High current coated conductors (CC s) have high potential for developing electrical power applications and very high field magnets. The key issues for market success are low cost robust processes, high performance and a reliable manufacturing methodology of long length conductors. In recent years EU researchers and companies have made substantial progress towards these goals, based on vacuum (PLD) and chemical deposition (CSD) methods, towards nanostructuring of films. This provides a unique opportunity for Europe to integrate these advances in high performance conductors. The EUROTAPES project will address two broad objectives: 1/ the integration of the latest developments into simple conductor architectures for low and medium cost applications and to deliver +500m tapes. Defining of quality control tools and protocols to enhance the processing throughput and yield to achieve a pre-commercial cost target of 100 Euro/kAm. 2/ Use of advanced methodologies to enhance performance (larger thickness and Ic, enhanced pinning for high fields, reduction of ac losses, increased mechanical strength). Demonstration of high critical currents (Ic greater than 400A/cm-w, at 77K and self-field and Ic greater than 1000A/cm-w at 5K and 15T) and pinning forces (Fp greater than 100GN/m3 at 60 K). The CSD and PLD technologies will be combined to achieve optimized tape architectures, nanostructures and processes to address a variety of HTS applications at self-field, high and ultrahigh magnetic fields. Up to month 36, 3 types of conductors will be developed (RABiT, ABAD and round wire); at Mid Term 2 will be chosen for demonstration during the final 18 months.
By bringing together 21 partners including 7 major carmakers, 7 major suppliers, 2 SME's and 5 academia / research centres, ALIVE will develop directly exploitable knowledge on materials and design concepts which offer a high potential for significantly reducing the weight of vehicles for affordable application to high productions volumes, focusing on next generation Electric Vehicles (EVs). Specifically ALIVE has set a target of achieving a 30% + 20% weight reduction for the untrimmed vehicle body together with a 25-30% weight reduction of the hang-on parts, chassis and main interior sub-systems. ALIVE strives to generate substantial, tangible innovation in terms of vehicle design, materials, forming & joining technologies, simulation & testing and includes an exceptionally ambitious physical validation activity that will not only deliver a full structural demonstrator of all modules addressed but which will also include destructive crash and durability testing executed on the assembled modules including the entire body. The objective of the car manufacturers and the supply chain within the ALIVE consortium is to accelerate the take up of these innovative technologies, enabling their application in high volume EV production some 5 years earlier than would have been the case otherwise. Importantly the aim is to jointly exploit the potential economies of scale which can only be achieved via pre-competitive collaborative research by identifying and applying common solutions in terms of materials and their respective process technologies. ALIVE is directly linked to a network of recently concluded, on-going and planned parallel activities and as such offers a coordinated platform within the context of the Green Car program for achieving an unprecedented level of impact with respect to increasing EU competitiveness through the development and uptake of real innovation.
Europe is facing a large challenge in relation to the energy consumption of its housing stock. Buildings consume about 40% of total final energy requirements in the continent and in the context of all the end-use sectors, they are the largest (followed by transport with 33%). Although building new homes to the demanding energy efficiency regulations in Europe is essential, the benefits will accrue slowly as it will take several decades before such houses form a significant proportion of the stock. The major challenge is retrofitting existing, energy-inefficient homes, to meet 21st century standards within the constraints enforced by structures built in the 19th and 20th centuries. Key to achieving this goal is understanding the process on how best to select and integrate various technologies from the many available, to optimise performance for different building types, climates and socio-economic conditions - a truly holistic approach is therefore required. The HERB project has been established to develop and demonstrate new and innovative energy efficient technologies and solutions for retrofitting older buildings. These shall be installed and performance monitored in a number of typical residential buildings in EU countries.
Concept: NanoFATE has been conceived to fill knowledge and methodological gaps currently impeding sound assessment of environmental risks posed by engineered nano-particles (ENPs). Our vision is to assess environmental fate and risk of ENPs from high-volume products for which recycling is not an option; namely; fuel additive, personal care and antibacterial products. Two market ENPs from each product (CeO2, ZnO, Ag of varying size, surface and core chemistries) will be followed through their post-production life cycles i.e. from environmental entry as spent product, through waste treatment to their final fates and potential toxic effects. This will test the applicability of current fate and risk assessment methods and identify improvements required for a scientific assessment of ENPs at an early stage. Objectives: Such systematic study of the environmental fate and toxicity of selected ENPs will entail addressing 9 S&T objectives: 1: Design, tagging and manufacture of ENPs 2: Analysis of ENP interactions with abiotic and biotic entities 3: Generating predictive models for ENP exposure in waters and sludge-amended soils 4: Studying the fate and behaviour of ENPs through wastewater treatment 5: Determining acute and chronic ecotoxicity 6: Assessing effects of physico-chemical properties on ENP bioavailability 7: Defining mechanisms of uptake, internal trafficking, and toxicity 8: Developing spatial RA model(s) 9: Improving understanding of ENP risks Methodology: The work plan is designed to progress beyond the state-of-the-art through focused work packages. While some objectives are delivered in single WPs, good cross WP integration will secure the key objectives of delivering new methods for quantifying ENP risks. Impact: NanoFATE will provide robust tools, techniques and knowledge needed by stakeholders to understand and communicate risks associated with different ENPs, including their environmental interactions and toxicity.
The objectives of the ProMine IP address the Commission s concerns over the annual 11 billion trade deficit in metal and mineral imports. Europe has to enhance the efficiency of its overall production chain putting higher quality and added value products on the market. ProMine focuses on two parts of this chain, targeting extractive and end-user industries. Upstream, the first ever Pan-EU GIS based mineral resource and advanced modeling system for the extractive industry will be created, showing known and predicted, metallic and non-metallic mineral occurrences across the EU. Detailed 4D computer models will be produced for four metalliferous regions. Upstream work will also include demonstrating the reliability of new (Bio) technologies for an eco-efficient production of strategic metals, driven by the creation of on-site added value and the identification of specific needs of potential end-users. Downstream, a new strategy will be developed for the European extractive industry which looks not only at increasing production but also at delivering high value, tailored nano-products which will form the new raw materials for the manufacturing industry. ProMine research will focus on five nano-products, (Conductive metal (Cu, Ag, Au) fibres, rhenium and rhenium alloy powders, nano-silica, iron oxyhydroxysulphate and new nano-particle based coatings for printing paper), which will have a major impact on the economic viability of the extractive industry. They will be tested at bench scale, and a number selected for development to pilot scale where larger samples can be provided for characterisation and testing by end-user industries. It will include production, testing and evaluation of these materials, with economic evaluation, life cycle cost analysis, and environmental sustainability. ProMine with 26 partners from 11 EU member states, has a strong industrial involvement while knowledge exploitation will transfer ProMine results to the industrial community.
More and more industrial sectors (e.g. automotive, wind energy, boatbuilding) are demanding lightweight and high-performance composite materials, which represent a strong driver to develop the carbon fibre (CF) industry. Today, almost 80% of CF available on the market are using PolyAcryloNitrile (PAN) as the starting raw material because of its superior properties compared to pitch based carbon fibres. However, CF produced from PAN are expensive which limit their application to premium industrial sectors looking for high-performance structural materials while accepting high material costs (e.g. aeronautics, military devices, and sport goods). The strategic objective of CARBOPREC is to develop low cost precursors from renewable materials widely available in Europe (lignin and cellulose) reinforced by carbon nanotube (CNT) to produce high performance CF for automotive and wind energy applications. To achieve this objective, two white fibre processes will be studied to produce continuous fibres: - Wet spinning approach for the cellulose dissolved in phosphoric acid (H3PO4); - Melt spinning by extrusion for the lignin. Moreover, the carbonization process as well as the different functionalisation steps will be deeply investigated to enhance significantly both, the carbonisation yield, and the added value brought by the developed carbon fibres in the final applications targeted. The CARBOPREC consortium led by ARKEMA gathers 14 partners coming from 6 different European countries and Russia. It covers the whole value chain needed to develop innovative carbon fibres from renewable materials.
EELICON is concerned with an innovative switchable light transmittance technology developed previously in projects co-funded by the EU Framework Programmes. The core of this development are mechanically flexible and light-weight electrochromic (EC) film devices based on a conductive polymer nanocomposite technology with a unique property profile far beyond the current state-of-the art, opening the possibility to retrofit existing windows with a electrically dimmable plastic film. According to life cycle assessment studies, considerable energy savings may result when such films are included in appliance doors, automotive sunroofs, and architectural glazing, and the comfort is significantly enhanced. The development has been driven to the pilot-line production stage, however, the decisive step from research to innovation could not yet be accomplished for a number of technical and economic reasons. To overcome this gap, EELICON will tackle existing drawbacks by removing equipment limitations, automating processes, and establishing a high-throughput prototype production for a cost-effective high performance EC film technology in Europe. The ambitious goal will be approached by joining efforts of European and overseas players to integrate nanotechnology, materials, and production know-how, i.e., specific expertise of European SMEs. Relevant IP is available for exploitation. The project comprises a pilot-line, a validation, and a prototyping phase (incl. business planning) and fully complies with the objectives of NMP Activity 4.4 - Integration and call NMP.2013.4.0-3 - From research to innovation: Previously obtained research results are used by industry, the European paradox is relieved, valley of death is overcome by following three pillars of development eventually resulting in creation of new businesses in Europe. The project is characterised by strong industrial/SME participation. 8 out of 13 partners are industrials, 6 of which being SMEs with leading roles.
Im EU-geförderten Verbund-Projekt Development of an integrated approach based on validated and standardized methods to support the implementation of the EC recommendation for a definition of nanomaterial (NanoDefine) mit 29 Partnern aus 11 Staaten werden Methoden zur verlässlichen Identifizierung, Charakterisierung und Quantifizierung von Nanomaterialien gemäß der EU-Empfehlung von 2011 erschlossen und validiert. Dabei wird die Frage beantwortet, ob ein vorliegendes Material als Nanomaterial eingestuft wird. Basierend auf Methodenevaluation und Ringversuchen werden Instrumente und standardisierte Arbeitsweisen zur Bestimmung der Partikelgrößen im Bereich von 1-100 nm mit unterschiedlichen Formen, Beschichtungen und der größtmöglichen chemischen Zusammensetzung in variablen Matrizen und Produkten entwickelt. Fallstudien zur breiten Anwendungsmöglichkeit, insbesondere in der Lebensmittel- und Kosmetiksektoren, werden durchgeführt. NanoDefine wirkt dabei mit Institutionen der internationalen Standardisierung wie CEN, ISO und OECD zusammen.
The CASCATBEL-project (CASCATBEL: CAScade deoxygenation process using tailored nanoCATalysts for the production of BiofuELs from lignocellullosic biomass) aims to design, optimize and scale-up a novel multi-step process for the production of second-generation liquid biofuels from lignocellulosic biomass in a cost-efficient way through the use of next-generation high surface area tailored nano-catalysts. Detailed description: Within the CASCATBEL-project a multi-step process for the production of second-generation biofuels from lignocellulosic biomass in a cost-efficient way will be developed through the use of tailored nano-structured catalysts. The proposed process is based on the cascade combination of three catalytic transformations: catalytic pyrolysis, intermediate deoxygenation and hydro-deoxygenation. The sequential coupling of catalytic steps will be an essential factor for achieving a progressive and controlled biomass deoxygenation, which is expected to lead to liquid biofuels with a chemical composition and properties similar to those of oil-derived fuels. According to this strategy, the best nano-catalytic system in each step will be selected to deal with the remarkable chemical complexity of lignocellulose pyrolysis products, as well as to optimize the bio-oil yield and properties. Since hydro-deoxygenation (HDO) is outlined in this scheme as the ultimate deoxygenation treatment, the overall hydrogen consumption should be strongly minimized, resulting in a significant reduction of the process costs. The use of nano-structured catalysts will be the key tool for obtaining in each chemical step of the cascade process, the optimum deoxygenation degree, as well as high efficiency, in terms both of matter and energy, minimizing at the same time the possible environmental impacts. The project will involve experiments at laboratory, bench and pilot plant scales, as well as a viability study of its possible commercial application. Thereby, the integrated process will be assessed according to technical, economic, social, safety, toxicological and environmental criteria. Focus IUE: IUE is involved in feedstock selection and characterization for the project. The main objective is to estimate current and future availability of lignocellulosic biomass in the EU. In addition IUE participates in an overall process assessment of the project. This is based on technical, economic, social, environmental and toxicological criteria that will be applied along the project to assess the different options being considered. These tasks will be critical for selecting the most convenient intermediate deoxygenation treatment, the optimum catalysts and the optimum operating conditions. Furthermore, a process design will be generated and a feasibility study will be conducted at commercial scale.
SENSIndoor aims at the development of novel nanotechnology based intelligent sensor systems for selective monitoring of Volatile Organic Compounds (VOC) for demand controlled ventilation in indoor environments. Greatly reduced energy consumption without adverse health effects caused by the Sick Building Syndrome requires optimized ventilation schemes adapted to specific application scenarios like offices, hospitals, schools, nurseries or private homes. - SENSIndoor will measure the quality of indoor air. - SENSIndoor will develop smart, energy efficient ventilation systems. - SENSIndoor will bring forth demand controlled ventilation - the key for energy efficient buildings. - SENSIndoor will develop novel nanotechnology-based microsensor systems for room specific ventilation.
| Origin | Count | 
|---|---|
| Bund | 59 | 
| Type | Count | 
|---|---|
| Förderprogramm | 59 | 
| License | Count | 
|---|---|
| offen | 59 | 
| Language | Count | 
|---|---|
| Deutsch | 2 | 
| Englisch | 58 | 
| Resource type | Count | 
|---|---|
| Keine | 29 | 
| Webseite | 30 | 
| Topic | Count | 
|---|---|
| Boden | 45 | 
| Lebewesen und Lebensräume | 49 | 
| Luft | 49 | 
| Mensch und Umwelt | 59 | 
| Wasser | 29 | 
| Weitere | 59 |