API src

Found 59 results.

European observatory for science-based and economic expert analysis of nanotechnologies, cognisant of barriers and risks, to engage with relevant stakeholders regarding benefits and opportunities (OBSERVATORYNANO)

Objective: observatoryNANO brings together leading EU organizations who collectively have expertise in the technological; economic; societal/ethical; health, safety, and environmental analysis of nanotechnologies. Its primary aim is to develop appropriate methodologies to link scientific and technological development of nanotechnologies with socio-economic impacts. Both of these aspects will be enhanced by expert opinion, making this project unique in providing relevant web-based reports in a common format across all sectors, considered by all criteria, and widely publicized. observatoryNANO will become an industry leading and opinion forming catalyst for nanotechnology in the EU. The purpose is to avoid the exaggerated socio-economic impact of nanotechnologies and place developments in a realistic time-frame. It will present a reliable, complete, and responsible science-based and economic expert analysis of peer-reviewed literature, patents, national funding strategies, investment trends, and markets; in combination with information derived from questionnaires, interviews and workshops with academic and industry leaders, investors, and other key stakeholders.

CARBOPREC - Renewable source nanostructured precursors for carbon fibers

More and more industrial sectors (e.g. automotive, wind energy, boatbuilding) are demanding lightweight and high-performance composite materials, which represent a strong driver to develop the carbon fibre (CF) industry. Today, almost 80% of CF available on the market are using PolyAcryloNitrile (PAN) as the starting raw material because of its superior properties compared to pitch based carbon fibres. However, CF produced from PAN are expensive which limit their application to premium industrial sectors looking for high-performance structural materials while accepting high material costs (e.g. aeronautics, military devices, and sport goods). The strategic objective of CARBOPREC is to develop low cost precursors from renewable materials widely available in Europe (lignin and cellulose) reinforced by carbon nanotube (CNT) to produce high performance CF for automotive and wind energy applications. To achieve this objective, two white fibre processes will be studied to produce continuous fibres: - Wet spinning approach for the cellulose dissolved in phosphoric acid (H3PO4); - Melt spinning by extrusion for the lignin. Moreover, the carbonization process as well as the different functionalisation steps will be deeply investigated to enhance significantly both, the carbonisation yield, and the added value brought by the developed carbon fibres in the final applications targeted. The CARBOPREC consortium led by ARKEMA gathers 14 partners coming from 6 different European countries and Russia. It covers the whole value chain needed to develop innovative carbon fibres from renewable materials.

Enhanced Energy Efficiency and Comfort by Smart Light Transmittance Control (EELICON)

EELICON is concerned with an innovative switchable light transmittance technology developed previously in projects co-funded by the EU Framework Programmes. The core of this development are mechanically flexible and light-weight electrochromic (EC) film devices based on a conductive polymer nanocomposite technology with a unique property profile far beyond the current state-of-the art, opening the possibility to retrofit existing windows with a electrically dimmable plastic film. According to life cycle assessment studies, considerable energy savings may result when such films are included in appliance doors, automotive sunroofs, and architectural glazing, and the comfort is significantly enhanced. The development has been driven to the pilot-line production stage, however, the decisive step from research to innovation could not yet be accomplished for a number of technical and economic reasons. To overcome this gap, EELICON will tackle existing drawbacks by removing equipment limitations, automating processes, and establishing a high-throughput prototype production for a cost-effective high performance EC film technology in Europe. The ambitious goal will be approached by joining efforts of European and overseas players to integrate nanotechnology, materials, and production know-how, i.e., specific expertise of European SMEs. Relevant IP is available for exploitation. The project comprises a pilot-line, a validation, and a prototyping phase (incl. business planning) and fully complies with the objectives of NMP Activity 4.4 - Integration and call NMP.2013.4.0-3 - From research to innovation: Previously obtained research results are used by industry, the European paradox is relieved, valley of death is overcome by following three pillars of development eventually resulting in creation of new businesses in Europe. The project is characterised by strong industrial/SME participation. 8 out of 13 partners are industrials, 6 of which being SMEs with leading roles.

CAScade deoxygenation process using tailored nanoCATalysts for the production of BiofuELs from lignocellullosic biomass (CASCATBEL)

The CASCATBEL-project (CASCATBEL: CAScade deoxygenation process using tailored nanoCATalysts for the production of BiofuELs from lignocellullosic biomass) aims to design, optimize and scale-up a novel multi-step process for the production of second-generation liquid biofuels from lignocellulosic biomass in a cost-efficient way through the use of next-generation high surface area tailored nano-catalysts. Detailed description: Within the CASCATBEL-project a multi-step process for the production of second-generation biofuels from lignocellulosic biomass in a cost-efficient way will be developed through the use of tailored nano-structured catalysts. The proposed process is based on the cascade combination of three catalytic transformations: catalytic pyrolysis, intermediate deoxygenation and hydro-deoxygenation. The sequential coupling of catalytic steps will be an essential factor for achieving a progressive and controlled biomass deoxygenation, which is expected to lead to liquid biofuels with a chemical composition and properties similar to those of oil-derived fuels. According to this strategy, the best nano-catalytic system in each step will be selected to deal with the remarkable chemical complexity of lignocellulose pyrolysis products, as well as to optimize the bio-oil yield and properties. Since hydro-deoxygenation (HDO) is outlined in this scheme as the ultimate deoxygenation treatment, the overall hydrogen consumption should be strongly minimized, resulting in a significant reduction of the process costs. The use of nano-structured catalysts will be the key tool for obtaining in each chemical step of the cascade process, the optimum deoxygenation degree, as well as high efficiency, in terms both of matter and energy, minimizing at the same time the possible environmental impacts. The project will involve experiments at laboratory, bench and pilot plant scales, as well as a viability study of its possible commercial application. Thereby, the integrated process will be assessed according to technical, economic, social, safety, toxicological and environmental criteria. Focus IUE: IUE is involved in feedstock selection and characterization for the project. The main objective is to estimate current and future availability of lignocellulosic biomass in the EU. In addition IUE participates in an overall process assessment of the project. This is based on technical, economic, social, environmental and toxicological criteria that will be applied along the project to assess the different options being considered. These tasks will be critical for selecting the most convenient intermediate deoxygenation treatment, the optimum catalysts and the optimum operating conditions. Furthermore, a process design will be generated and a feasibility study will be conducted at commercial scale.

Entwicklung eines integralen Ansatzes basierend auf validierten und standardisierten Methoden zur Unterstützung der Anwendung der Empfehlung der Europäischen Kommission für eine Definition von Nanomaterialien (NanoDefine)

Im EU-geförderten Verbund-Projekt Development of an integrated approach based on validated and standardized methods to support the implementation of the EC recommendation for a definition of nanomaterial (NanoDefine) mit 29 Partnern aus 11 Staaten werden Methoden zur verlässlichen Identifizierung, Charakterisierung und Quantifizierung von Nanomaterialien gemäß der EU-Empfehlung von 2011 erschlossen und validiert. Dabei wird die Frage beantwortet, ob ein vorliegendes Material als Nanomaterial eingestuft wird. Basierend auf Methodenevaluation und Ringversuchen werden Instrumente und standardisierte Arbeitsweisen zur Bestimmung der Partikelgrößen im Bereich von 1-100 nm mit unterschiedlichen Formen, Beschichtungen und der größtmöglichen chemischen Zusammensetzung in variablen Matrizen und Produkten entwickelt. Fallstudien zur breiten Anwendungsmöglichkeit, insbesondere in der Lebensmittel- und Kosmetiksektoren, werden durchgeführt. NanoDefine wirkt dabei mit Institutionen der internationalen Standardisierung wie CEN, ISO und OECD zusammen.

European development of Superconducting Tapes: integrating novel materials and architectures into cost effective processes for power applications and magnets (EUROTAPES)

High current coated conductors (CC s) have high potential for developing electrical power applications and very high field magnets. The key issues for market success are low cost robust processes, high performance and a reliable manufacturing methodology of long length conductors. In recent years EU researchers and companies have made substantial progress towards these goals, based on vacuum (PLD) and chemical deposition (CSD) methods, towards nanostructuring of films. This provides a unique opportunity for Europe to integrate these advances in high performance conductors. The EUROTAPES project will address two broad objectives: 1/ the integration of the latest developments into simple conductor architectures for low and medium cost applications and to deliver +500m tapes. Defining of quality control tools and protocols to enhance the processing throughput and yield to achieve a pre-commercial cost target of 100 Euro/kAm. 2/ Use of advanced methodologies to enhance performance (larger thickness and Ic, enhanced pinning for high fields, reduction of ac losses, increased mechanical strength). Demonstration of high critical currents (Ic greater than 400A/cm-w, at 77K and self-field and Ic greater than 1000A/cm-w at 5K and 15T) and pinning forces (Fp greater than 100GN/m3 at 60 K). The CSD and PLD technologies will be combined to achieve optimized tape architectures, nanostructures and processes to address a variety of HTS applications at self-field, high and ultrahigh magnetic fields. Up to month 36, 3 types of conductors will be developed (RABiT, ABAD and round wire); at Mid Term 2 will be chosen for demonstration during the final 18 months.

Nanotechnology based intelligent multi-SENsor System with selective pre-concentration for Indoor air quality control (SENSIndoor)

SENSIndoor aims at the development of novel nanotechnology based intelligent sensor systems for selective monitoring of Volatile Organic Compounds (VOC) for demand controlled ventilation in indoor environments. Greatly reduced energy consumption without adverse health effects caused by the Sick Building Syndrome requires optimized ventilation schemes adapted to specific application scenarios like offices, hospitals, schools, nurseries or private homes. - SENSIndoor will measure the quality of indoor air. - SENSIndoor will develop smart, energy efficient ventilation systems. - SENSIndoor will bring forth demand controlled ventilation - the key for energy efficient buildings. - SENSIndoor will develop novel nanotechnology-based microsensor systems for room specific ventilation.

Synergic combination of high performance flame retardant based on nano-layered hybrid particles as real alternative to halogen based flame retardant additives (PHOENIX)

Electrical and electronic devices - domestic appliances, cables, electrical components - are the major area of application of flame retardants. From an environmental point of view, halogenated flame retardants are problematic because they contain persistent and toxic substances which bear the danger of forming highly toxic dioxins in the case of fire. The aim of the EU's PHOENIX project is the development of nonhalogenated flame retardants based on nanostructure materials and biogenic resources. Research covers the entire spectrum from the development of materials to their industrial application. The chair of Industrial Material Cycles coordinates the work package concerning the ecological and economic evaluation of the new flame retardants and works out the life cycle assessment for a comprehensive evaluation of their environmental characteristics.

Solution Processed High Performance Transparent Organic Photovoltaic Cells (SOLPROCEL)

The triggering of SOLPROCEL took place when COMSA EMTE and ICFO realized the potential that an organic photovoltaic (OPV) based technology has to be incorporated in transparent modules to generate electricity. Indeed, the OPV technology is the only one capable of producing semitransparent colorless cells providing a clear and undistorted image when looking through the device. It can be perfectly integrated in buildings faAParagraphades offering an enormous potential for electricity production units to penetrate in urban areas. However, COMSA EMTE is well aware that transparent OPV cells are not yet ready for a module production phase and priority must be given to material research. Several issues, spanning from the development of low cost module fabrication to having stable and durable devices, must be addressed. Much of the success rests on having the materials for such low cost module fabrication. To achieve an optimal light harvesting in a solution-processed semitransparent OPV cell, we propose to combine the device processing developed by FAU with the photonic control developed by ICFO. Encouraged by COMSA EMTE and FAU, ICFO took the lead of SOLPROCEL. The project incorporates 3 companies which will be able to industrially produce the PV and nano materials needed in solution-processed OPV cells: Specific Polymers the PV polymers, Nanograde the nanoparticles used in the buffer layers, and RAS the Ag nanowires used in the electrodes. In SOLPROCEL such companies will be guided by three research institutions which can provide complementary knowhow in three of the fundamental aspects of OPV technology: nano-fabrication (FAU), light management (ICFO), and organic synthesis (FhG-IAP). The quantifiable goal of SOLPROCEL is to obtain the materials needed for fully solution-processed high performance transparent OPV cells and to raise the efficiency of such cells from 5.6Prozent to 9Prozent. This later value corresponding to 80Prozent of the 12Prozent efficiency of the corresponding opaque cell.

Advanced High Volume Affordable Lightweighting for Future Electric Vehicles (ALIVE)

By bringing together 21 partners including 7 major carmakers, 7 major suppliers, 2 SME's and 5 academia / research centres, ALIVE will develop directly exploitable knowledge on materials and design concepts which offer a high potential for significantly reducing the weight of vehicles for affordable application to high productions volumes, focusing on next generation Electric Vehicles (EVs). Specifically ALIVE has set a target of achieving a 30% + 20% weight reduction for the untrimmed vehicle body together with a 25-30% weight reduction of the hang-on parts, chassis and main interior sub-systems. ALIVE strives to generate substantial, tangible innovation in terms of vehicle design, materials, forming & joining technologies, simulation & testing and includes an exceptionally ambitious physical validation activity that will not only deliver a full structural demonstrator of all modules addressed but which will also include destructive crash and durability testing executed on the assembled modules including the entire body. The objective of the car manufacturers and the supply chain within the ALIVE consortium is to accelerate the take up of these innovative technologies, enabling their application in high volume EV production some 5 years earlier than would have been the case otherwise. Importantly the aim is to jointly exploit the potential economies of scale which can only be achieved via pre-competitive collaborative research by identifying and applying common solutions in terms of materials and their respective process technologies. ALIVE is directly linked to a network of recently concluded, on-going and planned parallel activities and as such offers a coordinated platform within the context of the Green Car program for achieving an unprecedented level of impact with respect to increasing EU competitiveness through the development and uptake of real innovation.

1 2 3 4 5 6