API src

Found 1341 results.

Related terms

Entwicklung eines Rotorblattes aus Stahl für Onshore Windenergieanlagen, Teilvorhaben: Konstruktion und techno-ökonomische Bewertung

Das Projekt SteelBlade beschäftigt sich mit der Entwicklung und Konstruktion eines Onshore Rotorblattes für Windenergieanlagen (WEA), das für den Einsatz des Werkstoffs Stahl optimiert wird. Leichtbau- und Optimierungsmethoden aus der Luft- und Raumfahrt sollen dabei den effizienten Einsatz des Werkstoffes sichern, sodass die Rotorblattkonstruktion in einem für das System Windenergieanlage verträglichen Bereich liegen wird. Durch eine gleichzeitige Akustik-Optimierung der Struktur kann die Umweltbelastung durch Schallemissionen für Mensch und Tier kontrolliert und eventuell sogar weiter gesenkt werden. Der Fokus bei der Entwicklung des Stahlrotorblattes liegt auf der Konstruktion der inneren Struktur sowie der Auslegung einer Blattaußenhülle, die auf Basis aerodynamischer Gesichtspunkte entwickelt wurde. Die Konstruktion des Stahlrotorblattes erfolgt durch den konsequenten Transfer innovativer Leichtbautechniken aus der Luft- und Raumfahrt sowie dem Automobilbau in den Windenergieanlagenbau mit dem Ziel, dass das Gesamtgewicht des Stahlblattes auf dem Niveau des GFK-Blattes liegt. Im Rahmen des Projektes werden zunächst die technische, wirtschaftliche und nachhaltige Machbarkeit konkret nachgewiesen. Dabei werden insbesondere auch Transport-, Standardisierungs- und Nachhaltigkeitspotentiale berücksichtigt. Bei der Auslegung wird neben den strukturellen und dynamischen Eigenschaften des Rotorblattes ebenfalls das strukturdynamische Verhalten der gesamten WEA über den vollen Betriebsbereich ermittelt. Die Gesamtanlagensimulation wird basierend auf einer flexiblen Mehrkörpersimulation (MKS) im Zeitbereich durchgeführt und ermöglicht eine genaue Auflösung der dynamischen, nichtlinearen Lasten im Antriebsstrang, deren Kenntnis für die Lebensdauervorhersage sowie der Ermittlung der Belastungen der einzelnen Komponenten der WEA erforderlich ist. Im Rahmen dieses Projektes wird das dynamische Verhalten der gesamten WEA sowie der Schallemission untersucht.

Entwicklung eines Rotorblattes aus Stahl für Onshore Windenergieanlagen

Das Projekt SteelBlade beschäftigt sich mit der Entwicklung und Konstruktion eines Onshore Rotorblattes für Windenergieanlagen (WEA), das für den Einsatz des Werkstoffs Stahl optimiert wird. Leichtbau- und Optimierungsmethoden aus der Luft- und Raumfahrt sollen dabei den effizienten Einsatz des Werkstoffes sichern, sodass die Rotorblattkonstruktion in einem für das System Windenergieanlage verträglichen Bereich liegen wird. Durch eine gleichzeitige Akustik-Optimierung der Struktur kann die Umweltbelastung durch Schallemissionen für Mensch und Tier kontrolliert und eventuell sogar weiter gesenkt werden. Der Fokus bei der Entwicklung des Stahlrotorblattes liegt auf der Konstruktion der inneren Struktur sowie der Auslegung einer Blattaußenhülle, die auf Basis aerodynamischer Gesichtspunkte entwickelt wurde. Die Konstruktion des Stahlrotorblattes erfolgt durch den konsequenten Transfer innovativer Leichtbautechniken aus der Luft- und Raumfahrt sowie dem Automobilbau in den Windenergieanlagenbau mit dem Ziel, dass das Gesamtgewicht des Stahlblattes auf dem Niveau des GFK-Blattes liegt. Im Rahmen des Projektes werden zunächst die technische, wirtschaftliche und nachhaltige Machbarkeit konkret nachgewiesen. Dabei werden insbesondere auch Transport-, Standardisierungs- und Nachhaltigkeitspotentiale berücksichtigt. Bei der Auslegung wird neben den strukturellen und dynamischen Eigenschaften des Rotorblattes ebenfalls das strukturdynamische Verhalten der gesamten WEA über den vollen Betriebsbereich ermittelt. Die Gesamtanlagensimulation wird basierend auf einer flexiblen Mehrkörpersimulation (MKS) im Zeitbereich durchgeführt und ermöglicht eine genaue Auflösung der dynamischen, nichtlinearen Lasten im Antriebsstrang, deren Kenntnis für die Lebensdauervorhersage sowie der Ermittlung der Belastungen der einzelnen Komponenten der WEA erforderlich ist. Im Rahmen dieses Projektes wird das dynamische Verhalten der gesamten WEA sowie der Schallemission untersucht.

Kreislaufsystem für funktionales Aluminium-Neuschrottrecycling aus der Automobilproduktion mittels LIPS, Teilvorhaben: Aufbereitung

Lightweight High Entropy Alloys: Entwicklung von Hochentropielegierungen mit geringer spezifischer Dichte für den Leichtbau, Teilvorhaben: Untersuchung der Herstellung eines LHEA für die Produktion von Sandguss-Fertigteilen und von Masseln als Vormaterial für die Pulver-Inertgasverdüsung

GlideR - Auftraggelötete Gleitbeläge zur Verschleißreduzierung

Entwicklung eines Rotorblattes aus Stahl für Onshore Windenergieanlagen, Teilvorhaben: Akustische Bewertung

Das Projekt SteelBlade beschäftigt sich mit der Entwicklung und Konstruktion eines Onshore Rotorblattes für Windenergieanlagen, das für den Einsatz des Werkstoffs Stahl optimiert wird. Leichtbau- und Optimierungsmethoden aus der Luft- und Raumfahrt sowie dem Fahrzeugbau sollen den effizienten Einsatz des Werkstoffes sichern. Durch eine gleichzeitige Akustik-Optimierung der Struktur kann die Umweltbelastung durch Schallemissionen für Mensch und Tier kontrolliert und gesenkt werden. Der Fokus bei der Entwicklung des Stahlrotorblattes liegt auf der Konstruktion der inneren Struktur sowie der Auslegung einer Blattaußenhülle, die auf Basis aerodynamischer Gesichtspunkte entwickelt wird. Die Konstruktion des Stahlrotorblattes erfolgt durch konsequente Leichtbaumethodik, um das Gesamtgewicht des Stahlblattes auf dem Niveau des GFK-Blattes zu halten. Um die Anwendbarkeit der Neuentwicklung zu gewährleisten, wird Novicos insbesondere das akustische Verhalten mitbetrachten, insbesondere vor dem Hintergrund des geänderten Körperschalltransfers sowie geringerer Dämpfung des Werkstoffs Stahl. Aufgrund der sehr großen Systeme, sowie der Relevanz des Doppler-Effektes bei rotierenden schallemittierenden Oberflächen, wird der Einfluss der neu entwickelten Blattkonstruktion auf die WEA-Schallemission mithilfe der Boundary-Elemente-Methode (BEM) bestimmt. Im Rahmen dieses Projektes wird Novicos das schnelle BEM-Verfahren der hierarchischen Matrizen mit geschachtelten Clusterbasen an die speziellen Anforderungen der Schallemissionssimulation von Windenergieanlagen anpassen. Dies umfasst Berücksichtigung der Bodeneigenschaften sowie des Doppler-Effekts wie die Ausnutzung von WEA-Oberflächensymmetrien zur Verringerung des Rechenaufwands. Basierend auf den Erweiterungen des schnellen BEM-Lösers wird Novicos die Konstruktionsvarianten des Rotorblattes für die betrachteten WEA-Konzepte analysieren und unter akustischen Gesichtspunkten bewerten.

Simulations- und KI-gestützte Optimierung des Widerstandspunktschweißens hochfester Aluminiumlegierungen für die Fertigung von Leichtbau-Fahrzeugkarosserien

Simulations- und KI-gestützte Optimierung des Widerstandspunktschweißens hochfester Aluminiumlegierungen für die Fertigung von Leichtbau-Fahrzeugkarosserien, Teilvorhaben: Untersuchung und Modellierung des Widerstandspunktschweißens von Aluminiumlegierungen

IntWertL - Intelligente Wertschöpfungsnetzweke für Leichtbaufahrzeuge geringer Stückzahl, Teilvorhaben: Konzeption eines plattformbasierten Geschäftsmodells

Mehr Energieeffizienz in der Prozesskette - Erweiterung der Anwendungsmöglichkeiten für naturharte martensitische Stahlbleche durch Weiterentwicklung der Fertigungstechnologien, Teilvorhaben: Prozessentwicklung für die Fertigungstechnologien Trennen, Fügen und lokale Wärmebehandlung

1 2 3 4 5133 134 135