Um dem Klimawandel zu begegnen, ist das Ziel, die Technologie für eine stabile, sichere und CO2-neutrale Energieversorgung einer mittelgroßen Stadt am Beispiel von Herzogenrath, inklusive der Industriebetriebe sowie neuen Prosumern in der Stadt, durch eine zentrale Hybrid-Kraftwerksanlage sowie dezentrale PV-Anlagen, dezentrale Wärmepumpen und Elektromobilität zu entwickeln. Im Teilprojekt 'Energiemanagementsystem' soll mit Hilfe digitaler Systeme eine neue Methodik zur ökonomischen und effizienten Vernetzung und Einsatzsteuerung dezentraler Ressourcen über alle Sektoren entwickelt und erforscht werden. Zur Identifizierung und Hebung von Synergien soll in einem zentralen Energiemanagementknoten eine übergreifende Koordination der angeschlossenen Energieknoten (bspw. dem Sandbergwerk) erfolgen können. Für das zentrale Energiemanagement werden KI-basierte Vorhersageverfahren für Last & Erzeugung entwickelt. Ferner soll das Verfahren zudem zur Prädiktion von Verkaufserlösen auf unterschiedlichen Vermarktungskanälen Anwendung finden. Diese erlauben es, durch intelligente Kopplung der heute autonomen Teilsysteme, die Energieflüsse zu steuern, ohne die Versorgungssicherheit zu beeinträchtigen bzw. diese sogar zu erhöhen. Im Teilprojekt 'CO2 neutrale Mobilität' soll der Mobilitätssektor der Stadt in die Betrachtung mit aufgenommen und vernetzt werden. Dazu soll in einer Bestandsaufnahme die aktuelle Mobilität der Stadt erfasst werden, sowie die Technologieoptionen zur zukünftigen Darstellung einer CO2-neutralen Mobilität aufgezeigt werden. Es werden Szenarien der Mobilität von Herzogenrath definiert, anhand derer ein digitaler Zwilling erstellt wird, mit dem Prognosen für das Energiesystem getätigt werden können.
In der Vergangenheit wurden enorme Fortschritte bei der Entwicklung von Visualisierungstechnologien wie 3D-Darstellungen, Vor-Ort-Visualisierungen auf mobilen Endgeräten sowie Projektionen erzielt. Die realitätsgetreue Abbildung von Windparks im virtuellen Raum wird aktuell zum Standard bei Planungsverfahren und zunehmend von Vorhabenträgern nachgefragt. Bislang erlauben diese Anwendungen aber keine Interaktionen zwischen den NutzerInnen. Gleichzeitig spielen Formate der Online-Beteiligung/-Kommunikation eine immer größere Rolle; attraktive Angebote, welche adäquaten Ersatz oder passgenaue Ergänzungen für realweltlichen Austausch bieten, werden bedeutsamer. Hier setzt das Vorhaben an. Es nutzt elaborierte 3D-Plattformen für virtuellen Austausch der NutzerInnen. Im Rahmen eines partizipativen Designs entwickeln BürgerInnen in Living Labs bei drei Energiewende-Vorhaben selbst Vorschläge für kommunikative Formate. Anreize werden durch Gamification-Elemente und Selbstwirksamkeitserfahrungen, die sich aus dem unmittelbaren Einfluss auf das Design ergeben, gesetzt. Die Fallkontexte und Wirkungsweisen der Formate auf die Beteiligten sowie technische Innovationspotentiale werden interdisziplinär beforscht. Im Rahmen des bürgerwissenschaftlichen Co-Design-Prozesses der Living Labs werden über mehrere Entwicklungsstufen hinweg erste Prototypen entwickelt. Diese anwendungsorientierte Forschung schafft Austauschmöglichkeiten zwischen BürgerInnen in Energiewende-Visualisierungen und schafft somit einen Zugang, der interessengeleitete Partizipation von Betroffenen mit neuen Formen digitaler Interaktion erschließt. In vier Teilvorhaben werden die lokale Governance- und Akteursstrukturen untersucht (IASS), partizipative Design Case Studies in der Energiewende (CSCW) und experimentelle Studien zu kommunikativen Wirkungen immersiver Energiewende-Visualisierungen (JGU) sowie Fallstudien zur kommunikativen Wirkung immersiver Visualisierungen der Energiewende (LOS) durchgeführt.
In der Vergangenheit wurden enorme Fortschritte bei der Entwicklung von Visualisierungstechnologien wie 3D-Darstellungen, Vor-Ort-Visualisierungen auf mobilen Endgeräten sowie Projektionen erzielt. Die realitätsgetreue Abbildung von Windparks im virtuellen Raum wird aktuell zum Standard bei Planungsverfahren und zunehmend von Vorhabenträgern nachgefragt. Bislang erlauben diese Anwendungen aber keine Interaktionen zwischen den NutzerInnen. Gleichzeitig spielen Formate der Online-Beteiligung/-Kommunikation eine immer größere Rolle; attraktive Angebote, welche adäquaten Ersatz oder passgenaue Ergänzungen für realweltlichen Austausch bieten, werden bedeutsamer. Hier setzt das Vorhaben an. Es nutzt elaborierte 3D-Plattformen für virtuellen Austausch der NutzerInnen. Im Rahmen eines partizipativen Designs entwickeln BürgerInnen in Living Labs bei drei Energiewende-Vorhaben selbst Vorschläge für kommunikative Formate. Anreize werden durch Gamification-Elemente und Selbstwirksamkeitserfahrungen, die sich aus dem unmittelbaren Einfluss auf das Design ergeben, gesetzt. Die Fallkontexte und Wirkungsweisen der Formate auf die Beteiligten sowie technische Innovationspotentiale werden interdisziplinär beforscht. Im Rahmen des bürgerwissenschaftlichen Co-Design-Prozesses der Living Labs werden über mehrere Entwicklungsstufen hinweg erste Prototypen entwickelt. Diese anwendungsorientierte Forschung schafft Austauschmöglichkeiten zwischen BürgerInnen in Energiewende-Visualisierungen und schafft somit einen Zugang, der interessengeleitete Partizipation von Betroffenen mit neuen Formen digitaler Interaktion erschließt. In vier Teilvorhaben werden die lokale Governance- und Akteursstrukturen untersucht (IASS), partizipative Design Case Studies in der Energiewende (CSCW) und experimentelle Studien zu kommunikativen Wirkungen immersiver Energiewende-Visualisierungen (JGU) sowie Fallstudien zur kommunikativen Wirkung immersiver Visualisierungen der Energiewende (LOS) durchgeführt.
Kurzinformation des wissenschaftlichen Dienstes des Deutschen Bundestages. 2 Seiten. Auszug der ersten drei Seiten: Wissenschaftliche Dienste Kurzinformation Aktuelle Entwicklungen zu Stromspeicher-Technologien Literaturhinweise zu aktuellen Entwicklungen von Strom-(Energie)speicher-Systemen und tech- nische Kenndaten: Einen einführenden Überblick ausgewählter Speichertechnologien und ihrer Speicherkapazitä- ten liefert die Arbeit der Wissenschaftlichen Dienste aus dem Jahr 2016 „Entwicklung von Strom- speicherkapazitäten in Deutschland 2010 bis 2016“ Deutscher Bundestag, Dokumentation WD 8- 3000-083/16, https://www.bundestag.de/blob/496062/759f6162c9fb845aa0ba7d51ce1264f1/wd- 8-083-16-pdf-data.pdf Darüber hinaus finden sich in den nachfolgenden Quellenangaben Informationen zum aktuellen Stand der einzelnen Speicher-Technologien. Im Jahresbericht über das „Mess- und Evaluierungsprogramm Solarstromspeicher 2.0“ beschreibt Kapitel 3 die Markt- und Technologieentwicklung von Solarstromspeichern. Institut für Strom- richtertechnik und Elektrische Antriebe (ISEA) der RWTH Aachen (2017). http://www.speicher- monitoring.de und https://www.bves.de/wp-content/uploads/2017/07/Speichermonitoring_Jah- resbericht_2017_ISEA_RWTH_Aachen.pdf Der aktuelle „Solactive Battery Energy Storage Performance-Index“ liefert weitere Daten zu Solar- speichern: Solaractive (2018). https://www.solactive.com/wp-content/uploads/solac- tiveip/de/Factsheet_DE000SLA4Z26.pdf Auf den Internetseiten des Bundesverbands Energiespeicher (BVES) finden sich weitere detail- lierte Informationen in den Fact-Sheets der einzelnen Technologien https://www.bves.de/tech- nologien-final/ und im Faktenpapier „Energiespeicher“ https://www.bves.de/wp-content/uplo- ads/2017/05/Faktenpapier_2017.pdf. Im Rahmen der Dena-Netzflexstudie, Deutschen Energie Agentur (dena) (2017). „Optimierter Ein- satz von Speichern für Netz- und Marktanwendungen in der Stromversorgung“, haben die Auto- ren verschiedene Einsatzszenarien analysiert. Das Fact-Sheet liefert eine kurze Zusammenfas- sung zur Studie, https://shop.dena.de/fileadmin/denashop/media/Downloads_Da- teien/esd/9192_dena-Factsheet_dena-Netzflexstudie.pdf WD 8 - 3000 - 056/18 (18. Juni 2018) © 2018 Deutscher Bundestag Die Wissenschaftlichen Dienste des Deutschen Bundestages unterstützen die Mitglieder des Deutschen Bundestages bei ihrer mandatsbezogenen Tätigkeit. Ihre Arbeiten geben nicht die Auffassung des Deutschen Bundestages, eines sei- ner Organe oder der Bundestagsverwaltung wieder. Vielmehr liegen sie in der fachlichen Verantwortung der Verfasse- rinnen und Verfasser sowie der Fachbereichsleitung. Arbeiten der Wissenschaftlichen Dienste geben nur den zum Zeit- punkt der Erstellung des Textes aktuellen Stand wieder und stellen eine individuelle Auftragsarbeit für einen Abge- ordneten des Bundestages dar. Die Arbeiten können der Geheimschutzordnung des Bundestages unterliegende, ge- schützte oder andere nicht zur Veröffentlichung geeignete Informationen enthalten. Eine beabsichtigte Weitergabe oder Veröffentlichung ist vorab dem jeweiligen Fachbereich anzuzeigen und nur mit Angabe der Quelle zulässig. Der Fach- bereich berät über die dabei zu berücksichtigenden Fragen.[.. next page ..]Wissenschaftliche Dienste Kurzinformation Seite 2 Aktuelle Entwicklungen zu Stromspeicher- Technologien Die Internetseiten der „Forschungsinitiative Energiespeicher“ der Bundesregierung berichten über aktuelle Entwicklungen sämtlicher Energiespeicher-Technologien: http://forschung-ener- giespeicher.info/projektschau/analysen/ Aktuelle Daten von Speichersystemen sind im Factsheet „U.S. Grid Energy StorageFact-Sheet“, Center for Sustainable Systems, Universität Michigan (2017). http://css.umich.edu/si- tes/default/files/U.S._Grid_Energy_Storage_Factsheet_CSS15-17_e2017.pdf zusammengefasst. Aktuelle Statistiken und ein Dossier zu Energiespeichern finden sich bei Statista (2018). „Ener- giespeicher“, https://de.statista.com/themen/2779/energiespeicher/ bzw. https://de.sta- tista.com/download/MTUyOTMzMTc1MyMjMTUzMDQzIyMzMTY4MyMjMSMjcGRmIyN- TdHVkeQ== *** Fachbereich WD 8 (Umwelt, Naturschutz, Reaktorsicherheit, Bildung und Forschung)
Der Kartendienst (WMS-Gruppe) stellt die Kartengrundlagen des Landesentwicklungsplanes Umwelt (2004) und Siedlung (2006) des Saarlandes bereit.:Flächenhafte Darstellung von Vorranggebieten für Forschung und Entwicklung (VF) im Rahmen des LEP Umwelt 2004.
Die Dekarbonisierung des Energiesystems ist eine große und komplexe Herausforderung. In Deutschland wird bis zum Jahr 2030 eine Vervierfachung der installierten Photovoltaik-Leistung auf 200 GWp angestrebt. Um dieses Ziel zu erreichen, ist es notwendig, alle verfügbaren Potenziale zu nutzen. Während weltweit bereits 2021 über 2,6 GWp schwimmende Solaranlagen mit einer Gesamtleistung von 2,6 GWp installiert waren und auch im benachbarten Ausland bereits großflächig Floating-PV-Anlagen installiert wurden, sind es in Deutschland nur wenige MWp. Das Potenzial allein auf künstlichen Seen wird hierzulande auf 44 GWp geschätzt. So gibt es in Deutschland nur wenig Erfahrung mit solchen Anlagen, was hohe Unsicherheiten bei Genehmigung und Betrieb mit sich bringt und die Umsetzung verzögert. Aus diesem Grund soll im beantragten Vorhaben ein vereinfachtes und weitestgehend automatisiertes Konzept zum Bau von Floating-PV-Anlagen entwickelt werden. Dabei werden auf einem See der Nivelsteiner Sandwerke und Sandsteinbrüche vorinstallierte PV-Modulsysteme eingesetzt. Weiter soll auf Basis eines intensiven Monitorings die Ertragsprognose verbessert werden, um eine zuverlässige Auslegung zu ermöglichen und optimale Leistungsprognosen im Energiepark Herzogenrath liefern zu können. Bislang wird ggü. konventionellen PV-Anlagen pauschal eine Ertragssteigerung von 4,5 % angesetzt, ohne die spezifischen mikroklimatischen Bedingungen zu berücksichtigen, die die See-Situation mit sich bringt. Grundlagen für eine effektive Fernwartung werden erarbeitet.
| Origin | Count |
|---|---|
| Bund | 1449 |
| Kommune | 2 |
| Land | 154 |
| Wissenschaft | 22 |
| Zivilgesellschaft | 11 |
| Type | Count |
|---|---|
| Daten und Messstellen | 2 |
| Ereignis | 3 |
| Förderprogramm | 1210 |
| Gesetzestext | 2 |
| Hochwertiger Datensatz | 10 |
| Text | 125 |
| Umweltprüfung | 2 |
| unbekannt | 191 |
| License | Count |
|---|---|
| geschlossen | 194 |
| offen | 1326 |
| unbekannt | 25 |
| Language | Count |
|---|---|
| Deutsch | 1357 |
| Englisch | 335 |
| Resource type | Count |
|---|---|
| Archiv | 8 |
| Bild | 7 |
| Datei | 81 |
| Dokument | 145 |
| Keine | 889 |
| Multimedia | 2 |
| Unbekannt | 4 |
| Webdienst | 14 |
| Webseite | 515 |
| Topic | Count |
|---|---|
| Boden | 840 |
| Lebewesen und Lebensräume | 1071 |
| Luft | 678 |
| Mensch und Umwelt | 1545 |
| Wasser | 624 |
| Weitere | 1380 |