The digital terrain model of waterways for the estuary of river Elbe (DGM-W 2016) in high resolution based on airborne laser scanning and echo sounder data is produced and published by the German Federal Waterways and Shipping Administration (Wasserstraßen- und Schifffahrtsverwaltung des Bundes, WSV). The data includes the Outer Elbe and the tidally influenced side branches of the Elbe estuary upstream to the town Geesthacht. The data is available in a raster resolution of 1 meter. Coordinate reference system: EPSG 25852, ETRS89 / UTM Zone 32N Elevation reference system: DHHN92, NHN Survey methods: Airborne laser scanning (ALS) 02. - 04.2016 Multibeam echo sounder, single beam echo sounder 2015-2017 It is strongly recommended to use the data source map for quality assessment.
The digital terrain model of waterways for the estuary of river Elbe (DGM-W 2022) in high resolution based on airborne laser scanning and echo sounder data is produced and published by the German Federal Waterways and Shipping Administration (Wasserstraßen- und Schifffahrtsverwaltung des Bundes, WSV). The data includes the Outer Elbe and the tidally influenced tributaries and branches of the Elbe estuary upstream to the town Geesthacht. The data is available in a raster resolution of 1 meter. Coordinate reference system: EPSG 25852, ETRS89 / UTM Zone 32N Elevation reference system: DHHN2016, NHN Survey methods: Airborne laser scanning (ALS) 02.04.2022 - 19.04.2022 Multibeam echo sounder, single beam echo sounder 09.02.2017 - 09.04.2023 It is strongly recommended to use the data source map for quality assessment.
This digital elevation model (DEM) describes the topography of the active floodplain of the middle reaches of River Elbe between the Czech-German border near Schmilka and the weir in Geesthacht with 1 m spatial resolution in coordinate reference system "ETRS 1989 UTM Zone 33 N" and 0.01 m resolution in the German height reference system "Deutsches Haupthöhennetz 1992 (DHHN92)". The dataset was generated through aerial laser scanning (ALS) for terrestrial parts of the floodplain between April 2003 and December 2006 and echo sounding for aquatic parts of the central water course by the local waterway and navigation authorities (WSV) throughout the year 2006. Parts not covered by any of the two data collection methods were filled through linear interpolation. A comparison between DEM and 7476 height reference points confirmed a high accuracy with a mean deviation of elevations of ± 5 cm. Depending on the data source 95% of all checked points show a vertical deviation of less than 15 cm to 50 cm. A small section of the model was updated later to incorporate the dike relocation area Lenzen which became connected to the floodplain in 2011 so that the dataset describes the state of 2011. Since the dataset has a large volume it was split into 49 tiles.
This digital elevation model (DEM) describes the topography of the active floodplain of the freeflowing parts of River Rhine between the weir Iffezheim and the German-Dutch border near Kleve with 1 m spatial resolution in coordinate reference system "ETRS 1989 UTM Zone 32 N" and 0.01 m resolution in the German height reference system "Deutsches Haupthöhennetz 1992 (DHHN92)". The dataset was generated in four parts through aerial laser scanning (ALS) for terrestrial parts of the floodplain and echo sounding for aquatic parts of the central water course by the local waterway and navigation authorities (WSV) between 2003 and 2010. Parts not covered by any of the two data collection methods were filled through linear interpolation. A comparison between DEM and reference points confirmed a high accuracy with a mean deviation of elevations of ± 5 cm. Depending on the data source 95% of all checked points show a vertical deviation of less than 15 cm to 50 cm. Since the dataset has a large volume it was split into 40 tiles.
The Weser estuary at the German North Sea coast serves as a fairway to the harbours of Bremerhaven and Bremen. To ensure safe shipping and navigation, the navigation channel depths are nowadays intensively monitored, and have been so in the past. These are valuable data for consulting and research purposes, and enables investigations leading to a better understanding of hydrodynamics, salt intrusion and morphological processes in the estuary, in the present as well as the past. For recent years, thanks to modern monitoring techniques and digitalization, measuring data has been compiled to consistent digital terrain models of high quality and accuracy. For time periods before the 1990ies however, measurements were scarcer and the data are available only in form of printed bathymetrical and nautical charts. The objective of the project “Historical system states of the Weser estuary (HIWEST)” was to: • digitalize depths measurements starting from 1960, • georeference the data points and • process and compile them to digital terrain models that can be used for research and consulting. The project was led and financed by the Federal Waterways Engineering and Research Institute (BAW). It was supported by the Federal Maritime and Hydrographic Agency (BSH) and by the German Water and Shipping Administration (WSV) who provided printed charts and scanned data sets. The smile consulting GmbH was contracted to process the data and compile digital terrain models. One of the main challenges of the project was georeferencing. While georeferencing and projecting in the horizontal domain was comparatively straightforward, the transformation of depths below different chart datums to the Germans mean height reference system represented a challenge. This was accomplished by an algorithm considering spatial polygons provided by BSH and further meta information on the different levelling systems. The accuracy of the data sets differs depending on the quality of the original data. Since the 1990ies, powerful measurement methods such as airborne laser scanning (ALS) and multibeam echo-sounding has led to high resolutions and high data accuracy. In past surveys, the depths were measured in single-beam echo-soundings, often along individual cross sections, and there is no information between these soundings. As a result, the older terrain models are much smoother then the newer ones and contain less detailed information. More technical details can be found in the appendix of the technical report. The following digital terrain models (DTM, in the following the German abbreviation DGM is used) of the Lower and Outer Weser estuary were made available: • DGM 1966, marking the situation before deepening the Outer Weser to SKN-12 m</li> • DGM 1972, marking the situation before deepening the Lower Weser to SKN-9 m</li> • DGM 1981, marking the situation before extensive river works in the Lower Weser</li> • DGM 1996, marking the situation before deepening the Outer Weser to SKN-14 m</li> • DGM 2002, marking the situation after deepening the Outer Weser to SKN-14 m, reference digital terrain model. The years were chosen so they would represent consistent periods not affected by constructive engineering measures such as channel deepenings, and secondly based on optimal data availability. Each data set however consists not only of data from the respective year, but data had to be added from adjacent years. To close gaps, data from recent surveys were used. The data sets span the whole estuary from the North Sea to the tidal weir in the city of Bremen and are available as 1x1 m raster data sets. How to cite the HIWEST data: <strong style="color: red;"> The data set is only to be quoted together with the Technical Report.</strong> Report: Bundesanstalt für Wasserbau (2021): Historical digital terrain models of the Weser Estuary (HIWEST). Technical Report B3955.02.04.70168-6. Bundesanstalt für Wasserbau. https://henry.baw.de/handle/20.500.11970/107521 Data set: Bundesanstalt für Wasserbau (2020): Historical digital terrain model data of the Weser Estuary (HIWEST) [Data set]. Bundesanstalt für Wasserbau. https://doi.org/10.48437/02.2020.K2.5200.0001
Dienst zur Darstellung der Neigung des Geländes mit Gebäuden
Dienst zur Darstellung der Neigung des Geländes
Dienst zur Darstellung der Schummerung des Geländes
Dienst zur Darstellung der Intensität der Oberfläche
Dienst zur Darstellung der Z-Codierung des Geländes
Origin | Count |
---|---|
Bund | 2417 |
Land | 33 |
Wissenschaft | 7 |
Type | Count |
---|---|
Ereignis | 2 |
Förderprogramm | 2310 |
Gesetzestext | 1 |
Messwerte | 1 |
Taxon | 33 |
Text | 50 |
Umweltprüfung | 1 |
unbekannt | 52 |
License | Count |
---|---|
geschlossen | 111 |
offen | 2327 |
unbekannt | 12 |
Language | Count |
---|---|
Deutsch | 2431 |
Englisch | 295 |
unbekannt | 8 |
Resource type | Count |
---|---|
Archiv | 3 |
Bild | 7 |
Datei | 3 |
Dokument | 18 |
Keine | 1536 |
Webdienst | 6 |
Webseite | 892 |
Topic | Count |
---|---|
Boden | 1566 |
Lebewesen & Lebensräume | 1454 |
Luft | 1329 |
Mensch & Umwelt | 2434 |
Wasser | 959 |
Weitere | 2437 |