Food processing activities produce in Europe large amounts of by-products and waste. Such waste streams are only partially valorized at different value-added levels (spread on land, animal feed, composting), whereas the main volumes are managed as waste of environmental concern, with relevant negative effects on the overall sustainability of the food processing industry. The main focus of NOSHAN is to investigate the process and technologies needed to use food waste for feed production at low cost, low energy consumption and with maximal valorisation of starting wastes materials. Nutritional value and functionality according to animal needs as well as safety and quality issues will be investigated and address as main leading factors for the feed production using food derived (fruit/plant and dairy). According to this not only wastes will be characterized for their nutritional potential, but suitable technologies to stabilize them and convert them into suitable raw materials for bulk feed will be researched. Two different groups of activities will be thus addressed: From one side, replacement of bulk feed ingredients (constituting up to 90-95% of feed weight) will be studied from the starting waste materials. These bulk materials could cope part of the huge amounts of food waste generated in Europe. From the other side, the valorisation of active ingredients as well as the upgrade of waste into more valuable feed additives will be studied. The later constitute approximately the half of the feed cost. The main expected result of NOSHAN project is the creation of a broad portfolio of valorised wastes for feed production. In this sense, a selection of wastes according to their potential nutritional properties, quantities produced, seasonality, possibility of stabilisation, safety and regulatory issues, cost and logistics will be performed during the first phase of the project.. In order to improve nutritional content of feed and be able to fulfil animal needs, waste will be treated alone or mixed with other waste looking for complementation and synergistic effects. The characterisation at molecular level of the different waste streams will allow providing the best technology for the best raw material to obtain the desired nutritional/functional properties. In NOSHAN a variety of high-advanced technologies for conditioning, stabilising by physico-chemical and biological strategies, extracting high-added value compounds and feed production will be tested, developed and integrated in an innovative low-cost and low energy tailor made procedure for valorising food waste for production of safety and compound functional feed. All these initiatives will be validated in in vitro and in vivo tests to the final animal derived products intended for human consumption. Therefore a whole value chain from starting raw materials to exploitable products and technologies will be covered and monitored with a LCA with a further validation using the novel ETV platform.
The current project proposal discloses a novel biorefinery process for a sustainable, waste free, low energy conversion route of negative value marine waste streams into high value, high performance chemical intermediates and products for the polymer industry. The project has a strong emphasis on technology development and transfer to low-tech and developing countries in the EU and associated ICPC and therefore will significantly contribute to the technological and economic leadership of the EU. The technologies disclosed in this project will foster the natural growth of sustainable economies in the EU and beyond by eliminating the need for fossil resources to preserve and exceed the current standard of living. The innovative technologies developed in this project will apply novel concepts for the production of bio-based platform chemicals that act as 'drop-ins' for existing and novel polymer production processes with high atom efficiencies. The unique assembly of the current consortium consisting of academics, SME's and large scale chemical industry partners, clearly has the scientific and technical expertise to rapidly transform laboratory based results into novel product lines at an accelerated time frame. As a part of the strategy the consortium has included Demonstration Activities as require by the FP7-KBBE-Call.
Ziel des gesamten Projektes besteht zum einen in der Entwicklung neuer Anbau-, Futter- und Weide-Produktionssysteme mit Leguminosen, die die Umweltauswirkungen der europ. Agrar-Systeme reduzieren und zum anderen in der Durchführung sozio-ökonom. Analysen und Umweltbewertungen. Dazu wird die Forschung einen wissenschaftl. fundierten Rahmen, Strategien, Methoden und Instrumente zur Bewertung der ökologischen und ökonomischen Auswirkungen neuer leguminosenbasierten Anbausysteme aufstellen. Die spez. Ziele des Projekts sind: 1. Das Verwalten von 18 Fallstudien in Europa basierend auf etablierte Feldversuche, welche über neue Anbausystem-Designs informieren und diese validieren und die Schaffung einer Anlaufstelle für die lokale Entwicklung der Rolle von Leguminosen in neuen Anbausysteme (WP1). 2 Die Entwicklung neuer Anbausysteme für Europas pedo-klimatische Zonen durch Nutzung der Modellierung unter der Inanspruchnahme der Daten der Fallstudien, die durch das Projekt vernetzt sind (WP 1, 2, 4, und 6). 3 Die Quantifizierung der Ressourcennutzung unter Nutzung von biophysikalischen und ökonomischen Modellen (z.B. fossile Energieträger), zusammen mit den sozio-ökonomischen und ökol. Auswirkungen von kontrastierenden Anbau- und Landwirtschaftssystem-Szenarien in einem Skalenbereich (von lokal zu global) (WP 4, 6). 4 Die Identifizierung der großflächigen Umweltauswirkungen der Leguminosennutzung innerhalb der Anbausysteme (z.B. Kohlenstoff- und Stickstoff-Kreislauf, Treibhausgasemissionen, Bodenqualität, Biodiversität, Auswirkungen auf Schädlinge und Krankheiten), einschließl. der systematischen Messungen der Lachgasemissionen (WP3). 5 Die Inanspruchnahme von Daten aus bestehenden und neuen Feldexperimenten und aus Stakeholder-Interaktionen, um das Elitesaatgut einer breiten Palette von Leguminosenarten und ihrer symbiotischen Organismen im Hinblick auf ihre Eignung in den neuen Anbausystemen zu beurteilen (WP2). 6 Die Bereitstellung von bewerteten Szenarien um die Entwicklung von Lieferketten, einschließlich der Tierfütterungssysteme (für Wiederkäuer, Monogastrier, Geflügel und Fisch), zu unterstützen, basierend auf diese Anbausysteme in Verbindung mit den fortlaufenden Forschungsarbeiten im Konsortium, dem Input unserer lokalen und internationalen Stakeholder-Foren und der umfangreichen Literatur (WP1, 2, 4, 5, 6). 7 Die Bereitstellung einer ausführlichen und vollständigen Bewertung des Potenzials von Leguminosen im Non-Food-Sektor und die Auswirkung dieses Potenzials für die Gestaltung der Anbausysteme (WP5). 8 Das Erleichtern des Zugangs zur umfassenderen Wissensbasis über Leguminosen und die Verbreitung von Informationen über neue agronomische, ökologische und soziale Auswirkungen von Leguminosen in Anbausysteme (WP1, 2, 5). 9 Die Entwicklung und Verbesserung von Leguminosen-Wissensressourcen durch die Sammlung und Verknüpfung von Daten und Wissen, die zur Einrichtung eines 'European Legume Crop Biological Resources Centre' führen (WP2, 5).
In FarmPath wird davon ausgegangen, dass die Nachhaltigkeit der Landwirtschaft eher erreicht werden kann, wenn unterschiedliche Landwirtschaftsmodelle flexibel kombiniert werden können. Die unterschiedlichen Modelle reflektieren die Möglichkeiten der regionalen Kultur, Produktionsmöglichkeiten, Multifunktionalitätspotenzial, Ökologie und historische Besitzverhältnisse und Strukturen. Das Projekt soll Wege aufzeigen, wie die regionale Nachhaltigkeit erhöht werden kann. Der Ansatz ist Transdisziplinär, d.h. wir arbeiten eng mit PraxispartnerInnen zusammen. FarmPath baut auf die theoretischen Ansätze von 'Transition studies' auf, sowie auf den Ansätze von Anpassungsfähigkeit und Resilienz von landwirtschaftlichen Systemen.
Objective: The NanoLyse project will focus on the development of validated methods and reference materials for the analysis of engineered nano-particles (ENP) in food and beverages. The developed methods will cover all relevant classes of ENP with reported or expected food and food contact material applications, i.e. metal, metal oxide/silicate, surface functionalised and organic encapsulate (colloidal/micelle type) ENP. Priority ENPs have been selected out of each class as model particles to demonstrate the applicability of the developed approaches, e.g. nano-silver, nano-silica, an organically surface modified nano-clay and organic nano-encapsulates. Priority will be given to methods which can be implemented in existing food analysis laboratories. A dual approach will be followed. Rapid imaging and screening methods will allow the distinction between samples which contain ENP and those that do not. These methods will be characterised by minimal sample preparation, cost-efficiency, high throughput and will be achieved by the application of automated smart electron microscopy imaging and screening techniques in sensor and immunochemical formats. More sophisticated, hyphenated methods will allow the unambiguous characterisation and quantification of ENP. These will include elaborate sample preparation, separation by flow field fractionation and chromatographic techniques as well as mass spectrometric and electron microscopic characterisation techniques. The developed methods will be validated using the well characterised food matrix reference materials that will be produced within the project. Small-scale interlaboratory method performance studies and the analysis of a few commercially available products claiming or suspect to contain ENP will demonstrate the applicability and soundness of the developed methods.
EnviGuard is a response to the growing need for accurate real time monitoring of the seas/ocean and the aquaculture industries need for a reliable and cost-effective risk management tool. The implementation of the EnviGuard system will allow for early detection of harmful algae blooms (HAB), chemical contaminants, viruses and toxins thus preventing economic losses. The modular EnviGuard system will be made up of three different sensor modules (microalgae / pathogens, i.e. viruses & bacteria / toxins & chemicals), that are connected to the common interface 'EnviGuard Port' which collects and sends the information to a server. The data will be accessible through a website in real-time. The modularity of the system enables an individual setup for each purpose thus offering a tailor-made solution for each future client.
Global apiculture is facing an unprecedented crisis of increasing parasite pressure and a loss of hon-eybee biodiversity. SMARTBEES unites a team of experts with the necessary skills to build a bright and sustainable future. The SMARTBEES concept is low risk and high impact, using established protocols and state-of-the-art methods. Including world leading researchers from outwith the traditional honeybee sphere (e.g. acarology, genetic breeding and insect immunology). We will identify crucial facets of honeybee resistance to colony losses, Varroa and viruses. We will provide a step-change in the current mechanistic understanding of these traits, and will characterise the genetic background of the resistance mechanisms in honeybees. We will develop breeding strategies to increase the frequencies of these valuable traits in local honeybee populations, considering the variable need of both common and endangered subspecies and local beekeeping practises. Breeding efforts concentrating on very few races may endanger genetic diversity, to avoid this SMARTBEES will promote multiple local breeding efforts, to conserve local resilient populations and will develop molecular tools for describing and safeguarding future populations. SMARTBEES recognizes responsibility to protect our natural honeybee heritage. SMARTBEES will commission extension science, and work in cooperation with stakeholders to attain conservation by utilisation. SMARTBEES will establish a network of apiaries for performance testing, to encourage local uptake of resistant traits. These will be run mainly by beekeepers, thereby improving the local acceptability and dissemination, and support the long-term sustainability of the apicultural sector. SMARTBEES recognises the need to horizon scan for new threats, and the consortium includes the current EU reference laboratory to that end. SMARTBEES is an opportunity to make a lasting difference to the health, resilience and genetic diversity of our honeybees.
MariaBox will develop a wireless marine environment analysis device for monitoring chemical and biological pollutants while installed into a buoy, a maritime means of transport or a mooring. The device, based on novel biosensors, will be of high-sensitivity, portable and capable of repeating measurements over a long time, allowing permanent deployment at sea. The word 'MARIA' is the plural of the Latin 'mar' (sea) and expresses the wide applicability that this system offers in multiple locations where low-cost and real-time in situ analytical monitoring devices are required. The approach includes: a) a sensing and analysis box, b) a modular communication system, c) a flexible power system, d) a software platform, and e) a cell phone application. The box will transmit the collected data in real time through different channels according to local needs and geographical location: radio, GSM/GPRS/3G, WiFi, WiMAX or satellite link. The unit will be designed to be remotely controlled and will implement the OTA programming and OTA configuration features which will allow the user to update the firmware of the MariaBox unit and modify various configuration parameters wirelessly. Remote updates are a key factor in deployment scalability since it offers the only possibility of easily updating or reprogramming the devices after the initial deployment. Therefore, the maintenance costs are significantly reduced. Biosensors will be developed for 5 man-made chemicals and for 4 categories of microalgae toxins relevant to shell fish and fish farming. The novel biosensors will contribute to new standards for environmental analysis. The analytes selected for the biosensors are in line with 1) the Article 16 of the Water Framework Directive (2000/60/EC), 2) the Decision 2455/2001/EC and 3) The Commission Directive 2009/90/EC. The system developed will be demonstrated and validated in four different scenarios in selected locations in Norway, Spain, Cyprus and Ireland.
Das Projekt zielt darauf ab die genetischen Ressourcen von Leguminosen in Europa zu untersuchen um Ihre nachhaltige Produktion und Nutzung zu fördern. Neue Sorten und neue Lebens-und Futtermittel sollen die Proteinproduktion in der EU wettbewerbsfähiger und nachhaltiger machen. Kurzfristige Ziele S & T: 1. Bewertung lokaler genetischer Ressourcen von Erbse (Pisum sativum L.), Ackerbohne (Vicia faba L.) und Augenbohne (Vigna unguiculata (L.) Walp) für die Entwicklung von neuen Sorten für Lebens- und Futtermittel und die weitere Verwendung in der Zucht; 2. Entwicklung neuer Lebens- und Futtermittel aus verfügbaren europäischen Sorten von Erbse, Ackerbohne und Augenbohne; 3. Auswahl geeigneter Rhizobienstämme und arbuskulären Mykorrhizapilze zur Unterstützung der Stickstofffixierung und Entwicklung von neuen, kommerziellen Sporen-Impfstoffen; 4. Bewertung des Einflusses von Leguminosen auf die Bodeneigenschaften in nachhaltigen, regional-spezifischen Anbausystemen. Projektschwerpunkt an der BOKU sind die Wurzelsysteme.
BIOFECTOR is an integrated project with the aim to reduce input of mineral fertilisers in European agriculture by development of specifically adapted bio-effectors (BEs) to improve the efficiency of alternative fertilisation strategies, such as organic and low-input farming, use of fertilisers based on waste recycling products and fertiliser placement technologies. Bio-effectors addressed comprise fungal strains of Trichoderma, Penicillium and Sebacinales, as well as bacterial strains of Bacillus and Pseudomonades with well-characterized root growth promoting and nutrient-solubilising potential. Natural extraction products of seaweed, compost and plant extracts, as well as their purified active compounds with protective potential against biotic and abiotic stresses are also tested in various combinations. These features offer perspectives for a more efficient use of nutrients by strategic combination with the alternative fertilisation strategies. Maize, wheat and tomato are chosen as representative crops. Laboratory and European-wide field experiments assure product adaptation to the various geo-climatic conditions characteristic for European agriculture. The final goal is the development of viable alternatives to the conventional practice of mineral fertilisation as contribution to a more efficient management of the non-renewable resources of mineral nutrients, energy and water, to preserve soil fertility and to counteract the adverse environmental impact of agricultural production.
| Origin | Count |
|---|---|
| Bund | 42 |
| Type | Count |
|---|---|
| Förderprogramm | 42 |
| License | Count |
|---|---|
| offen | 42 |
| Language | Count |
|---|---|
| Deutsch | 12 |
| Englisch | 42 |
| Resource type | Count |
|---|---|
| Keine | 20 |
| Webseite | 22 |
| Topic | Count |
|---|---|
| Boden | 37 |
| Lebewesen und Lebensräume | 42 |
| Luft | 24 |
| Mensch und Umwelt | 42 |
| Wasser | 24 |
| Weitere | 42 |