Durum wheat is mainly grown as a summer crop. An introduction of a winter form failed until now due to the difficulty to combine winter hardiness with required process quality. Winter hardiness is a complex trait, but in most regions the frost tolerance is decisive. Thereby a major QTL, which was found in T. monococcum, T.aestivum, H. vulgare and S.cereale on chromosome 5, seems especially important. With genotyping by sequencing it is now possible to make association mapping based on very high dense marker maps, which delivers new possibilities to detect main and epistatic effects. Furthermore, new sequencing techniques allow candidate gene based association mapping. The main aim of the project is to unravel the genetic architecture of frost tolerance and quality traits in durum. Thereby, the objectives are to (1) determine the genetic variance, heritability and correlations among frost tolerance and quality traits, (2) examine linkage disequilibrium and population structure, (3) investigate sequence polymorphism at candidate genes for frost tolerance, and (4) perform candidate gene based and genome wide association mapping.
Especially during the last decades, the natural forests of Ethiopia have been heavily disturbed by human activities. Some forests have been totally cleared and converted into fields for agricultural use, other suffered from different influences, such as heavy grazing and selective logging. The ongoing research in the Shashemane-Munessa-study area (Gu 406/8-1,2) showed clearly that, in spite of interdiction and control, forests continue to be cleared and degraded. However, it is not yet sufficiently known, how and why these processes are still going on. Growing population pressure and economic constraints for the people living in and around the forests contribute to the actual situation but allow no final answers to the complex situation. Concerning a sustainable management of the forests there is to no solid basis for recommendations from the socioeconomic and socio-cultural view. Therefore, a comprehensive analysis of the traditional needs and forms of forest use, including all forest products, is necessary. The objective of this project is, to achieve this basis by carrying out intensive field observations, the consultation of aerial photographs, satellite imagery and above all semi-structured interviews with the population in the study area in order to contribute to the recommendations for a sustainable use of the Munessa Shasemane forests.
Beach sand deposits are widespread in the area around Sandefjord, at the western coast of the Oslofjord, southern Norway. The age of the deposits continuously increases with elevation, as the area has been subject to steady glacio-isostatic uplift throughout the Holocene. Existing local sea level curves provide age control related to elevation. Thus, the area offers excellent conditions to test hypotheses on soil formation and OSL dating. A chronosequence covering the last 10 000 years will be established. A preliminary study showed that soil formation leads to Podzols within 4300 - 6600 years. Micromorphological analyses suggest that clay illuviation takes place before and below podzolisation. It is hypothesised that clay translocation goes on contemporarily with podzolisation, but at greater soil depth, where the chemical conditions are suitable. This hypothesis will be proved by more detailed micromorphological investigation and chemical analyses. The factors controlling soil forming processes and their rates, will be determined by analyzing elemental composition, primary minerals and clay mineralogy. Preliminary OSL dating tests suggest that the beach sand deposits are OSL dateable despite the high latitude. This hypothesis will be checked by comparing OSL datings to ages derived from the 14C-based sea level curves.
The CHAMP mission provided a great amount of geomagnetic data all over the globe from 2000 to 2010. Its dense data coverage has allowed us to build GRIMM - GFZ Reference Internal Magnetic Model - which has the highest ever resolution for the core field in both space and time. We have already modeled the fluid flow in the Earth's outer core by applying the diffusionless magnetic induction equation to the latest version of GRIMM, to find that the flow evolves on subdecadal timescales, with a remarkable correlation to the observed fluctuation of Earth rotation. These flow models corroborated the presence of six-year torsional oscillations in the outer core fluid. Torsional oscillation (TO) is a type of hydromagnetic wave, theoretically considered to form the most important element of decadal or subdecadal core dynamics. It consists of relative azimuthal rotations of rigid fluid annuli coaxial with the mantle's rotation and dynamically coupled with the mantle and inner core. In preceding works, the TOs have been studied by numerical simulations, either with full numerical dynamos, or solving eigenvalue problems ideally representing the TO system. While these studies drew insights about dynamical aspects of the modeled TOs, they did not directly take into account the observations of geomagnetic field and Earth rotation. Particularly, there have been no observation-based studies for the TO using satellite magnetic data or models. In the proposed project, we aim at revealing the subdecadal dynamics and energetics of the Earth's core-mantle system on the basis of satellite magnetic observations. To that end, we will carry out four work packages (1) to (4), for all of which we use GRIMM. (1) We perform timeseries analyses of core field and flow models, to carefully extract the signals from TOs at different latitudes. (2) We refine the conventional flow modeling scheme by parameterizing the magnetic diffusion at the core surface. Here, the diffusion term is reinstated in the magnetic induction equation, which is dynamically constrained by relating it to the Lorentz term in the Navier-stokes equation. (3) We develop a method to compute the electromagnetic core-mantle coupling torque on the core fluid annuli, whereby the energy dissipation due to the Joule heating is evaluated for each annulus. This analysis would provide insights on whether the Earth's TOs are free or forced oscillations. (4) Bringing together physical implications and computational tools obtained by (1) to (3), we finally construct a dynamical model for the Earth's TOs and core-mantle coupling such that they are consistent with GRIMM and Earth rotation observation. This modeling is unique in that the force balances concerning the TOs are investigated in time domain, as well as that the modeling also aims at improving the observation-based core flow model by considering the core dynamics.
During microbial turnover of organic chemicals in soil, non-extractable residues (NER) are formed frequently. Studies on NER formation usually performed with radioisotope labelled tracer compounds are limited to localisation and quantitative analyses but their chemical composition is left unknown. Recently, we could show for 2,4-dichlorophenoxyacetic acid and ibuprofen that during microbial turnover in soil nearly all NER were derived from microbial biomass, since degrading bacteria use the pollutant carbon for their biomass synthesis. Their cell debris is subsequently stabilised within soil organic matter (SOM) forming biogenic NER (bioNER). It is still unknown whether bioNER are also formed during biodegradation of other, structurally different compound classes of organic contaminants. Therefore, agricultural soil will be incubated with labelled compounds of five classes of commonly used and emerging pesticides: organophosphate, phenylurea, triazinone, benzothiadiazine and aryloxyphenoxypropionic acid. The fate of the label will be monitored in both living and non-living SOM pools and the formation of bioNER will be quantified for each compound over extended periods of time. In addition, soil samples from long-term lysimeter studies with 14C-labelled pesticide residues (e.g. triazine, benzothiazole and phenoxypropionic acid group) will be also analysed for bioNER formation. The results will be summarised to identify the metabolic conditions of microorganisms needed for bioNER formation and to develop an extended concept of risk assessment including bioNER formation in soils.
We consider clay minerals, iron oxides and charcoal as major components controlling the formation of interfaces relevant for sorption of organic chemicals, as they control the assemblage of organic matter and mineral particles. We studied the formation of interfaces in batch incubation experiments with inoculated artificial soils consisting of model compounds (clay minerals, iron oxide, char) and natural soil samples. Results show a relevant contribution of both iron oxides and clay minerals to the formation of organic matter as sorptive interfaces for hydrophobic compounds. Thus, we intend to focus our work in the second phase on the characterization of the interface as formed by organic matter associated with clay minerals and iron oxides. The interfaces will be characterized by the BET-N2 and ethylene glycol monoethyl ether (EGME) methods and 129Xe and 13C NMR spectroscopy for determination of specific surface area, sorptive domains in the organic matter and microporosity. A major step forward is expected by the analysis of the composition of the interface at different resolution by reflected-light microscopy (mm scale), SEM (scanning electron microscopy, micrometer scale) and secondary ion mass spectrometry at the nanometer scale (nanoSIMS). The outcomes obtained in combination with findings from cooperation partners will help to unravel the contribution of different types of soil components on the formation and characteristics of the biogeochemical interfaces and their effect on organic chemical sorption.
The present-day configuration of Indonesia and SE Asia is the results of a long history of tectonic movements, volcanisms and global eustatic sea-level changes. Not indifferent to these dynamics, fauna and flora have been evolving and dispersing following a complicate pattern of continent-sea changes to form what are today defined as Sundaland and Wallacea biogeographical regions. The modern intraannual climate of Indonesia is generally described as tropical, seasonally wet with seasonal reversals of prevailing low-level winds (Asian-Australian monsoon). However at the interannual scale a range of influences operating over varying time scales affect the local climate in respect of temporal and spatial distribution of rainfall. Vegetation generally reflects climate and to simplify it is possible to distinguish three main ecological elements in the flora of Malaysia: everwet tropical, seasonally dry tropical (monsoon) and montane. Within those major ecological groups, a wide range of specific local conditions caused a complex biogeography which has and still attract the attention of botanists and biogeographers worldwide. Being one of the richest regions in the Worlds in terms of species endemism and biodiversity, Indonesia has recently gone through intensive transformation of previously rural/natural lands for intensive agriculture (oil palm, rubber, cocoa plantations and rice fields). Climate change represents an additional stress. Projected climate changes in the region include strengthening of monsoon circulation and increase in the frequency and magnitude of extreme rainfall and drought events. The ecological consequences of these scenarios are hard to predict. Within the context of sustainable management of conservation areas and agro-landscapes, Holocene palaeoecological and palynological studies provide a valuable contribution by showing how the natural vegetation present at the location has changed as a consequence of climate variability in the long-term (e.g. the Mid-Holocene moisture maximum, the modern ENSO onset, Little Ice Age etc.). The final aim of my PhD research is to compare the Holocene history of Jambi province and Central Sulawesi. In particular: - Reconstructing past vegetation, plant diversity and climate dynamics in the two study areas Jambi (Sumatra) and Lore Lindu National Park (Sulawesi) - Comparing the ecological responses of lowland monsoon swampy rainforest (Sumatra) and everwet montane rainforests (Sulawesi) to environmental variability (vulnerability/resilience) - Investigating the history of human impact on the landscape (shifting cultivation, slash and burn, crop cultivation, rubber and palm oil plantation) - Assessing the impact and role of droughts (El Niño) and fires - Adding a historical perspective to the evaluation of current and future changes.
Boron (B) is an essential microelement for plants. Despite the use of modern fertilization methods, B deficiency still causes losses in agricultural plant production. Even though many positive effects of B on plant growth and physiology have been reported, a large majority of B functions and the regulatory mechanisms controlling the B nutritional status remain unknown. The main objective of this project is to elucidate how the greatly B deficiency-sensitive Brassica crop plants process and regulate their B status during vegetative and reproductive growth. In this context, the project aims at identifying the mode of action of B in mechanisms regulating the B status itself and uncovering those mechanisms contributing to B efficiency in different genotypes. Plant species subjected to investigation will be the agronomically important oilseed and vegetable plant Brassica napus (rapeseed) and its close relative the genetic and molecular model plant Arabidopsis thaliana. Questions addressed within the scope of this project should lead to a detailed understanding of mechanisms controlling B uptake and allocation from the level of the whole plant down to the cellular level. B transport routes and rates will be determined in sink- and source tissues and in developmental periods with a particularly high B demand. A special focus will be on the identification of B transport bottlenecks and the analysis of B deficiency-sensitive transport processes to and within the highly B-demanding reproductive organs. Recent studies in Arabidopsis suggest that Nodulin26-like Intrinsic Proteins (NIPs), which belong to the aquaporin channel protein family, are essential for plant B uptake and distribution. The systematic focus on the molecular and physiological characterization of B. napus NIPs will clarify their role in B transport and will identify novel NIP-associated mechanisms playing key roles in the B response network.To further resolve the mostly unknown impact of the B nutritional status on gene regulation and metabolism, a transcript and metabolite profile of B-sufficient and B-deficient rapeseed plants will be generated. Additionally, an Arabidopsis transcription factor knockout collection (greater 300 lines) will be screened for abnormalities in responses to the B nutritional status. This will identify yet unknown B-responsive genes (transcription factors and their targets) and gene products (enzymes or metabolite variations) playing key roles in signalling pathways and mechanisms regulating the B homeostasis. Boron (in form of boric acid) and arsenite (As) share in all likelihood the same NIP-mediated transport pathways. To assess the consequences of this dual transport pathway the so far unstudied impact of the plants B nutritional status on the accumulation and distribution of As will be investigated in B. napus. Moreover, the current dimension of the As contamination of Brassica-based food products, to which consumers are exposed to, will be analyzed. usw.
Glendonites are pseudomorphs after the mineral ikaite (CaCO3 x 6H2O) and composed of calcite (CaCO3). In the past, they have been used as a paleo-thermometer because the primary mineral ikaite, according to observations and experiments, seems to be formed at temperatures near freezing, high alkalinity and high phosphate concentrations in marine sediments. An enigmatic occurrence of the largest glendonites known world-wide, in the Early Eocene Fur Formation of northwestern Denmark offers the unique possibility to shed more light on the actual mechanism and controlling parameters of ikaite formation. Right in the aftermath of the Paleocene-Eocene thermal maximum, a time known for its global pertubation in the global carbon cycle, the formation of authigenic calcium carbonate concretions start in the Fur Formation. In a specific stratigraphic interval inbetween these concretions, the glendonites can be found. We will investigate if termperature changes or changes in geochemical parameters of the Danish Basin caused the sudden formation of ikaite during a time interval that was based on known paleoclimatic reconstructions (semi tropic) not favorable for ikaite formation.
Prehistoric pits are filled with ancient topsoil material, which has been preserved there over millennia. A characteristic of these pit fillings is that their colour is different depending on the time the soil material was relocated. Soil colour is the result of soil forming processes and soil properties, and it could therefore indicate the soil characteristics present during that specific period. To the best of our knowledge, no investigation analysed and explained the reasons for these soil colour changes over time. The proposed project will investigate soil parameters from pit fillings of different archaeological periods in the loess area of the Lower Rhine Basin (NW-Germany). It aims to implement the measurement of colour spectra as a novel analytical tool for the rapid analyses of a high number of soil samples: the main goal is to relate highresolution colour data measured by a spectrophotometer to soil parameters that were analysed by conventional pedogenic methods and by mid infrared spectroscopy (MIRS), with a main focus on charred organic matter (BPCAs). This tool would enable us to quantify the variation of soil properties over a timescale of several millennia, during different prehistoric periods at regional scale and for loess soils in general. Detailed information concerning changing soil properties on a regional scale is necessary to determine past soil quality and it helps to increase our understanding of prehistoric soil cultivation practices. Furthermore, these information could also help to increase our understanding about agricultural systems in different archaeological periods.
Origin | Count |
---|---|
Bund | 125 |
Type | Count |
---|---|
Förderprogramm | 125 |
License | Count |
---|---|
offen | 125 |
Language | Count |
---|---|
Deutsch | 12 |
Englisch | 125 |
Resource type | Count |
---|---|
Keine | 101 |
Webseite | 24 |
Topic | Count |
---|---|
Boden | 110 |
Lebewesen und Lebensräume | 120 |
Luft | 92 |
Mensch und Umwelt | 125 |
Wasser | 87 |
Weitere | 125 |