has barely been investigated. This project aims to close this gap by generating basic data with transgenic and wild strawberries as model organisms. These data could ultimately be relevant for other related crop plants such as apple trees or cherry trees.
Recent reports have shown that a number of xenobiotics in the environment are able of interfering with the normal endocrine function in animals and also in humans. Suspected effects of such compounds, often referred to as endocrine disruptors (EDs) or endocrine active chemicals (EACs), in humans include decreased sperm counts, increased cases of breast, testicular and other forms of reproductive cancers, genital abnormalities (e.g. hypospadia, cryptorchidism), premature puberty in females, and increased cases of endometriosis. In contrast to these suspicious cases in humans there is convincing evidence for chemically-induced endocrine disruption from wildlife studies. However, the overwhelming majority of investigations on effects of EACs is laboratory based and focuses on vertebrates while much less has been done in the field to address potential population-level effects. More detailed information about the effects on and mechanisms of action in invertebrates has only been obtained from a few cases although invertebrates represent more than 95Prozent of the known species in the animal kingdom. The limited number of examples for endocrine disruption in invertebrates is partially due to the fact that their hormonal systems are rather poorly understood in comparison with vertebrates. Deleterious endocrine changes following an exposure to certain compounds may therefore easily be missed or simply be unmeasurable at present, even though a number of field investigations and laboratory studies show that endocrine disruption has probably occurred. The example of tributyltin (TBT) compounds and their masculinising effects in more than 150 species of prosobranch molluscs shows that apparently trivial biochemical changes can have drastic effects up to the community level by a final sterilisation of affected females with a consequent demise and local extinction of populations. However, with the exception of TBT in marine prosobranchs, it has never been convincingly shown that EACs are capable to exert such far-reaching effects in field populations and pose a risk for their survival at environmentally relevant concentrations. The objective of the proposed project is: (1) to analyse the degree to which aquatic wildlife in central Europe is exposed to EACs in its natural habitat by assessing the well-defined effects in the test with Potamopyrgus antipodarum and (2) to evaluate the potential role of EACs for population declines of sensitive aquatic wildlife species with the example of prosobranch snails by correlating effect data with results from analyses of the macrozoobenthic community.
Natural products remain an important source for drugs and a source of inspiration for medicinal chemists for the design of synthetic drugs and probes for the study of biological functions. The contribution of academic laboratories in natural products discovery has been substantial. The limiting factor of pharmaceutical natural product research has been with the tedious process of purification and identification of the lead molecules from the highly complex crude extract. Recent technological advances enable now a miniaturization of the screening and discovery process for natural product leads. The proposal here is for the purchase of a 500 MHz NMR spectrometer specifically equipped for the measurement of mass limited samples. It includes a recently commercialized 1 mm probe and autosampler and is capable of recording 1D and 2D NMR spectra with microgram (20-100 myg) amounts of natural products and synthetic drug-like molecules. The spectrometer is configured to fit into the technology platforms and the workflows of the Drug Screening Group of the Swiss Tropical Institute and the Institute of Pharmaceutical Biology. The instrument shall be used for various interdisciplinary projects of the two principal applicants and for a consortium which is being established. The major use will be for HPLC-based lead discovery in the area of Alzheimer's disease, Malaria, and neglected tropical diseases. The instrument will also be employed for metabolic fingerprinting of selected plants and phytomedicines. A third application will be in the analysis of compound libraries from external sources which are screened by the applicants in the context of the principal projects. An NMR instrument with this configuration is currently not in operation at a Swiss university. It is the missing link in a technology platform established at the laboratories of the two applicants. This platform should enable a paradigm shift in the way how natural product leads are identified, namely by miniaturizing the entire process of screening, separation and lead identification to the microgram level. A significant gain in efficiency of the discovery process and, thus, in research productivity, both qualitative and quantitative, is anticipated. The equipment will also be of interest to all those scientists in the biomedical sciences who need structural information from mass limited samples such as, for example drug metabolites.
The objectives are to: (i) improve our understanding of human activities impacts (cumulative, synergistic, antagonistic) and variations due to climate change on marine biodiversity, using long-term series (pelagic and benthic). This objective will identify the barriers and bottlenecks (socio-economic and legislative) that prevent the GES being achieved (ii) test the indicators proposed by the EC, and develop new ones for assessment at species, habitats and ecosystems level, for the status classification of marine waters, integrating the indicators into a unified assessment of the biodiversity and the cost-effective implementation of the indicators (i.e. by defining monitoring and assessment strategies). This objective will allow for the adaptive management including (a) strategies & measures, (b) the role of industry and relevant stakeholders (including non-EU countries), and (c) provide an economic assessment of the consequences of the management practices proposed. It will build on the extensive work carried out by the Regional Seas Conventions (RSC) and Water Framework Directive, in which most of the partners have been involved (iii) develop/test/validate innovative integrative modelling tools to further strengthen our understanding of ecosystem and biodiversity changes (space & time); such tools can be used by statutory bodies, SMEs and marine research institutes to monitor biodiversity, applying both empirical and automatic data acquisition. This objective will demonstrate the utility of innovative monitoring systems capable of efficiently providing data on a range of parameters (including those from non-EU countries), used as indicators of GES, and for the integration of the information into a unique assessment The consortium has 23 partners, including 4 SMEs (close to 17Prozent of the requested budget) and 2 non-EU partners (Ukraine & Saudi Arabia). Moreover, an Advisory Board (RSC & scientific international scientists) has been designed,to ensure a good relationship with stakeholders.
Degradation of the soil productivity due to salt accumulation (salinization) is a major concern in arid, semi-arid and coastal regions. Soil salinization is an old issue but encouraged irrigation practices have been rapidly increasing its intensity and magnitude in the past few decades. Studies have shown that excess of the irrigated water contributes significantly to evaporation from the bare soil surface and therefore to the salinization. In some parts of the world soil salinity has grown so acute that the agricultural lands have been abandoned. Evaporation salinization is mainly influenced by interaction between the flow and transport processes in the atmosphere and the porous-medium. On the atmosphere side, wind velocity, air temperature and radiation have a strong impact on evaporation. Furthermore, turbulence causes air mixing, influences the vapor transport and creates a boundary layer at the soil-atmosphere interface which indeed influences evaporation. On the porous-medium side, dissolved salt is transported under the influence of viscous forces, capillary forces, gravitational forces and advective and diffusive fluxes. The water either directly evaporates from the water-filled pores or it is transported to air due to diffusive processes. Continuous evaporation promotes salt accumulation and precipitation resulting in soil salinization. In the scope of this work we attempt to develop a model concept capable of handling flow, transport and precipitation processes related to evaporative salinization of an unsaturated porous-medium.
NANOINSULATE will develop durable, robust, cost-effective opaque and transparent vacuum insulation panels (VIPs) incorporating new nanotechnology-based core materials (nanofoams, aerogels, aerogel composites) and high-barrier films that are up to four times more energy efficient than current solutions. These new systems will provide product lifetimes in excess of 50 years suitable for a variety of new-build and retrofit building applications. Initial building simulations based on the anticipated final properties of the VIPs indicate reductions in heating demand of up to 74Prozent and CO2 emissions of up to 46Prozent for Madrid, Spain and up to 61Prozent and 55Prozent respectively for Stuttgart, Germany for a building renovation which reduces the U-value of the walls and roof from 2.0 W m-2 K-1 to 0.2 W m-2 K-1. This reduction could be achieved with NANOINSULATE products that are only 25 mm thick, giving a cost-effective renovation without the need of changing all the reveals and ledges. Similarly, significant reductions in U-values of transparent VIPs (3 W m-2 K-1 to 0.5 W m-2 K-1) are shown by substituting double glazed units in existing building stock. Six industrial & four research based partners from seven EU countries will come together to engineer novel solutions capable of being mass produced. Target final manufacturing costs for insulation board (production rates above 5 million m2/year) are less than 7 m-2 for a U-value of 0.2 W m-2 K-1. NANOINSULATE will demonstrate its developments at construction sites across Europe. A Lifecycle Assessment, together with a safety and service-life costing analysis, will be undertaken to prove economic viability. NANOINSULATE demonstrates strong relevance to the objectives and expected impacts of both the specific call text of the Public-Private Partnership Energy-efficient Buildings topic New nanotechnology-based high performance insulation systems for energy efficiency within the 2010 NMP Work Programme and the wider NMP & Energy Thematic Priorities. Prime Contractor: Kingsplan Research and Developments Ltd.; Kingscourt; Irland.
| Origin | Count |
|---|---|
| Bund | 25 |
| Type | Count |
|---|---|
| Förderprogramm | 25 |
| License | Count |
|---|---|
| offen | 25 |
| Language | Count |
|---|---|
| Deutsch | 1 |
| Englisch | 25 |
| Resource type | Count |
|---|---|
| Keine | 21 |
| Webseite | 4 |
| Topic | Count |
|---|---|
| Boden | 23 |
| Lebewesen und Lebensräume | 24 |
| Luft | 18 |
| Mensch und Umwelt | 25 |
| Wasser | 21 |
| Weitere | 25 |