Die Umweltpolitik misst der Bedeutung sog. Reboundeffekte eine zunehmende Relevanz bei. Mit dem Begriff Reboundeffekt ist dabei gemeint, dass die Effizienzerhöhung eines Produkts zu einer Mehrnachfrage nach dem Produkt führt. Damit wird das Einsparpotenzial der Effizienzerhöhung nicht oder nur teilweise realisiert, so dass Reboundeffekte den ursprünglichen Zielsetzungen des Produkts zuwiderlaufen. Im Bereich Verkehr lassen sich mehrere Beispiele identifizieren, in denen Reboundeffekte möglicherweise auftreten können, so z.B. über die mögliche Mehrnutzung effizienterer Fahrzeuge oder über eine Erhöhung der Verkehrsleistung durch Infrastrukturausbau. Das Vorhaben soll anhand einer empirischen Analyse bestehender Verkehrsangebote das Vorhandensein und ggf. Größe möglicher Rebound-effekte abschätzen und quantifizieren. Das Vorhaben soll dabei folgendes leisten: - Bestimmung möglicher Beispielfelder für Reboundeffekte im Verkehr - Abschätzung und Quantifizierung ihrer Größe bzw. Effektstärke - Abgrenzung von Reboundeffekten von anderen Effekten (z.B. Wachstumseffekten), die ebenfalls eine Mehrnachfrage nach einem Produkt induzieren können, die jedoch nicht Effizienz-induziert ist. - Ggf. Durchführung einer eigenen empirischen Untersuchung zu Identifizierung von Reboundeffekten in einem bestimmten Beispielfeld (z.B. Nutzung von Fahrzeugen mit alternativen Antrieben).
Der Straßenverkehr kann auf unterschiedlichen Ebenen untersucht werden. Die im folgenden beschriebenen Forschungsvorhaben betrachten das System Straßenverkehr aus einer mikroskopischen Sicht, also die der einzelnen Verkehrsteilnehmer und ihrer Fahrzeuge. Ein Schwerpunkt liegt in der Unterstützung der Koordination von Mobilität im individuellen Personenverkehr, da sich hier häufig eine geringe Effizienz der eingesetzten Ressourcen. Dies ist bspw. am durchschnittlichen Besetzungsgrad von Pkw im Berufsverkehr zu beobachten. Hier liegt also ein erhebliches Potenzial für den Einsatz von rechnerbasierten Vermittlungs- und Optimierungsverfahren vor. Dazu wird ein Modell der Mobilität im individuellen Personenverkehr als ganzzahliges lineares Programm erstellt, das sich als Grundlage für die Anwendung von Optimierungsverfahren eignet. Ziele der Optimierung sind global betrachtet die Steigerung der Effizienz, ausgedrückt etwa durch die Reduzierung der gefahrenen Kilometer, und individuell gesehen die Erfüllung des eigenen Mobilitätswunsches. Als Verfahren werden zum einen exakte Optimierungsmethoden, hier speziell Branch-und-Cut-Verfahren mit Spalten-Erzeugung, zum anderen praktisch einsetzbare, heuristische Online-Algorithmen verwendet. Dieser duale Ansatz erlaubt die Bewertung der entwickelten Heuristiken. Um das Vermittlungssystem auch praktisch einsetzen zu können, entsteht derzeit eine Internet-basierte Benutzungsoberfläche. Ein anderer Schwerpunkt liegt auf der simulativen Untersuchung von Straßenverkehr mittels individuenorientierter Modelle. Zur Erstellung derartiger Simulationsmodelle entsteht derzeit ein Framework, das die elementaren Modellbestandteile abstrakt enthält und für spezielle Fragestellungen weiterentwickelt und mit einer graphischen Benutzungsoberfläche versehen wird.
Eine Brennstoffzelle als Primärenergiequelle mit einem Doppelschichtkondensator (Supercap) als Zwischenspeicher zu kombinieren ist ein vielversprechender Ansatz für zukünftige Elektrofahrzeuge. In Kooperation mit einem Fahrzeughersteller wurden verschiedene Strategien für ein Energiemanagement für die Kombination einer Brennstoffzelle mit einem Doppelschichtkondensatormodul entworfen und verglichen. Basierend auf der aktuellen Geschwindigkeit und Beschleunigung werden verschiedene Fahrzeugzustände bezüglich kinetischer Energie und Leistungsbedarf unterschieden. In Abhängigkeit von der verfügbaren Leistung von Supercaps und Brennstoffzelle wird eine optimale Leistungsaufteilung zwischen den beiden Energiequellen ermittelt. In Bremsphasen wird durch Rekuperation Energie zurückgewonnen und in den Supercaps gespeichert. Wenn die Supercaps vollgeladen sind oder ihre maximale Ladeleistung erreicht haben, übernehmen mechanische Bremsen die übrige Ladeleistung. Da diese Situation zu einem Energieverlust führt, sollte sie möglichst vermieden werden. Um immer die notwendige Beschleunigungsleistung und gleichzeitig auch ein Maximum an Rekuperation zu garantieren, wird der Ladezustand der Supercaps kontinuierlich und dynamisch an die kinetische Energie des Fahrzeugs angepasst. Verschiedene Strategien wurden in Matlab/Simulink mit einem Stateflow-Chart zur Abbildung der Zustände implementiert. Die verfügbare Supercapleistung wird mit Hilfe eines impedanzbasierten Modells für Supercaps berechnet. Mit diesen Strategiemodellen können die Leistungsfähigkeit der verschiedenen Strategien verglichen und die Einflüsse von Parametern untersucht werden. Ziel eines Energiemanagements ist es, den Wasserstoffverbrauch zu minimieren und die notwendige Leistung zu jeder Zeit sicherzustellen. Bei der Bewertung der Strategien wird der Wasserstoffverbrauch, die verlorene Bremsenergie und eine mögliche Geschwindigkeitsreduzierung verglichen. Mit einer optimalen Strategie können bis zu 23 Prozent Wasserstoff während eines definierten Fahrprofils gespart werden.
Der Kartendienst (WMS-Dienst) stellt Daten des Landesbetriebes für Straßenbau – Saarland dar.:CarSharing-Stationen: Die organisierte gemeinschaftliche Nutzung eines oder mehrerer Automobile durch Firma cambio - Carsharing und Flinkster - Carsharing.
Der Kartendienst (WFS-Gruppe) stellt ausgewählte Geodaten aus dem Bereich Verkehr dar.:CarSharing-Stationen : carsharing bedeutet übersetzt zu Deutsch: Autoteilen oder Gemeinschaftsauto. Die organisierte gemeinschaftliche Nutzung eines oder mehrerer Automobile durch Firma cambio - Carsharing und Flinkster - Carsharing.
Ziel dieses Projektes ist es, ein schnelles automatisiertes Messverfahren zur Nutzung im Innenraum der Flugzeugkabine zu entwickeln. Durch diese Neuentwicklung wird einerseits die Produktentwicklungszeit drastisch verkürzt (schnelle Messung) und andererseits ein höherer Qualitätsstandard erreicht. Denn ein Ziel der Kabinenverbesserung ist es, die Lärmbelastung sowohl für die Passagiere als auch für die Flugzeugbesatzung deutlich zu senken, um so die Umweltverträglichkeit des Produktes zu verbessern. Das Verfahren ist ebenfalls übertragbar auf andere Innenräume wie z.B. in Bahnen, Schiffen oder Straßenfahrzeugen. Im Rahmen dieses Projektes ist zunächst ein numerisches Berechnungsverfahren entwickelt worden, welches auf einer inversen FEM-Berechnung beruht. Hierbei wird die Schallintensität am Rande des Kabinenquerschnittes berechnet, wobei in einem Bereich die Schallwechseldrücke im Innenraum der Kabine durch Messung bekannt sind. Probleme dieser Art sind schlecht gestellt ('ill-posed') da kleine Ungenauigkeiten der gemessenen Daten sich in sehr großen Abweichungen in der Lösung auswirken. Durch eine umfangreiche mathematische Aufbereitung der Messdaten (Finite-Elemente-Analyse und Regularisierung) gelingt jedoch eine deutliche Verbesserung der Ergebnisse.
Es soll die Verdünnung des Abgases von Kraftfahrzeugen im Straßenverkehr und besonders die dabei erfolgende Transformation der Aerosolpartikel unter atmosphärischen Bedingungen untersucht werden. Um dieses Ziel zu realisieren, wird ein Kofferanhänger mit den notwendigen Messgeräten ausgestattet und von den zu untersuchenden Fahrzeugen gezogen. Der Aerosoleinlass an diesem Anhänger wird variabel angebracht sein, um Messungen in verschiedenen Abständen vom Auspuffrohr zu ermöglichen. Ziel ist es, gemessene Unterschiede zwischen Immissions- und Emissionsmessungen zu quantifizieren und damit beobachtete Differenzen zwischen Messungen am Motorprüfstand und solchen an einem Standort an der Straße soweit wie möglich zu erklären. Weiterhin soll der Einfluss der äußeren Bedingungen, wie meteorologische Parameter (Temperatur, relative Feuchte, etc.) und der Geschwindigkeit des Fahrzeuges quantifiziert werden. Ein wichtiger Bestandteil ist dabei auch die Charakterisierung der Mischungs- und Verdünnungsprozesse zwischen Auspuff und Probennahme. Diese soll mit zeitlich hochaufgelösten Messungen von Temperatur, Geschwindigkeit und Feuchte der Luft realisiert werden. Zusätzlich zu diesen experimentellen Arbeiten soll, wenn sinnvoll, im weiteren Verlauf des Projektes die Transformation der Partikel mit einem Modell simuliert werden.
Die Planung des Einsatzes von Fahrzeugen fuer den Transport von Absetzmulden stellt fuer den Disponenten eines Entsorgungsbetriebes eine schwierige und zeitaufwendige Aufgabe dar. Der groesste Teil der Kunden hat den Wunsch, auf Anruf hin umgehend bedient zu werden. Es sollen theoretische, computerunterstuetzte Verfahren entwickelt werden, die die Transport- und Muldenbewegungszeiten der Fahrzeuge minimieren.
Entwicklung einer kontinuierlich arbeitenden emissionsarmen Brennkammer fuer Fahrzeugantriebe, dynamischer Betrieb.
Origin | Count |
---|---|
Bund | 2058 |
Kommune | 12 |
Land | 16 |
Type | Count |
---|---|
Förderprogramm | 2050 |
unbekannt | 16 |
License | Count |
---|---|
offen | 2062 |
unbekannt | 4 |
Language | Count |
---|---|
Deutsch | 1925 |
Englisch | 196 |
Resource type | Count |
---|---|
Archiv | 8 |
Keine | 1317 |
Webdienst | 10 |
Webseite | 747 |
Topic | Count |
---|---|
Boden | 1128 |
Lebewesen und Lebensräume | 1213 |
Luft | 2066 |
Mensch und Umwelt | 2066 |
Wasser | 787 |
Weitere | 2013 |