API src

Found 9440 results.

Similar terms

s/fe/EE/gi

Related terms

CO₂-Emissionen pro Kilowattstunde Strom 2024 gesunken

<p>Berechnungen des Umweltbundesamtes (UBA) zeigen, dass die spezifischen Treibhausgas-Emissionsfaktoren im deutschen Strommix im Jahr 2024 weiter gesunken sind. Hauptursachen sind der gestiegene Anteil erneuerbarer Energien, der gesunkene Stromverbrauch infolge der wirtschaftlichen Stagnation und dass mehr Strom importiert als exportiert wurde.</p><p>Pro Kilowattstunde des in Deutschland verbrauchten Stroms wurden im Jahr 2024 bei der Erzeugung durchschnittlich 363 Gramm CO2 ausgestoßen. 2023 lag dieser Wert bei 386 und 2022 bei 433 Gramm pro Kilowattstunde. Vor 2021 wirkte sich der verstärkte Einsatz erneuerbarer Energien positiv auf die Emissionsentwicklung der Stromerzeugung aus und trug wesentlich zur Senkung der spezifischen Emissionsfaktoren im Strommix bei. Die wirtschaftliche Erholung nach dem Pandemiejahr 2020 und die witterungsbedingte geringere Windenergieerzeugung führten zu einer vermehrten Nutzung emissionsintensiver Kohle zur Verstromung, wodurch sich die spezifischen Emissionsfaktoren im Jahr 2021 erhöhten. Dieser Effekt beschleunigte sich noch einmal im Jahr 2022 durch den verminderten Einsatz emissionsärmerer Brennstoffe für die Stromproduktion und den dadurch bedingten höheren Anteil von Kohle.</p><p>2023 und fortgesetzt 2024 führte der höhere Anteil erneuerbarer Energien, eine Verminderung des Stromverbrauchs infolge der wirtschaftlichen Stagnation sowie ein Stromimportüberschuss zur Senkung der spezifischen Emissionsfaktoren: Der Stromhandelssaldo wechselte 2023 erstmals seit 2002 vom Exportüberschuss zum Importüberschuss. Es wurden 9,2 Terawattstunden (⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=TWh#alphabar">TWh</a>⁠) mehr Strom importiert als exportiert. Dieser Trend setzt sich im Jahr 2024 fort. Der Stromimportüberschuss stieg auf 24,4 TWh. Die durch diesen Stromimportüberschuss erzeugten Emissionen werden nicht der deutschen Stromerzeugung zugerechnet, da sie in anderen berichtspflichtigen Ländern entstehen. Die starke Absenkung des spezifischen Emissionsfaktors im deutschen Strommix ab dem Jahr 2023 ist deshalb nur bedingt ein ⁠<a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a>⁠ für die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/n?tag=Nachhaltigkeit#alphabar">Nachhaltigkeit</a>⁠ der Maßnahmen zur Reduzierung der Emissionen des Stromsektors.</p><p>Die Entwicklung des Stromverbrauchs in Deutschland</p><p>Der Stromverbrauch stieg seit dem Jahr 1990 von 479 Terawattstunden (TWh) auf 583 TWh im Jahr 2017. Seit 2018 ist erstmalig eine Verringerung des Stromverbrauchs auf 573 TWh zu verzeichnen. Mit 513 TWh wurde 2020 ein Tiefstand erreicht. Im Jahr 2021 ist ein Anstieg des Stromverbrauchs infolge der wirtschaftlichen Erholung nach dem ersten Pandemiejahr auf 529 TWh zu verzeichnen, um 2022 wiederum auf 516 TWh und 2023 auf 454 TWh zu sinken. Dieser Trend setzt sich 2024 mit einem Stromverbrauch von 439 TWh fort. Der Stromverbrauch bleibt trotz konjunktureller Schwankungen und Einsparungen infolge der Auswirkungen der Pandemie und des russischen Angriffskrieges in der Ukraine auf hohem Niveau.</p><p>Datenquellen</p><p>Die vorliegenden Ergebnisse der Emissionen in Deutschland leiten sich aus der Emissionsberichterstattung des Umweltbundesamtes für Deutschland, Daten der Arbeitsgruppe Erneuerbare Energien-Statistik, Daten der Arbeitsgemeinschaft für Energiebilanzen e.V. auf der Grundlage amtlicher Statistiken und eigenen Berechnungen für die Jahre 1990 bis 2022 ab. Für das Jahr 2023 liegen vorläufige Daten vor. 2024 wurde geschätzt.</p><p>Hinweis: Die im Diagramm gezeigten Daten sind in der Publikation "Entwicklung der spezifischen Treibhausgas-Emissionen des deutschen Strommix in den Jahren 1990 - 2024" zu finden.</p>

Durchführung eines Klimaschutz- und Energie-Effizienz-Netzwerkes 'EEN Sachsen

Das wirtschaftliche Potential für mehr Klimaschutz und Energieeffizienz in deutschen Unternehmen ist riesig. Mit derzeit rentablen Technologien können erhebliche Energiekosten eingespart, die Wettbewerbsfähigkeit gestärkt und Treibhausgas-Emissionen vermindert werden. Klimaschutz- und Energieeffizienz-Netzwerke mit 10 bis 15 Unternehmen bieten ein optimales Preis- Leistungsverhältnis, um die vorhandenen Potentiale zu heben. Noch ist dieser Ansatz in Deutschland wenig verbreitet. Dies soll sich in Zukunft ändern. Mit Fördermitteln des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit (BMU) im Rahmen der Klimaschutzinitiative wird die Wirtschaft in den nächsten Jahren beim Aufbau regionaler Kompetenzen und beim Aufbau von bis zu 30 Netzwerken unterstützt. Dabei werden neu entstehende Netzwerke bezuschusst und deren Arbeit laufend wissenschaftlich begleitet. Moderatoren und beratende Ingenieuren werden in Hinblick auf die Netzwerkarbeit weitergebildet und elektronische Berechnungshilfen für Energieeffizienz-Investitionen und Investitionen in erneuerbare Energien verbessert und neu entwickelt.

Energieverbrauch privater Haushalte

<p>Die privaten Haushalte benötigten im Jahr 2024 etwa gleich viel Energie wie im Jahr 1990 und damit gut ein Viertel des gesamten Endenergieverbrauchs in Deutschland. Sie verwendeten mehr als zwei Drittel ihres Endenergieverbrauchs, um Räume zu heizen.</p><p>Endenergieverbrauch der privaten Haushalte</p><p>Private Haushalte verbrauchten im Jahr 2024 625 Terawattstunden (⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=TWh#alphabar">TWh</a>⁠) Energie, das sind 625 Milliarden Kilowattstunden (Mrd. kWh). Dies entsprach einem Anteil von gut einem Viertel am gesamten ⁠<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a>⁠.</p><p>Im Zeitraum von 1990 bis 2024 fiel der Endenergieverbrauch in den Haushalten – ohne Kraftstoffverbrauch, da dieser dem Sektor Verkehr zugeordnet ist – um 4,5&nbsp;% (siehe Abb. „Entwicklung des Endenergieverbrauchs der privaten Haushalte“). Dabei herrschten in den Jahren 1996, 2001 und 2010 sehr kalte Winter, die zu einem erhöhten Brennstoffverbrauch für Raumwärme führten. So lag der Energieverbrauch im sehr kalten Jahr 2010 etwa 14 % über dem Wert des eher warmen Jahres 1990.</p><p>Höchster Anteil am Energieverbrauch zum Heizen</p><p>Die privaten Haushalte benötigen mehr als zwei Drittel ihres Endenergieverbrauchs, um Räume zu heizen (siehe Abb. „Anteil der Anwendungsbereiche der privaten Haushalte 2008 und 2024“). Sie nutzen zurzeit dafür hauptsächlich Erdgas und Mineralöl. An dritter Stelle folgt die Gruppe der erneuerbaren Energien, an vierter die Fernwärme. Zu geringen Anteilen werden auch Strom und Kohle eingesetzt. Mit großem Abstand zur Raumwärme folgen die Energieverbräuche für die Anwendungsbereiche Warmwasser sowie sonstige ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozesswrme#alphabar">Prozesswärme</a>⁠ (Kochen, Waschen etc.) bzw. ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozessklte#alphabar">Prozesskälte</a>⁠ (Kühlen, Gefrieren etc.).</p><p>Mehr Haushalte, größere Wohnflächen – Energieverbrauch pro Wohnfläche sinkt</p><p>Der Trend zu mehr Haushalten, größeren Wohnflächen und weniger Mitgliedern pro Haushalt (siehe „<a href="https://www.umweltbundesamt.de/daten/private-haushalte-konsum/strukturdaten-privater-haushalte/bevoelkerungsentwicklung-struktur-privater">Bevölkerungsentwicklung und Struktur privater Haushalte</a>“) führt tendenziell zu einem höheren Verbrauch. Diesem Trend wirken jedoch der immer bessere energetische Standard bei Neubauten und die Sanierung der Altbauten teilweise entgegen. So sank der spezifische ⁠<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a>⁠ (Energieverbrauch pro Wohnfläche) für Raumwärme seit 2008 um über 40 % (siehe Abb. „Endenergieverbrauch und -intensität für Raumwärme – Private Haushalte (witterungsbereinigt“)).</p><p>Stromverbrauch mit einem Anteil von rund einem Fünftel</p><p>Der Energieträger Strom hat einen Anteil von rund einem Fünftel am ⁠<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a>⁠ der privaten Haushalte. Hauptanwendungsbereiche sind die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozesswrme#alphabar">Prozesswärme</a>⁠ (Waschen, Kochen etc.) und die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozessklte#alphabar">Prozesskälte</a>⁠ (Kühlen, Gefrieren etc.), die zusammen rund die Hälfte des Stromverbrauchs ausmachen. Mit jeweiligem Abstand folgen die Anwendungsbereiche Informations- und Kommunikationstechnik, Warmwasser und Beleuchtung (siehe Abb. „Anteil der Anwendungsbereiche am Netto-Stromverbrauch der privaten Haushalte 2008 und 2024“).</p><p>Direkte Treibhausgas-Emissionen privater Haushalte sinken</p><p>Der Energieträgermix verschob sich seit 1990 bis heute zugunsten von Brennstoffen mit geringeren Kohlendioxid-Emissionen und erneuerbaren Energien. Das verringerte auch die durch die privaten Haushalte verursachten direkten Kohlendioxid-Emissionen (d.h. ohne Strom und Fernwärme) (siehe Abb. „Direkte Kohlendioxid-Emissionen von Feuerungsanlagen der privaten Haushalte“).</p>

Erneuerbare Energien Stadtwerke Uelzen

Die Stadtwerke Uelzen GmbH ist ein modernes Energieversorgungsunternehmen im Herzen der Lüneburger Heide und bietet Ihnen alle Services rund um das Thema Energie aus einer Hand. Unter der Marke mycity versorgt das Unternehmen die Stadt Uelzen neben Erdgas und Wasser mit 100 % Ökostrom. Hier wird das Energieerzeugungsnetz digital geführt, es werden alle Photovoltaikanlagen sowie die Einspeisungen von Wind- und Biogasanlagen dargestellt. Die Daten werden fortlaufend aktualisiert. Die Daten können von berechtigten Personen eingesehen werden.

Wissenschaftliche Unterstützung zu Instrumenten- und Maßnahmen zur Beschleunigung des Ausbaus erneuerbarer Energien für Klimaneutralität bis 2045

Das Klimaschutzgesetz sieht eine Treibhausgasneutralität in 2050 u.a. durch den Ausbau an Erneuerbaren Energien vor. In dem Vorhaben soll untersucht werden, wie der aus Klimaschutzsicht erforderliche EE-Ausbau erreicht und Potenziale gehoben werden können. Es wird davon ausgegangen, dass der weitere Leistungszubau maßgeblich im Bereich der Windenergie und Photovoltaik stattfindet. Dies bringt dauerhaft eine Vielzahl technischer, wirtschaftlicher und fachplanerischer sowie zum Teil rechtlicher Fragestellungen mit sich. Im Rahmen der fortzuführenden Diskussionen, Gesetzesnovellierungen und Planungs- und Abstimmungsprozesse besteht für BMU und UBA Bedarf an hochspezialisierter wissenschaftlicher Unterstützung zu Rechts-, Technik-, und Fachfragen. Im Zuge dieser Beratung sollen auch konkrete Vorschläge für modifizierte Instrumente und neue oder flankierende Maßnahmen erarbeitet werden, um die Voraussetzungen für einen aus Klimaschutzsicht robusten und stetigen Ausbau der erneuerbaren Energien zu gewährleisten. Demgegenüber stellen sich im Bereich der Bioenergie vermehrt Fragen, wie eine klimagerechte Nutzung des nur begrenzten nachhaltigen Biomassepotenzials insbesondere im EEG-Kontext ausgestaltet werden kann. Auch hierzu besteht Bedarf für hochspezialisierte wissenschaftliche Unterstützung zu Rechts-, Technik-, und Fachfragen. Inhaltlich werden voraussichtlich folgende Aspekte im Fokus stehen: 1. finanzielle Bürger- oder Gemeindebeteiligung bei Windenergie und insbesondere bei Photovoltaik angesichts zunehmender Anlagengrößen, 2. Anforderungen und Auswirkungen 'besonderer Solaranlagen' (Agrar-PV, schwimmende PV, Parkplatz-PV) im Rahmen der Innovationsausschreibungen, 3. Ausbaupfade , Ziel- und Flächensteuerung, Monitoring, 4. Geschäftsmodelle ohne EEG-Förderung oder andere staatliche Finanzierung, 5. Planungs- und Genehmigungsrahmen für Windenergieanlagen und PV-Freiflächenanlagen, 6. Klimagerechtere Ausrichtung des EEG mit Blick auf die Bioenergie.

Synchronisierte und energieadaptive Produktionstechnik zur flexiblen Ausrichtung von Industrieprozessen auf eine fluktuierende Energieversorgung, Teilvorhaben: D4-3_Boehringer Ingelheim

Sonderforschungsbereich (SFB) 1357: MIKROPLASTIK - Gesetzmäßigkeiten der Bildung, des Transports, des physikalisch-chemischen Verhaltens sowie der biologischen Effekte: Von Modell- zu komplexen Systemen als Grundlage neuer Lösungsansätze; MICROPLASTICS - Understanding the mechanisms and processes of biological effects, transport and formation: From model to complex systems as a basis for new solut, Teilprojekt C 05: Abbau und Verhalten von Kunststoffen und deren Mikroplastik-Partikeln in technischen Systemen der Wasser- und Abfallwirtschaft

Teilprojekt C05 hat zum Ziel, den wichtigen Eintragsweg für Kunststoffe, in Form von Mikroplastik, in die Umwelt aus technischen Anlagen (MP) mechanistisch aufzuklären. Gleichzeitig sollen neue Ansätze verfolgt werden, die zur Vermeidung bzw. Reduktion von MP aus Standardkunststoffen maßgeblich beitragen sollen. Zu diesem Zweck sollen Polyethylen, Polypropylen, Polystyrol, Nylon, Polyethylenterephthalat, Polyisopren und Polyvinylchlorid durch Beschleuniger (in situ) in ihren Oberflächeneigenschaften für die Biofilmbildung modifiziert und dadurch unter Prozessbedingungen biologisch angreifbar und abbaubar gemacht werden. So können auch Standardkunststoffe umweltverträglicher bezüglich der MP-Partikel Bildung werden. Damit geht TP C05 weit über die bislang üblichen eher deskriptiven Studien zu MP in technischen Anlagen und der Umwelt hinaus. Folgende zentrale Fragen sollen in TP C05 in Hinblick MP-Partikel in technischen Anlagen der Abfall- und Abwasserwirtschaft beantwortet werden: 1. Kommt es in den Anlagen zu spezifischen (biologischen) Abbau- und Degradationsvorgängen? 2. Wie hängen die zu beobachtenden Prozesse von MP-Charakteristika (Materialsorte, Zusammensetzung, Größe, Morphologie, Beschichtung) ab, ? 3. Lassen sich die Vorgänge ('Bioabbaubarkeit') durch gezielte Modifikation der Partikeloberfläche vor oder in den Anlagen beschleunigen? 4. Welche ökologischen Konsequenzen einer Ausbringung der (modifizierten) Partikel in die Umwelt und hier vor allem in den Boden lassen sich postulieren?

Bodenschutz

Böden sind eine begrenzte Naturressource, die den Schutz einer verantwortungsbewussten und zukunftsorientierten Gesellschaft benötigt. Der Umgang mit Böden wird durch diverse Fachgesetze geregelt. Diese werden durch das Bundes-Bodenschutzgesetz (BBodSchG) und die Bodenschutz- und Altlastenverordnung (BBodSchV) ergänzt. Bundeseinheitliche Rechtsgrundlagen geben die materielle Basis für den Schutz des Bodens sowie für die Bewertung und Sanierung von Altlasten vor. Das Bodenschutzausführungsgesetz des Landes Sachsen-Anhalt (BodSchAG LSA) untersetzt aus Landessicht die Anforderungen und Zuständigkeiten im Hinblick auf den vorsorgenden und nachsorgenden Bodenschutz. Der nachhaltige Umgang mit Böden ist in der Vergangenheit nicht ausreichend beachtet worden und auch heute sind Böden vielfältigen Belastungen ausgesetzt. Insbesondere vor dem Hintergrund eines stetig steigenden Nutzungsdruckes stellt der Bodenschutz eine besondere Herausforderung dar. Wohnungsbau und Gewerbeansiedlung, landwirtschaftliche Produktion, regenerative Energien, Tourismus und Erholung, Rohstoffgewinnung, Straßenbau, Ver- und Entsorgung sowie andere Wirtschaftszweige beanspruchen die Verfügbarkeit von Flächen bzw. Böden. Diese Anforderungen gehen zu Lasten der Qualität und insbesondere Quantität von Böden (Flächenverbrauch) bzw. ihren Bodenfunktionen, die dadurch beeinträchtigt werden oder sogar unwiederbringlich verloren gehen. Um schädliche Bodenveränderungen und Verluste von Bodenfunktionen zu vermeiden und zu minimieren, ist es notwendig, das Schutzgut Boden in der räumlichen Planung und den Abwägungsprozessen der Umweltprüfung nachvollziehbar und angemessen zu berücksichtigen. Bestehende fachliche und methodische Grundlagen des vor- und nachsorgenden Bodenschutzes, d.h. zum Schutz der Böden vor schädlichen Veränderungen, wie z.B. Schadstoffeintrag, Versiegelung, Erosion durch Wasser oder Wind, sowie anderen nachteiligen Einwirkungen und die Altlastenbearbeitung müssen deshalb konsequent umgesetzt und unter Berücksichtigung neuester Erkenntnisse aus Wissenschaft und Forschung weiter entwickelt werden. Dazu ist es erforderlich, Informationen über den Zustand und die Entwicklung der Böden zu erheben, zu sammeln sowie durch geeignete Methoden auszuwerten und darzustellen ( Bodenbeobachtung ). Im Land Sachsen-Anhalt wird dafür ein Netz von Boden-Dauerbeobachtungsflächen (BDF) und ein Bodenschutz- und Altlasteninformationssystem (ST-BIS) betrieben. letzte Aktualisierung: 08.05.2023

Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), Entwicklungen zur physikalischen und chemischen Charakterisierung eisnukleierender Aerosolpartikel mit HALO: Hochvolumenstrom-Sammler, automatisiertes 'Freezing Array' und analytische Methoden

Das hier vorgeschlagene Projekt basiert auf und ergänzt Untersuchungen die im Rahmen des DFG-Transregios 172 'Arktische Klimaveränderungen', und hier speziell dem Projekt B04 'Ship-based physical and chemical characteristics and sources of Arctic ice nucleating particles and cloud condensation nuclei', durchgeführt werden. Im Rahmen von TR 172, B04, ist es u.a. das Ziel, über schiffbasierte Messungen detaillierte Informationen hinsichtlich arktischer eisnukleierender Partikel (Anzahlkonzentration; chemische Natur, mineralisch und/oder organisch; Herkunft, lokal oder Ferntransport) zu erlangen. Diese schiffsbasierten Messungen können allerdings nur ein erster Schritt auf dem Weg zu einem besseren Verständnis von Aerosol-Wolken-Wechselwirkungen in der Arktis im allgemeinen, und der Vereisung Arktischer Wolken im Besonderen, sein. Hierzu sind u.a. Informationen aus unterschiedlichen Höhen (innerhalb der planetaren Grenzschicht und in der freien Troposphäre) erforderlich. Daher sollen die in TR 172, B04, geplanten Aktivitäten u.a. durch INP-bezogene Messungen an Bord des Forschungsflugzeuges HALO ergänzt werden. Spezifisch zielen wir auf die Bestimmung von INP-Anzahlkonzentrationen, und über Analyse der chemischen Partikelzusammensetzung auf Hinweise bzgl. der INP Herkunft / Quellen. Im Rahmen des vorliegenden Antrages werden wir uns daher auf die Entwicklung, den Test und die Zulassung eines Hochvolumenstrom-Aerosolpartikelsammlers für sub- und supermikrone Aerosolpartikel für das Forschungsflugzeug HALO konzentrieren. Das Sammlersystem wird im Wesentlichen aus einer adaptierten Version des schon existierenden (aber noch zuzulassenden) 'Micrometre Aerosol Inlet' (MAI) und einem noch zu entwickelnden Hochvolumenstrom-Filtersammler, bestehen. Die Berücksichtigung hoher Volumenströmen (Größenordnung 100 l/min) ist aufgrund der zu erwartenden niedrigen Aerosolpartikel- und INP-Konzentrationen, und dem daraus resultierenden Bedarf nach der Sammlung großer Luftvolumina erforderlich. Der erste wissenschaftliche Einsatz des entwickelten Systems soll im Rahmen der ARCTIC-HALO-Kampagne erfolgen, welche für die zweite Phase des TR 172 (2020-2023) geplant ist. Nach seiner Entwicklung, steht das Sammlersystem (Einlass und/oder Filtersammler) für sub- und supermikrone Aerosolpartikel für weitere HALO-Missionen zur Verfügung. Zur Durchführung der notwendigen Arbeiten beantragen wir Mittel für eine 75 % und eine 50% PostDoc-Stelle für jeweils 3 Jahre. Ferner beantragen wir Mittel für die Adaptierung und die Zulassung des Hochvolumenstrom-Aerosolpartikelsammlers. Alle anderen direkten Kosten werden aus dem Haushalt des TROPOS übernommen.

Gemeinsame Forschungsinfrastruktur zur nachhaltigen Steuerung von Netzzellen, Teilvorhaben: Autonome Netzsteuerung zur optimalen integration neuer Technologien und Verifizierung an gemeinschaftlich genutzen Forschungsinfrastrukturen

1 2 3 4 5942 943 944