SENSIndoor aims at the development of novel nanotechnology based intelligent sensor systems for selective monitoring of Volatile Organic Compounds (VOC) for demand controlled ventilation in indoor environments. Greatly reduced energy consumption without adverse health effects caused by the Sick Building Syndrome requires optimized ventilation schemes adapted to specific application scenarios like offices, hospitals, schools, nurseries or private homes. - SENSIndoor will measure the quality of indoor air. - SENSIndoor will develop smart, energy efficient ventilation systems. - SENSIndoor will bring forth demand controlled ventilation - the key for energy efficient buildings. - SENSIndoor will develop novel nanotechnology-based microsensor systems for room specific ventilation.
The MARINA project is a major new European Commission Framework 7 project to develop reference methods for managing the risk of engineered nanoparticles and engineered nanomaterials (ENM). With very significant economic impact across industrial, consumer and medical products, nanotechnology is now one of the key industries within Europe and worldwide. Key to its long term growth and sustainability is establishing end-user confidence that the technologies developed arc safe. While there are standard procedures for product life cycle analysis, exposure, hazard, and risk assessment for traditional chemicals, it is not yet clear how these procedures need to be modified to address all the novel properties of nanomaterials. There is a need to develop specific reference methods for all the main steps in managing the potential risk of ENM. The aim of MARINA is to develop such methods. MARINA will address the four central themes in the risk management paradigm for ENM: Materials, Exposure, Hazard and Risk. The methods developed by MARINA will be (i) based on beyond-state-of-the-art understanding of the properties, interaction and fate of ENM in relation to human health and the quality of the environment and will either (ii) be newly developed or adapted from existing ones but ultimately, they will be compared/validated and harmonised/standardized as reference methods for managing.
A major challenge facing European industry involves the development of more specific, energy saving processes with less environmental impact. The recent development of Metal Organic Frameworks (MOFs) may prove a major milestone in achieving these goals. MACADEMIA project is an extension to FP6 STREP (DeSANNS) which highlighted some MOF materials for CO2 capture and storage. It will expand and continue this work on a much larger scale. BASF and TOTAL companies, major industrial partners, complement each othe... Prime Contractor: Total S.A.; Courbevoie; France.
Due to their unique properties, engineered nanoparticles (ENP) are now used for a myriad of novel applications with great economic and technological importance. However, some of these properties, especially their surface reactivity, have raised health concerns, which have prompted scientists, regulators, and industry to seek consensus protocols for the safe production and use of the different forms of ENP. There is currently a shortage of field-worthy, cost-effective ways - especially in real time - for reliable assessment of exposure levels to ENP in workplace air. In addition to the problems with the size distribution, a major uncertainty in the safety assessment of airborne ENP arises from the lack of knowledge of their physical and chemical properties, and the levels of exposure. A special challenge of ENP monitoring is to separate ubiquitous background nanoparticles from different sources from the ENP. Here the main project goal is to develop innovative concepts and reliable methods for characterizing ENP in workplace air with novel, portable and easy-to-use devices suitable for workplaces. Additional research objectives are - identification of relevant physico-chemical properties and metrics of airborne ENP; establishment of reference materials; - exploring the association between physico-chemical and toxicological properties of ENP; - analyzing industrial processes as a source of ENP in workplace air; - developing methods for calibration and testing of the novel devices in real and simulated exposure situations; and - dissemination of the research results to promote the safe use of ENP through guidance, standards and education, implementing of safety objectives in ENP production and handling, and promotion of safety related collaborations through an international nanosafety platform. Prime Contractor: Tyoeterveyslaitos; Helsinki; Finland.
Objective: Nanotechnology is a fast growing industry producing a wide variety of manufactured nanomaterials (MNMs) and numerous potential applications. Consequently, the potential for exposure to humans and the environment is likely to increase. Human exposure to MNMs and environmental release of these materials can occur during all the life cycle stages of these materials. For each stage of the life cycle of an MNM, exposure scenarios will need to be developed that effectively describe how exposure to humans and the environment occur and what measures are required to control the exposure. The aim of the NANEX project is to develop a catalogue of generic and specific (ocupational, consumer and environmental release) exposure scenarios for MNMs taking account of the entire lifecycle of these materials. NANEX will collect and review available exposure information, focussing on three very relevant MNMs: - high aspect ratio nanomaterials - HARNs) (e.g. carbon nanotubes) - mass-produced nanomaterials (e.g. ZnO, TiO2, carbon black) - specialised nanomaterials that are currently only produced on a small scale (e.g Ag)). The exposure information will include both quantitative (measurement results) and qualitative contextual exposure information (risk management measures). We will also review the applicability of existing models for occupational and consumer exposure assessment and for environmental release from these scenarios. We will carry out a small number of specific case illustrations and carry out a gap analyses of the available knowledge and data. Finally, we project knowledge will be disseminated to relevant stakeholders, taking into account other relevant activities that are taking place in this field.
Objective: The present proposal aims at the development of innovative multidisciplinary sets of tests and indicators for toxicological profiling of nanoparticles (NPs) as well as unravelling the correlation between the physicochemical characteristics of NPs and their toxic potential on various organs of the human body. For a comprehensive understanding of the complex data to be obtained on toxicology of NPs, based on in-vitro and ex-vivo studies, we will employ conventional toxicology combined with the methodologies of toxicogenomics, metabonomics, Knowledge Discovery from Data (KDD) and Data Mining (DM). This research program is focused towards understanding the relation of size and surface chemistry on the deposition, uptake, translocation, and toxicity of a few s elected industrially important NPs as well as novel synthesized NPs, whose size and surface chemistry will be methodically modified. Since it was shown that the penetration of NPs into the human body proceeds principally through inhalation or orally, whereas penetration through healthy skin is restricted, we have chosen lung and intestine as the primary interacting tissues/organs with NPs, while liver, kidney and the immunological system have been selected to be the secondary major sites of interaction, following the penetration of NPs into the blood circulation. The interaction of the NPs with these different target organs will be studied by making use of alternative methods to animal experimentation by employing in-vitro cell systems as well as ex-vivo studies based on precision-cut slices of lung, liver and kidney. The present proposal addresses the needs of the European society for assessing the risk of occupational and general population exposure to industrially manufactured NPs. It will generate new knowledge on potential health risk or the absence of it, providing objective arguments for recommendations and regulations.
More and more industrial sectors (e.g. automotive, wind energy, boatbuilding) are demanding lightweight and high-performance composite materials, which represent a strong driver to develop the carbon fibre (CF) industry. Today, almost 80% of CF available on the market are using PolyAcryloNitrile (PAN) as the starting raw material because of its superior properties compared to pitch based carbon fibres. However, CF produced from PAN are expensive which limit their application to premium industrial sectors looking for high-performance structural materials while accepting high material costs (e.g. aeronautics, military devices, and sport goods). The strategic objective of CARBOPREC is to develop low cost precursors from renewable materials widely available in Europe (lignin and cellulose) reinforced by carbon nanotube (CNT) to produce high performance CF for automotive and wind energy applications. To achieve this objective, two white fibre processes will be studied to produce continuous fibres: - Wet spinning approach for the cellulose dissolved in phosphoric acid (H3PO4); - Melt spinning by extrusion for the lignin. Moreover, the carbonization process as well as the different functionalisation steps will be deeply investigated to enhance significantly both, the carbonisation yield, and the added value brought by the developed carbon fibres in the final applications targeted. The CARBOPREC consortium led by ARKEMA gathers 14 partners coming from 6 different European countries and Russia. It covers the whole value chain needed to develop innovative carbon fibres from renewable materials.
EELICON is concerned with an innovative switchable light transmittance technology developed previously in projects co-funded by the EU Framework Programmes. The core of this development are mechanically flexible and light-weight electrochromic (EC) film devices based on a conductive polymer nanocomposite technology with a unique property profile far beyond the current state-of-the art, opening the possibility to retrofit existing windows with a electrically dimmable plastic film. According to life cycle assessment studies, considerable energy savings may result when such films are included in appliance doors, automotive sunroofs, and architectural glazing, and the comfort is significantly enhanced. The development has been driven to the pilot-line production stage, however, the decisive step from research to innovation could not yet be accomplished for a number of technical and economic reasons. To overcome this gap, EELICON will tackle existing drawbacks by removing equipment limitations, automating processes, and establishing a high-throughput prototype production for a cost-effective high performance EC film technology in Europe. The ambitious goal will be approached by joining efforts of European and overseas players to integrate nanotechnology, materials, and production know-how, i.e., specific expertise of European SMEs. Relevant IP is available for exploitation. The project comprises a pilot-line, a validation, and a prototyping phase (incl. business planning) and fully complies with the objectives of NMP Activity 4.4 - Integration and call NMP.2013.4.0-3 - From research to innovation: Previously obtained research results are used by industry, the European paradox is relieved, valley of death is overcome by following three pillars of development eventually resulting in creation of new businesses in Europe. The project is characterised by strong industrial/SME participation. 8 out of 13 partners are industrials, 6 of which being SMEs with leading roles.
Im EU-geförderten Verbund-Projekt Development of an integrated approach based on validated and standardized methods to support the implementation of the EC recommendation for a definition of nanomaterial (NanoDefine) mit 29 Partnern aus 11 Staaten werden Methoden zur verlässlichen Identifizierung, Charakterisierung und Quantifizierung von Nanomaterialien gemäß der EU-Empfehlung von 2011 erschlossen und validiert. Dabei wird die Frage beantwortet, ob ein vorliegendes Material als Nanomaterial eingestuft wird. Basierend auf Methodenevaluation und Ringversuchen werden Instrumente und standardisierte Arbeitsweisen zur Bestimmung der Partikelgrößen im Bereich von 1-100 nm mit unterschiedlichen Formen, Beschichtungen und der größtmöglichen chemischen Zusammensetzung in variablen Matrizen und Produkten entwickelt. Fallstudien zur breiten Anwendungsmöglichkeit, insbesondere in der Lebensmittel- und Kosmetiksektoren, werden durchgeführt. NanoDefine wirkt dabei mit Institutionen der internationalen Standardisierung wie CEN, ISO und OECD zusammen.
The CASCATBEL-project (CASCATBEL: CAScade deoxygenation process using tailored nanoCATalysts for the production of BiofuELs from lignocellullosic biomass) aims to design, optimize and scale-up a novel multi-step process for the production of second-generation liquid biofuels from lignocellulosic biomass in a cost-efficient way through the use of next-generation high surface area tailored nano-catalysts. Detailed description: Within the CASCATBEL-project a multi-step process for the production of second-generation biofuels from lignocellulosic biomass in a cost-efficient way will be developed through the use of tailored nano-structured catalysts. The proposed process is based on the cascade combination of three catalytic transformations: catalytic pyrolysis, intermediate deoxygenation and hydro-deoxygenation. The sequential coupling of catalytic steps will be an essential factor for achieving a progressive and controlled biomass deoxygenation, which is expected to lead to liquid biofuels with a chemical composition and properties similar to those of oil-derived fuels. According to this strategy, the best nano-catalytic system in each step will be selected to deal with the remarkable chemical complexity of lignocellulose pyrolysis products, as well as to optimize the bio-oil yield and properties. Since hydro-deoxygenation (HDO) is outlined in this scheme as the ultimate deoxygenation treatment, the overall hydrogen consumption should be strongly minimized, resulting in a significant reduction of the process costs. The use of nano-structured catalysts will be the key tool for obtaining in each chemical step of the cascade process, the optimum deoxygenation degree, as well as high efficiency, in terms both of matter and energy, minimizing at the same time the possible environmental impacts. The project will involve experiments at laboratory, bench and pilot plant scales, as well as a viability study of its possible commercial application. Thereby, the integrated process will be assessed according to technical, economic, social, safety, toxicological and environmental criteria. Focus IUE: IUE is involved in feedstock selection and characterization for the project. The main objective is to estimate current and future availability of lignocellulosic biomass in the EU. In addition IUE participates in an overall process assessment of the project. This is based on technical, economic, social, environmental and toxicological criteria that will be applied along the project to assess the different options being considered. These tasks will be critical for selecting the most convenient intermediate deoxygenation treatment, the optimum catalysts and the optimum operating conditions. Furthermore, a process design will be generated and a feasibility study will be conducted at commercial scale.
Origin | Count |
---|---|
Bund | 59 |
Type | Count |
---|---|
Förderprogramm | 59 |
License | Count |
---|---|
offen | 59 |
Language | Count |
---|---|
Deutsch | 2 |
Englisch | 58 |
Resource type | Count |
---|---|
Keine | 29 |
Webseite | 30 |
Topic | Count |
---|---|
Boden | 45 |
Lebewesen und Lebensräume | 49 |
Luft | 49 |
Mensch und Umwelt | 59 |
Wasser | 29 |
Weitere | 59 |