SYNPOL aims to propel the sustainable production of new biopolymers from feedstock. SYNPOL will theretoestablish a platform that integrates biopolymer production through modern processing technologies, withbacterial fermentation of syngas, and the pyrolysis of highly complex biowaste (e.g., municipal, commercial,sludge, agricultural). The R&D activities will focus on the integration of innovative physico-chemical, biochemical,downstream and synthetic technologies to produce a wide range of new biopolymers. The integration will engagenovel and mutually synergistic production methods as well as the assessment of the environmental benefitsand drawbacks. This integrative platform will be revolutionary in its implementation of novel microwave pyrolytictreatments together with systems-biology defined highly efficient and physiologically balanced recombinantbacteria. The latter will produce biopolymer building-blocks and polyhydroxyalkanoates that will serve tosynthesize novel bio-based plastic prototypes by chemical and enzymatic catalysis. Thus, the SYNPOL platformwill empower the treatment and recycling of complex biological and chemical wastes and raw materials in asingle integrated process. The knowledge generated through this innovative biotechnological approach will notonly benefit the environmental management of terrestrial wastes, but also reduce the harmful environmentalimpact of petrochemical plastics. This project offers a timely strategic action that will enable the EU to lead worldwide the syngas fermentation technology for waste revalorisation and sustainable biopolymer production.
Micro B3 will develop innovative bioinformatic approaches and a legal framework to make large-scale data on marine viral, bacteria; archaeal and protists genomes and metagenomes accessible for marine ecosystems biology and to define new targets for biotechnological applications. Micro B3 will build upon a highly interdisciplinary consortium of 32 academic and industrial partners comprising world-leading experts in bioinformatics, computer science, biology, ecology, oceanography, bioprospecting and biotechnology, as well as legal aspects. icro B3 is based on a strong user- and data basis from ongoing European sampling campaigns to long-term ecological research sites. For the first time a strong link between oceanographic and molecular microbial research will be established to integrate global marine data with research on microbial biodiversity and functions. The Micro B3 Information System will provide innovative open source software for data-processing, -integration, -visualisation, and -accessibility. Interoperability will be the key for seamless data transfer of sequence and contextual data to public repositories. Micro B3 will allow taking full advantage of current sequencing technologies to efficiently exploit large-scale sequence data in an environmental context. Micro B3 will create integrated knowledge to inform marine ecosystems biology and modelling. Moreover, it will facilitate detecting candidate genes to be explored by targeted laboratory experiments for biotechnology and for assigning potential functions to unknown genes. Micro B3 will develop clear IP agreements for the protection and sustainable use of pre-competitive microbial genetic resources and their exploitation in high potential commercial applications. To underline the translational character of Micro B3, outreach and training activities for diverse stakeholders are planned as well as an Ocean Sampling Day to transparently make project results accessible and gain valuable user feedback.
The provision of public goods (including landscape services) in rural areas is recognized as one of the key topics for the future of agriculture and rural policy. Agriculture plays a major role in landscape management through its complex interlinkages with landscape features. In turn, the Common Agricultural Policy (CAP) remains an important driver of landscape management due to its importance as a determinant of farming activities in the EU. The main objective of the CLAIM project is to provide the knowledge base to support an effective CAP policy design in the direction of improved landscape management, particularly providing insights into the ability of landscape to contribute to the production of added value for society in rural areas. CLAIM is focused in particular on understanding and enhancing the contribution of landscapes management to socio-economic development and agricultural competitiveness in rural areas. This will be based on a pragmatic consideration of landscape services and their analysis through a mixed-method approach, taking into account the wider EU policy strategies (in particular related to innovation and the bioeconomy). The main expected result of the CLAIM project is an evidence-based policy support framework on the different and possible contributions of agriculture and the CAP to landscape management. The framework will be mainly developed and validated through a set of 9 case studies, a strong involvement of stakeholders at different territorial levels and a wide coverage of the perspectives of EU and candidate countries. The framework will finally take the practical form of a web-based manual to be implemented in accordance to stakeholders needs and indications.
EnviGuard is a response to the growing need for accurate real time monitoring of the seas/ocean and the aquaculture industries need for a reliable and cost-effective risk management tool. The implementation of the EnviGuard system will allow for early detection of harmful algae blooms (HAB), chemical contaminants, viruses and toxins thus preventing economic losses. The modular EnviGuard system will be made up of three different sensor modules (microalgae / pathogens, i.e. viruses & bacteria / toxins & chemicals), that are connected to the common interface 'EnviGuard Port' which collects and sends the information to a server. The data will be accessible through a website in real-time. The modularity of the system enables an individual setup for each purpose thus offering a tailor-made solution for each future client.
Global apiculture is facing an unprecedented crisis of increasing parasite pressure and a loss of hon-eybee biodiversity. SMARTBEES unites a team of experts with the necessary skills to build a bright and sustainable future. The SMARTBEES concept is low risk and high impact, using established protocols and state-of-the-art methods. Including world leading researchers from outwith the traditional honeybee sphere (e.g. acarology, genetic breeding and insect immunology). We will identify crucial facets of honeybee resistance to colony losses, Varroa and viruses. We will provide a step-change in the current mechanistic understanding of these traits, and will characterise the genetic background of the resistance mechanisms in honeybees. We will develop breeding strategies to increase the frequencies of these valuable traits in local honeybee populations, considering the variable need of both common and endangered subspecies and local beekeeping practises. Breeding efforts concentrating on very few races may endanger genetic diversity, to avoid this SMARTBEES will promote multiple local breeding efforts, to conserve local resilient populations and will develop molecular tools for describing and safeguarding future populations. SMARTBEES recognizes responsibility to protect our natural honeybee heritage. SMARTBEES will commission extension science, and work in cooperation with stakeholders to attain conservation by utilisation. SMARTBEES will establish a network of apiaries for performance testing, to encourage local uptake of resistant traits. These will be run mainly by beekeepers, thereby improving the local acceptability and dissemination, and support the long-term sustainability of the apicultural sector. SMARTBEES recognises the need to horizon scan for new threats, and the consortium includes the current EU reference laboratory to that end. SMARTBEES is an opportunity to make a lasting difference to the health, resilience and genetic diversity of our honeybees.
MariaBox will develop a wireless marine environment analysis device for monitoring chemical and biological pollutants while installed into a buoy, a maritime means of transport or a mooring. The device, based on novel biosensors, will be of high-sensitivity, portable and capable of repeating measurements over a long time, allowing permanent deployment at sea. The word 'MARIA' is the plural of the Latin 'mar' (sea) and expresses the wide applicability that this system offers in multiple locations where low-cost and real-time in situ analytical monitoring devices are required. The approach includes: a) a sensing and analysis box, b) a modular communication system, c) a flexible power system, d) a software platform, and e) a cell phone application. The box will transmit the collected data in real time through different channels according to local needs and geographical location: radio, GSM/GPRS/3G, WiFi, WiMAX or satellite link. The unit will be designed to be remotely controlled and will implement the OTA programming and OTA configuration features which will allow the user to update the firmware of the MariaBox unit and modify various configuration parameters wirelessly. Remote updates are a key factor in deployment scalability since it offers the only possibility of easily updating or reprogramming the devices after the initial deployment. Therefore, the maintenance costs are significantly reduced. Biosensors will be developed for 5 man-made chemicals and for 4 categories of microalgae toxins relevant to shell fish and fish farming. The novel biosensors will contribute to new standards for environmental analysis. The analytes selected for the biosensors are in line with 1) the Article 16 of the Water Framework Directive (2000/60/EC), 2) the Decision 2455/2001/EC and 3) The Commission Directive 2009/90/EC. The system developed will be demonstrated and validated in four different scenarios in selected locations in Norway, Spain, Cyprus and Ireland.
Das Projekt zielt darauf ab die genetischen Ressourcen von Leguminosen in Europa zu untersuchen um Ihre nachhaltige Produktion und Nutzung zu fördern. Neue Sorten und neue Lebens-und Futtermittel sollen die Proteinproduktion in der EU wettbewerbsfähiger und nachhaltiger machen. Kurzfristige Ziele S & T: 1. Bewertung lokaler genetischer Ressourcen von Erbse (Pisum sativum L.), Ackerbohne (Vicia faba L.) und Augenbohne (Vigna unguiculata (L.) Walp) für die Entwicklung von neuen Sorten für Lebens- und Futtermittel und die weitere Verwendung in der Zucht; 2. Entwicklung neuer Lebens- und Futtermittel aus verfügbaren europäischen Sorten von Erbse, Ackerbohne und Augenbohne; 3. Auswahl geeigneter Rhizobienstämme und arbuskulären Mykorrhizapilze zur Unterstützung der Stickstofffixierung und Entwicklung von neuen, kommerziellen Sporen-Impfstoffen; 4. Bewertung des Einflusses von Leguminosen auf die Bodeneigenschaften in nachhaltigen, regional-spezifischen Anbausystemen. Projektschwerpunkt an der BOKU sind die Wurzelsysteme.
BIOFECTOR is an integrated project with the aim to reduce input of mineral fertilisers in European agriculture by development of specifically adapted bio-effectors (BEs) to improve the efficiency of alternative fertilisation strategies, such as organic and low-input farming, use of fertilisers based on waste recycling products and fertiliser placement technologies. Bio-effectors addressed comprise fungal strains of Trichoderma, Penicillium and Sebacinales, as well as bacterial strains of Bacillus and Pseudomonades with well-characterized root growth promoting and nutrient-solubilising potential. Natural extraction products of seaweed, compost and plant extracts, as well as their purified active compounds with protective potential against biotic and abiotic stresses are also tested in various combinations. These features offer perspectives for a more efficient use of nutrients by strategic combination with the alternative fertilisation strategies. Maize, wheat and tomato are chosen as representative crops. Laboratory and European-wide field experiments assure product adaptation to the various geo-climatic conditions characteristic for European agriculture. The final goal is the development of viable alternatives to the conventional practice of mineral fertilisation as contribution to a more efficient management of the non-renewable resources of mineral nutrients, energy and water, to preserve soil fertility and to counteract the adverse environmental impact of agricultural production.
OPTIBIOCAT is a 48 months project aimed at developing biocatalysts based on feruloyl esterases (FAEs) and glucuronoyl esterases (GEs) for production of phenolic fatty- and sugar- esters with antioxidant activity for cosmetic industry, expanding the number/type of industrial biotransformations. Selected FAEs and GEs available within the consortium will be improved for their thermo- and solvent- resistance and substrate specificity by site-directed mutagenesis and directed evolution. Novel enzymes will be discovered by mining for new genes from available genomes. An inventory of novel FAEs and GEs will be developed including 50 fungal and 500 bacterial esterases, 25 site-directed and 20 directed evolved mutants. Enzymatic performances will be optimized to enhance the yield (up to the theoretical yield of 100%) and productivity (up to 0.5-1 g/l/h) of reactions giving the main targeted antioxidants: butyl ferulate, p-coumarate, caffeate, sinapate and 5-O-(trans-feruloyl)-arabinofuranose (using FAEs), glucuronate and benzyl glucuronate (using GEs). FAEs and GEs will be also tested for production of other compounds with improved biological activity and properties of hydrophilicity/hydrophobicity for cosmetic applications. Cost-effective methods will be developed for production of the new biocatalysts, in the g/L scale, and for their technical application to produce antioxidants for cosmetic industry, up to 20L. Enzyme immobilization will increase their recyclability up to ten cycles. The ability of the developed catalysts to work in conditions miming the industrial ones with reduced use of solvents and lower temperature than the chemical routes will be demonstrated. The techno-economic viability and environmental friendliness will be assessed considering a full industrial scale scenario. OPTIBIOCAT involves a highly skilled and multidisciplinary partnership of 16 partners from 8 EU countries, and it is a strongly industry driven project through the participation of 8 SMEs and 1 large company.
The project GRAIL has been build with 15 partners from 9 different countries with the aim of finalising the solutions given previously to the valorization of glycerol and transform then in valuable products in a biorefinery approach. The overall concept of GRAIL project is the use, exploitation and further development of the state of the art in the field of bio-based products from glycerol and the development research-driven cluster for the use of crude glycerol for the production of high-value platforms, as well as valued end products, harnessing the biotech processes. Therefore GRAIL project has a strong business focus and its ultimate goal is to set up implantation of biorefineries in close relationship with biodiesel. This project's aim is to develop a set of technologies for converting waste glycerol from biodiesel production in a biorefinery concept to end with products of high value such as 1,3 propanediol, Fatty acid glycerol formal esters, PolyHydroxyAlkanoates (PHA), Hydrogen and Ethanol, Synthetic coatings, powder coating resins, Secondary Glycerol Amine, Biobutanol, Trehalose, Cyanocobalamin (Vitamin B12), ß-carotene, Docosahexaenoic acid (DHA), .The GRAIL project has designed an overall strategy based on three main pillars covering all the value chain: Pillar 1: Raw materials: Evaluation of crude glycerol and purification - Pillar 2: Product development: Research and development to transform crude glycerol into other high added value such as biofuels, green chemicals and food supplements - Pillar 3: Industrial feasibility aspects including economic and environmental evaluation. This pillar will take the results of GRAIL from the product development to the industrial site. To carry out that the technical feasibility will be study on a pilot plant in a Demonstration (and the results will be important to evaluate the LCA and the economic feasibility (WP6).
| Origin | Count |
|---|---|
| Bund | 42 |
| Type | Count |
|---|---|
| Förderprogramm | 42 |
| License | Count |
|---|---|
| offen | 42 |
| Language | Count |
|---|---|
| Deutsch | 12 |
| Englisch | 42 |
| Resource type | Count |
|---|---|
| Keine | 20 |
| Webseite | 22 |
| Topic | Count |
|---|---|
| Boden | 37 |
| Lebewesen und Lebensräume | 42 |
| Luft | 24 |
| Mensch und Umwelt | 42 |
| Wasser | 24 |
| Weitere | 42 |