Ziel des Vorhabens ist, neben der Aufnahme des systembestimmenden Wirkungsgefüges für die alpine Gebirgsstufe, vor allem ein möglichst wirklichkeitsnahes Landschaftsmodell aufzubauen, um prognostische Aussagen zu potentiellen Umweltveränderungen für die alpine Stufe der Alpen treffen zu können. Das geplante Vorhaben versucht daher, für den alpinen Raum möglichst präzise flächenrelevante Aussagen zu den Systemparametern Vegetation, Biomasse, Relief, Schneedecke, Bodenfeuchte und Bodenwärme zu treffen, um im landschaftsökologischen Sinne das signifikante Beziehungsgefüge dieser Größen herauszustellen. Im Vordergrund der Arbeiten steht vor allem der Einsatz eines neuen feldtauglichen Messprinzips zur Bestimmung des Bodenwassergehalts auf der Basis von Wärmekapazitätsmessungen. Infolge einer engen Bindung des Bodenfeuchteregimes an das Mikrorelief sowie an die hydrologisch bedeutsame Schneedecke, sollen auch diese beiden ökologisch wichtigen Kenngrößen mit Hilfe einer fortschrittlichen Erfassungsmethodik aufgenommen werden (lasergestützter Digitalkompaß, 3D-Software). Es ist insbesondere dieser neue methodische Ansatz, der das geplante Vorhaben klar von bereits durchgeführten landschaftsökologischen Arbeiten in vergleichbaren Räumen löst und daher vielversprechende ökologische Grundlagenergebnisse erwarten läßt. Die vergleichsweise exakten Punkt- und Flächenparameteraufnahmen können aber auch als Beschreibung des ökosystemaren Ist-Zustandes verstanden werden, so daß Aufnahmewiederholungen bereits stattgefundene Systemveränderungen dokumentierten können (Ökosystemmonitoring).
Das Edelgasradioisotop 39Ar ist von großem Interesse für die Datierung in Ozeanographie, Glaziologie und Hydrogeologie, da es das einzige Isotop ist, das den wichtigen Altersbereich zwischen ca. 50 und 1000 Jahren abdeckt. Die fundamental neue Messmethode der Atom Trap Trace Analysis (ATTA), welche die 81Kr Datierung zum ersten Mal möglich gemacht hat, besitzt das Potenzial, die Anwendungen von 39Ar zu revolutionieren, indem sie die benötigte Probengröße um einen Faktor 100 bis 1000 reduziert. In einem Vorgängerprojekt haben wir zum ersten Mal gezeigt, dass die Messung von 39Ar an natürlichen Proben mit ATTA möglich ist, allerdings benötigten wir dazu immer noch Tonnen von Wasser. Vor kurzem haben wir anhand von Proben aus ersten Pilotprojekten mit Ozeanwasser und alpinem Eis gezeigt, dass die 39Ar-ATTA (ArTTA) Messung an Proben von ca. 25 L Wasser oder 10 mL Ar oder weniger möglich ist. Dieser Erfolg eröffnet komplett neue Perspektiven für die Anwendung der 39Ar-Datierung, die sehr wertvolle Information ergeben wird, die ansonsten nicht zugänglich wäre. Der Bedarf für solche Analysen, insbesondere im Gebiet der Spurenstoff-Ozeanographie, ist gut etabliert und dokumentiert durch Unterstützungsschreiben von unseren derzeitigen Partnern für ArTTA Anwendungen. Dieser Antrag wird es uns ermöglichen, die weltweit ersten ArTTA Geräte zu bauen, die auf Routinebetrieb mit kleinen Proben ausgelegt sind. Wir streben den Aufbau einer 39Ar-Datierungsplattform an, welche die Anforderungen für die Datierung in den Feldern der Grundwasserforschung, Ozeanographie und Gletscherforschung erfüllt. Um sinnvolle Anwendungen in der Tracerozeanographie zu ermöglichen, wird eine Kapazität von mindestens 200 Proben pro Jahr benötigt. Das neue Gerät für die Forschung wird damit lange angestrebte Anwendungen erlauben, die sonst nicht möglich wären. Basierend auf bisheriger Forschung haben wir einen klaren Plan für den Aufbau einer kompletten Plattform für den Betrieb von ArTTA: Eine neue Probenaufbereitungslinie basierend auf dem Gettern von reaktiven Gasen erlaubt die Abtrennung von bis zu 10 mL reinem Ar aus kleinen (kleiner als 25 L Wasser oder 10 kg Eis) Umweltproben in wenigen Stunden. Diese Proben werden zum ArTTA Gerät transferiert, welches aus zwei Modulen besteht: Das Optik-Modul erzeugt die benötigten Laserfrequenzen und Laserleistung, das Atom-Modul ist der Teil in dem die Atome mit atomoptischen Werkzeugen detektiert werden, die wir im Prototyp aus dem vorherigen Projekt realisiert haben. So weit als möglich wird die Anlage aus zuverlässigen, hochleistungsfähigen kommerziellen Teilen gebaut. Das System wird in einer hochkontrollierten Containerumgebung installiert, was einen modularen Aufbau gewährleistet, der in Zukunft an unterschiedlichen Orten aufgebaut werden kann.
Das Teilprojekt stellt die chemischen Grundlagen für die Forschergruppe bereit. Es widmet sich der Analyse von Speziesprofilen, die für die Entwicklung und kritische Validierung der reaktionskinetischen Modelle für die motorischen Teilprojekte benötigt werden und die dann in die Regelung einfließen. Diese Analysen sollen vornehmlich unter Niedertemperaturbedingungen an den Surrogatbrennstoffen iso-Oktan (für die GCAI-Verbrennung in TP3) und n-Heptan (für die PCCI-Verbrennung in TP4) in einem Strömungsreaktor erfolgen. Mehrere Teilaspekte stehen im Fokus der reaktionskinetischen Untersuchungen. Für die GCAI-Bedingungen steht die Veränderung der Zündwilligkeit unter Wasserzusatz im Vordergrund. Die Effekte variabler Addition von Wasser zu iso-Oktan sollen für ein Parameterfeld bei unterschiedlichen Bedingungen untersucht werden, um die Grundlagen des Wasserzusatzes auf die Reaktionskinetik im Niedertemperaturbereich zu verstehen und in die Modellbildung zu übertragen. Die geplanten Untersuchungen stellen weitgehend Neuland dar. Zur Unterstützung sollen einige Analysen hierzu auch unter den stabilen Bedingungen vorgemischter ebener Niederdruckflammen stattfinden. Für die Modellbildung im Bereich der PCCI-Verbrennung sind detaillierte Untersuchungen der Bildung von Rußvorläuferspezies im Bereich bis zu etwa vier aromatischen Ringen insbesondere unter Niedertemperaturbedingungen geplant. Während die Reaktionen zur Bildung des ersten aromatischen Ringes als sehr gut verstanden gelten können, weist das grundlegende Verständnis der Bildungskinetik in der molekularen Vorläuferphase bis zu etwa 3-4 aromatischen Ringen noch sehr große Lücken auf. Dieser Phase, an die sich die erste Partikelnukleation zum Beispiel über Dimerisierung der mehrkernigen Aromaten anschließt, kommt innerhalb der Reaktionsketten vom Brennstoffmolekül zum Rußkeim eine große Bedeutung zu. Das entsprechende fundamentale Wissen ist für die Modellentwicklung in TP4 von entscheidender Bedeutung. Die Arbeiten sollen daher auch durch die Untersuchung besonders brennstoffreicher Zonen in einer nicht vorgemischten Flamme unterstützt werden. Für beide motorische Verfahren ist es zudem interessant, die Einflüsse der Zumischung von Abgaskomponenten auf die Reaktionskinetik zu verstehen. Anknüpfend an die Untersuchungen zur Wasserbeimischung sind hierzu einige grundlegende Analysen geplant. Zur Erfassung der Spezies als Funktion der Reaktionsbedingungen sollen an allen Versuchsträgern verschiedene Varianten massenspektrometrischer Verfahren eingesetzt werden, mit denen in der Arbeitsgruppe große Erfahrung vorliegt. Als unterstützende Techniken werden Gaschromatographie sowie Laserverfahren zur Temperaturbestimmung eingesetzt.
Dieser Datensatz enthält die Straßenbreiten im Freiburger Stadtgebiet, von Bordsteinunterkante zu Bordsteinunterkante, dargestellt als Breitenlinien. Die Straßenbreiten wurden aus den 3D-Punktwolken der Befahrung des Frühjahr 2024 automatisiert abgeleitet, indem die Unterkante der Bordsteine auf beiden Straßenseite identifiziert und lokalisiert wurden. An den Stellen, an denen auf einer oder beiden Seiten der Bordstein nicht identifiziert werden konnte, erfolgte keine Breitebestimmung. Die automatisierte Ableitung wurde nicht manuell nachgearbeitet. Bei groben Verschmutzungen am Fahrbahnrand, Bordsteinabsenkungen, ggf. parkenden Autos und verschiedenem "Straßenmobiliar" (z.B. Poller) kann es daher sein, dass ein "falscher Bordstein" identifiziert wurde und es daher zu einer fehlerhaften Breitebestimmung kam. Wir empfehlen daher die gleichzeitige Einblendung von Luftbildern um eine schnelle Einordnung der Bestimmung vorzunehmen.
This dataset contains geochemical variables measured in six depth profiles from ombrotrophic peatlands in North and Central Europe. Peat cores were taken during the spring and summer of 2022 from Amtsvenn (AV1), Germany; Drebbersches Moor (DM1), Germany; Fochteloër Veen (FV1), the Netherlands; Bagno Kusowo (KR1), Poland; Pichlmaier Moor (PI1), Austria and Pürgschachen Moor (PM1), Austria. The cores AV1, DM1 and KR1 were taken using a Wardenaar sampler (Royal Eijkelkamp, Giesbeek, the Netherlands) and had diameter of 10 cm. The cores FV1, PM1 and PI1 had an 8 cm diameter and were obtained using an Instorf sampler (Royal Eijkelkamp, Giesbeek, the Netherlands). The cores FV1, DM1 and KR1 were 100 cm, core AV1 was 95 cm, core PI1 was 85 cm and core PM1 was 200 cm. The cores were subsampeled in 1 cm (AV1, DM1, KR1, FV1) and 2 cm (PI1, PM1) sections. The subsamples were milled after freeze drying in a ballmill using tungen carbide accesoires. X-Ray Fluorescence (WD-XRF; ZSX Primus II, Rigaku, Tokyo, Japan) was used to determine Al (μg g-1), As (μg g-1), Ba (μg g-1), Br (μg g-1), Ca (g g-1), Cl (μg g-1), Cr (μg g-1), Cu (μg g-1), Fe (g g-1), K (g g-1), Mg (μg g-1), Mn (μg g-1), Na (μg g-1), P (μg g-1), Pb (μg g-1), Rb (μg g-1), S (μg g-1), Si (μg g-1), Sr (μg g-1), Ti (μg g-1) and Zn (μg g-1). These data were processed and calibrated using the iloekxrf package (Teickner & Knorr, 2024) in R. C, N and their stable isotopes were determined using an elemental analyser linked to an isotope ratio mass spectrometer (EA-3000, Eurovector, Pavia, Italy & Nu Horizon, Nu Instruments, Wrexham, UK). C and N were given in units g g-1 and stable isotopes were given as δ13C and δ15N for stable isotopes of C and N, respectively. Raw data C, N and stable isotope data were calibrated with certified standard and blank effects were corrected with the ilokeirms package (Teickner & Knorr, 2024). Using Fourier Transform Mid-Infrared Spectroscopy (FT-MIR) (Agilent Cary 670 FTIR spectromter, Agilent Technologies, Santa Clara, Ca, USA) humification indices (HI) were determined. Spectra were recorded from 600 cm-1 to 4000 cm-1 with a resolution of 2 cm-1 and baselines corrected with the ir package (Teickner, 2025) to estimate relative peack heights. The HI (no unit) for each sample was calculated by taking the ratio of intensities at 1630 cm-1 to the intensities at 1090 cm-1. Bulk densities (g cm-3) were estimated from FT-MIR data (Teickner et al., in preparation).
This dataset contains geochemical variables measured in six depth profiles from ombrotrophic peatlands in North and Central Europe. Peat cores were taken during the spring and summer of 2022 from Amtsvenn (AV1), Germany; Drebbersches Moor (DM1), Germany; Fochteloër Veen (FV1), the Netherlands; Bagno Kusowo (KR1), Poland; Pichlmaier Moor (PI1), Austria and Pürgschachen Moor (PM1), Austria. The cores AV1, DM1 and KR1 were taken using a Wardenaar sampler (Royal Eijkelkamp, Giesbeek, the Netherlands) and had diameter of 10 cm. The cores FV1, PM1 and PI1 had an 8 cm diameter and were obtained using an Instorf sampler (Royal Eijkelkamp, Giesbeek, the Netherlands). The cores FV1, DM1 and KR1 were 100 cm, core AV1 was 95 cm, core PI1 was 85 cm and core PM1 was 200 cm. The cores were subsampeled in 1 cm (AV1, DM1, KR1, FV1) and 2 cm (PI1, PM1) sections. The subsamples were milled after freeze drying in a ballmill using tungen carbide accesoires. X-Ray Fluorescence (WD-XRF; ZSX Primus II, Rigaku, Tokyo, Japan) was used to determine Al (μg g-1), As (μg g-1), Ba (μg g-1), Br (μg g-1), Ca (g g-1), Cl (μg g-1), Cr (μg g-1), Cu (μg g-1), Fe (g g-1), K (g g-1), Mg (μg g-1), Mn (μg g-1), Na (μg g-1), P (μg g-1), Pb (μg g-1), Rb (μg g-1), S (μg g-1), Si (μg g-1), Sr (μg g-1), Ti (μg g-1) and Zn (μg g-1). These data were processed and calibrated using the iloekxrf package (Teickner & Knorr, 2024) in R. C, N and their stable isotopes were determined using an elemental analyser linked to an isotope ratio mass spectrometer (EA-3000, Eurovector, Pavia, Italy & Nu Horizon, Nu Instruments, Wrexham, UK). C and N were given in units g g-1 and stable isotopes were given as δ13C and δ15N for stable isotopes of C and N, respectively. Raw data C, N and stable isotope data were calibrated with certified standard and blank effects were corrected with the ilokeirms package (Teickner & Knorr, 2024). Using Fourier Transform Mid-Infrared Spectroscopy (FT-MIR) (Agilent Cary 670 FTIR spectromter, Agilent Technologies, Santa Clara, Ca, USA) humification indices (HI) were determined. Spectra were recorded from 600 cm-1 to 4000 cm-1 with a resolution of 2 cm-1 and baselines corrected with the ir package (Teickner, 2025) to estimate relative peack heights. The HI (no unit) for each sample was calculated by taking the ratio of intensities at 1630 cm-1 to the intensities at 1090 cm-1. Bulk densities (g cm-3) were estimated from FT-MIR data (Teickner et al., in preparation).
| Origin | Count |
|---|---|
| Bund | 2286 |
| Kommune | 1 |
| Land | 29 |
| Wissenschaft | 150 |
| Zivilgesellschaft | 11 |
| Type | Count |
|---|---|
| Daten und Messstellen | 116 |
| Ereignis | 2 |
| Förderprogramm | 2209 |
| Gesetzestext | 1 |
| Hochwertiger Datensatz | 4 |
| Taxon | 4 |
| Text | 45 |
| Umweltprüfung | 1 |
| unbekannt | 86 |
| License | Count |
|---|---|
| geschlossen | 72 |
| offen | 2383 |
| unbekannt | 12 |
| Language | Count |
|---|---|
| Deutsch | 2102 |
| Englisch | 526 |
| Resource type | Count |
|---|---|
| Archiv | 27 |
| Bild | 7 |
| Datei | 89 |
| Dokument | 21 |
| Keine | 1473 |
| Multimedia | 1 |
| Unbekannt | 2 |
| Webdienst | 9 |
| Webseite | 858 |
| Topic | Count |
|---|---|
| Boden | 1592 |
| Lebewesen und Lebensräume | 1546 |
| Luft | 1276 |
| Mensch und Umwelt | 2429 |
| Wasser | 983 |
| Weitere | 2467 |