BIOFECTOR is an integrated project with the aim to reduce input of mineral fertilisers in European agriculture by development of specifically adapted bio-effectors (BEs) to improve the efficiency of alternative fertilisation strategies, such as organic and low-input farming, use of fertilisers based on waste recycling products and fertiliser placement technologies. Bio-effectors addressed comprise fungal strains of Trichoderma, Penicillium and Sebacinales, as well as bacterial strains of Bacillus and Pseudomonades with well-characterized root growth promoting and nutrient-solubilising potential. Natural extraction products of seaweed, compost and plant extracts, as well as their purified active compounds with protective potential against biotic and abiotic stresses are also tested in various combinations. These features offer perspectives for a more efficient use of nutrients by strategic combination with the alternative fertilisation strategies. Maize, wheat and tomato are chosen as representative crops. Laboratory and European-wide field experiments assure product adaptation to the various geo-climatic conditions characteristic for European agriculture. The final goal is the development of viable alternatives to the conventional practice of mineral fertilisation as contribution to a more efficient management of the non-renewable resources of mineral nutrients, energy and water, to preserve soil fertility and to counteract the adverse environmental impact of agricultural production.
Subprojects: - Identifying general relationships between semi-natural habitats, on-farm management and biodiversity (WP1) - Linking biodiversity to ecosystem services on farmland (WP2) - Mitigation of biodiversity loss and promotion of ecosystem services (WP3). The next few decades will witness a rapidly increasing demand for agricultural products. This growing demand needs to be met largely through intensification (produce more from the same land surface) because there is little scope for an increase in agricultural area. Ecological intensification has been proposed as a promising solution. Ecological intensification is the optimization of all provisioning, regulating and supporting ecosystem services in the agricultural production process. As such it advocates to maintain or enhance agricultural production through the promotion of biodiversity and associated ecosystem services. The LIBERATION project aims to provide the evidence-base for the potential of ecological intensification to sustainably enhance food security with minimal negative impacts on the environment. This requires a basic insight in how biodiversity contributes to various ecosystem services and subsequently how ecosystem services contribute to yield and farm income. Key questions that will be addressed are: - How landscape structure and land-use interact in the provisioning of ecosystem services; - How farmland biodiversity is related to multiple ecosystem services; - Whether there are trade-offs between different ecosystem services; - How ecosystem services are related to farm income; - How ecosystem services may be influenced by policy measures at the local, national or EU scale. LIBERATION will focus on the ecosystem services pollination, pest control, nutrient cycling and soil fertility, thus examining both above- and below-ground ecosystem services as well as possible trade-offs and synergies. Implications for greenhouse gas emissions will be explored throughout all activities in the project. Ecosystem service delivery will be expressed in terms of (their contribution to) agricultural yield and in terms of farm income.
Miscanthus is a C4 perennial rhizomatous grass originating from Eastern Asia that has become a leading candidate crop for production of lignocellulosic feedstocks due to its rapid biomass accumulation in temperate climates. There is currently a single commercial clone, M. x giganteus which has a number of limitations. Research over the past 20 years has shown that a few key species and their interspecific hybrids have a high yield potential whilst requiring low inputs. Partners within this consortium have been working with these species for many years and are able to supply diverse and promising germplasm to form the basis of this project. The overall objective of this project is to optimize the miscanthus bioenergy and biopoduct chain by: trialling elite germplasm types over a range of sites across Europe, Ukraine and Russia; analysing the key traits that currently limit the potential of miscanthus; identifying high-value bioproducts; and modelling the combined results to provide recommendations to policy makers, growers and industry. The outcomes of the project will include screened germplasm and knowledge which will provide solutions to key existing bottlenecks. The plants used in these studies will be propagated through tissue culture or through seeds to generate sufficient homogenous plantlets (WP2) for experiments and trials on laboratory, agronomic plot and near-commercial scales. The specific topics tackled in these trials are (1) dissection of the traits underpinning tolerance to the abiotic stresses drought, salinity, cold and freezing (WP3), (2) yield and quality in a wide range of environments, taking into consideration traits such as senescence, nutrient re-cycling and nutrient-use efficiency (WP4), (3) process-ability of biomass to convenient fuel formats (WP5) and added-value products (WP6). Data gathered in WPs 3-6 will be integrated through the development of modelling parameters needed to build up life-cycle analysis models and other decision support tools to identify optimum production scenarios in the EU, Ukraine and Russia (WP7). Recommendations will be provided to miscanthus developers on appropriate genotype selection, propagation and processing methods to maximize the environmental, economic and social benefits. The development of the full potential of miscanthus through OPTIMISC will contribute to Europes transition to a sustainable biobased economy.
GRACE pursues two key research objectives: Firstly, it aims to provide comprehensive reviews of the existing evidence on the health, environmental and socio-economic impacts of GM plants - considering both risks and possible benefits. GRACEs review strategy will go beyond what has been done before. Reviews will be conducted in a systematic, transparent and inclusive way based on procedures originally developed for evidence-based medicine (systematic reviews). The results will be made accessible to the public via an open access database and other channels. Secondly, GRACE will test various types of animal feeding trials and alternative methods without the use of animals in order to determine how suitable they are and what useful scientific information they provide for health risk assessments of GM food and feed. At present there are different views at the EU level and between Member States on the need for and scientific value of such studies. The project will also check whether extended feeding trials can improve risk assessments compared to in-vitro, in-silico and omics methods available today. Transparency and user and stakeholder involvement and scrutiny are key features of GRACE. The project will be working closely with representatives from a broad range of stakeholder organisations as well as with professional risk assessors and risk managers. This includes planning and preparing the research activities as well as discussing the results and drawing conclusions. For this purpose, the GRACE project will organise workshops and conduct interviews and surveys and prepare feed-back reports to ensure that the information and the views of stakeholders can feed into this project. IFZ is leading the work package for user and stakeholder involvement and will also work on the core review process.
Micro B3 will develop innovative bioinformatic approaches and a legal framework to make large-scale data on marine viral, bacteria; archaeal and protists genomes and metagenomes accessible for marine ecosystems biology and to define new targets for biotechnological applications. Micro B3 will build upon a highly interdisciplinary consortium of 32 academic and industrial partners comprising world-leading experts in bioinformatics, computer science, biology, ecology, oceanography, bioprospecting and biotechnology, as well as legal aspects. icro B3 is based on a strong user- and data basis from ongoing European sampling campaigns to long-term ecological research sites. For the first time a strong link between oceanographic and molecular microbial research will be established to integrate global marine data with research on microbial biodiversity and functions. The Micro B3 Information System will provide innovative open source software for data-processing, -integration, -visualisation, and -accessibility. Interoperability will be the key for seamless data transfer of sequence and contextual data to public repositories. Micro B3 will allow taking full advantage of current sequencing technologies to efficiently exploit large-scale sequence data in an environmental context. Micro B3 will create integrated knowledge to inform marine ecosystems biology and modelling. Moreover, it will facilitate detecting candidate genes to be explored by targeted laboratory experiments for biotechnology and for assigning potential functions to unknown genes. Micro B3 will develop clear IP agreements for the protection and sustainable use of pre-competitive microbial genetic resources and their exploitation in high potential commercial applications. To underline the translational character of Micro B3, outreach and training activities for diverse stakeholders are planned as well as an Ocean Sampling Day to transparently make project results accessible and gain valuable user feedback.
The Catch-C project assesses the farm-compatibility of Best Management Practices (BMPs) that aim to promote productivity, climate change mitigation, and soil quality. These are the three overall goals of sustainable soil management. Catch-C will first (WP2) set up a typology of the main farm types and agro-ecological zones across Europe. This frame, coupled to a pan-European database of socio-economic and biophysical data, will be used for spatially organising the information collected on current management; and for up-scaling the impacts expected from changes in management. Biophysical impacts of management practices will be assessed (WP3) primarily from a large set of current field experiments, executed by the participants. BMPs will be formulated, along with their trade-offs and synergies between productivity, climate change mitigation, and soil quality. Farmers, however, often do not adopt BMPs. Identifying the barriers against adoption, and formulating ways to remove these, are core activities of the project (WP4). Catch-C will survey farmer views on BMPs in all participant countries, assess costs and benefits of implementation, identify technical and ecological bottlenecks preventing adoption, develop a decision support tool, and prioritize innovation requirements to address bottlenecks. Policy measures can promote adoption in various ways, such as voluntary measures, regulation, and economic incentives. In interaction with policy makers, Catch-C will develop (WP5) guidelines for policies that will support the adoption of BMPs; and that are consistent with regional agro-ecological and farming contexts. Dissemination (WP6) includes scientific publication; discussing project results with farmers and policy makers; making information about BMPs and their adoption available to a wider audience; and stimulating awareness about the pros and cons of BMPs for different farm types and environments in participant countries.
Global apiculture is facing an unprecedented crisis of increasing parasite pressure and a loss of hon-eybee biodiversity. SMARTBEES unites a team of experts with the necessary skills to build a bright and sustainable future. The SMARTBEES concept is low risk and high impact, using established protocols and state-of-the-art methods. Including world leading researchers from outwith the traditional honeybee sphere (e.g. acarology, genetic breeding and insect immunology). We will identify crucial facets of honeybee resistance to colony losses, Varroa and viruses. We will provide a step-change in the current mechanistic understanding of these traits, and will characterise the genetic background of the resistance mechanisms in honeybees. We will develop breeding strategies to increase the frequencies of these valuable traits in local honeybee populations, considering the variable need of both common and endangered subspecies and local beekeeping practises. Breeding efforts concentrating on very few races may endanger genetic diversity, to avoid this SMARTBEES will promote multiple local breeding efforts, to conserve local resilient populations and will develop molecular tools for describing and safeguarding future populations. SMARTBEES recognizes responsibility to protect our natural honeybee heritage. SMARTBEES will commission extension science, and work in cooperation with stakeholders to attain conservation by utilisation. SMARTBEES will establish a network of apiaries for performance testing, to encourage local uptake of resistant traits. These will be run mainly by beekeepers, thereby improving the local acceptability and dissemination, and support the long-term sustainability of the apicultural sector. SMARTBEES recognises the need to horizon scan for new threats, and the consortium includes the current EU reference laboratory to that end. SMARTBEES is an opportunity to make a lasting difference to the health, resilience and genetic diversity of our honeybees.
EnviGuard is a response to the growing need for accurate real time monitoring of the seas/ocean and the aquaculture industries need for a reliable and cost-effective risk management tool. The implementation of the EnviGuard system will allow for early detection of harmful algae blooms (HAB), chemical contaminants, viruses and toxins thus preventing economic losses. The modular EnviGuard system will be made up of three different sensor modules (microalgae / pathogens, i.e. viruses & bacteria / toxins & chemicals), that are connected to the common interface 'EnviGuard Port' which collects and sends the information to a server. The data will be accessible through a website in real-time. The modularity of the system enables an individual setup for each purpose thus offering a tailor-made solution for each future client.
The BEE DOC comprises a network of eleven partners from honeybee pathology, chemistry, genetics and apicultural extension aiming to improve colony helath of honeybees. The BEE DOC will empirically and experimentally fill knowledge gaps in honey bee pest and diseases, including the 'colony collapse disorder' and quantify the impact of ineractions between parasites, pathogens and pesticides on honey bee mortality. Specifically BEE DOC will show for two model parasites (Nosema and Varroa mites), three model viruses (Deformed Wing Virus, Black Queen Cell Virus, Israel Acute Paralysis Virus) and two model pestcides (fipronil, A-fluvalinate) how interactions affect individual bees and colonies in different European areas. The BEE DOC will use transcriptome anayses to explore host-pathogen-pesticide interaction and identify novel genes for disease resistance. The BEE DOC will specifically address sublethal and chronic exposure to pesticides and screen how apicultural practices affect colony health. The BEE DOC will develop novel diagnostic screening methods and develop sustainable concepts for disease prevention using novel treatments and selection tools for resitant stock. The BEE DOC will be linked to various national and international ongoing European, North-, and Latin-American colony health monitoring and research programs, which will not only ensure a pan European but also a global visibility and the transfer of results to a world wide community of beekeepers.
Project description: The project will analyse the costs, and thus the effectiveness of different organic standard setting procedures and certification systems as a basis for optimising of current EU certification system (Reg. EEC 2092/91). The central task is to quantify, for selected products, all relevant expenditure and transaction costs for certification along the entire supply chain for all actors involved: farm, processing, wholesaling, retail and import level as well as the administration level. Regarding the consumer side, it will be analysed how consumers perceive the various standards, logos and trademarks in the different regions of Europe. The project will make recommendations on how to increase the effectiveness and the efficiency of organic certification for the EU Commission, national competent authorities and private actors in organic food and farming. Main task of our department is the analysis of consumer recognition of different labels and their willingness to pay for different labels and underlying standards. Expected outcome: Efficient certification systems for organic farming with lower costs that will increase the competitiveness of the European organic farming sector.
Origin | Count |
---|---|
Bund | 42 |
Type | Count |
---|---|
Förderprogramm | 42 |
License | Count |
---|---|
offen | 42 |
Language | Count |
---|---|
Deutsch | 12 |
Englisch | 42 |
Resource type | Count |
---|---|
Keine | 20 |
Webseite | 22 |
Topic | Count |
---|---|
Boden | 37 |
Lebewesen und Lebensräume | 41 |
Luft | 24 |
Mensch und Umwelt | 42 |
Wasser | 24 |
Weitere | 42 |