API src

Found 32 results.

Forschungsinitiative Zukunft Bau - Forschungscluster 'Nachhaltiges Bauen/Bauqualität', Entwicklung von Handlungsempfehlungen für praxisgerechte Lüftungskonzepte und eines CO2-Berechnungstools

Das Projekt "Forschungsinitiative Zukunft Bau - Forschungscluster 'Nachhaltiges Bauen/Bauqualität', Entwicklung von Handlungsempfehlungen für praxisgerechte Lüftungskonzepte und eines CO2-Berechnungstools" wird/wurde gefördert durch: Bundesinstitut für Bau-, Stadt- und Raumforschung (BBSR). Es wird/wurde ausgeführt durch: ITG Institut für Technische Gebäudeausrüstung Dresden Forschung und Anwendung GmbH.Bei der Weiterentwicklung des Bewertungssystems Nachhaltiges Bauen (BNB) bzw. des BNB-Kriteriensteckbriefs 'Innenraumlufthygiene' wurde für den Aspekt 'Kohlendioxidgehalt' eine Lücke an praxisorientierten Planungsinstrumenten und Bewertungsgrundlagen für Räume erkannt, die teilweise oder ausschließlich über Fenster be- und entlüftet werden. Dies gilt insbesondere für Räume mit hohen Personenzahlen wie beispielsweise Unterrichtsräume und Besprechungszimmer. Hieraus erwächst der Bedarf an Informationen und anschaulichen Handlungsempfehlungen zu funktionierenden Lüftungskonzepten sowie einem transparenten CO2-Berechnungstool als Planungs- und Bewertungsinstrument im Sinne des Nachhaltigen Bauens. Ausgangslage: Um den zukünftigen Anforderungen an ganzheitlich optimierte Gebäude gerecht zu werden, hat das Bundesbauministerium für Bundesgebäude den Leitfaden Nachhaltiges Bauen und das Bewertungssystem Nachhaltiges Bauen (BNB) entwickelt; er ist seit Oktober 2013 für Bundesbauten verpflichtend und wurde zuletzt 2017 überarbeitet. Hinsichtlich der Innenraumlufthygiene werden im Kriterium BNB 3.1.3 insbesondere Verunreinigungen der Innenraumluft durch Schadstoffe aus Bauprodukten und durch Kohlendioxidemissionen der Raumnutzer betrachtet. Weiterhin werden die mikrobiologische und die geruchliche Situation thematisiert. Die abgestufte Bewertung der CO2-Konzentration des Kriteriensteckbriefs BNB 3.1.3 orientiert sich an den Raumluftqualitätsklassen der DIN EN 13779 und berücksichtigt die Anforderung der Arbeitsstättenrichtlinie ASR A3.6 'Lüftung' und den AIR-Richtwert, wonach eine CO2-Konzentration von 1.000 ppm als 'hygienisch unbedenklich' gilt. Für die Bewertung der CO2-Konzentration wird auf folgende Normen bzw. Rechenansätze verwiesen: - Luftvolumenströme durch offene Fenster nach DIN EN 15242 - CO2-Konzentration im Raum nach Recknagel/Sprenger bzw. nach VDI 6040-2. Fachdiskussionen und Praxiserfahrungen zeigen, dass insbesondere bei Räumen mit einer hohen Personenzahl Probleme hinsichtlich des Kohlendioxidgehalts in der Innenraumluft und ggf. des thermischen Komforts aufgrund nicht optimaler Raumlüftung bestehen. Das betrifft insbesondere die Fensterlüftung und die hybride Lüftung, aber auch die mechanische Lüftung. Die Einhaltung der Anforderungen aus der 2012 neu eingeführten Arbeitsstättenrichtlinie ASR A3.6 'Lüftung' ist für diese Räume mit erheblichen Schwierigkeiten verbunden, vor allem unter gleichzeitiger Berücksichtigung des thermischem Komforts und der Nutzerfreundlichkeit. (Text gekürzt)

Luftqualitätsmanagement und Umweltmanagement in Bildungs- und Ausbildungseinrichtungen

Das Projekt "Luftqualitätsmanagement und Umweltmanagement in Bildungs- und Ausbildungseinrichtungen" wird/wurde gefördert durch: Deutsche Bundesstiftung Umwelt. Es wird/wurde ausgeführt durch: APPEAL Engineering UG.Zielsetzung: LUMUMBA zielt darauf ab, praktische Lösungen bereitzustellen, die Gebäudebetreibern und -planern dabei helfen, ein zufriedenstellendes Niveau der Raumluftqualität bei gleichzeitiger Optimierung der hierzu erforderlichen Energiebedarfe sicherzustellen. Hierbei verfolgt LUMUMBA den Ansatz eines Reallabors. Wissenschaftliche Methoden des standardisierten Innenraumluftqualitätsmanagements (nach ISO 16000-40) sowie des standardisierten Umweltmanagements (nach ISO 14001) werden partizipativ mit Lernenden in Bildungs- und Ausbildungseinrichtungen angewendet, um energieeffiziente Konzepte zu entwickeln, die der Bereitstellung einer hohen Raumluftqualität dienen. Zu diesen Konzepten zählen z. B. der unterstützende Einsatz von Luftreinigungsapparaten, die bedarfsangepasste smarte Fensterlüftung, die Erhöhung des Umluftanteils bei raumlufttechnischen Anlagen in Kombination mit Luftreinigungsapparaten und / oder der Einsatz dezentraler Lüftungsanlagen mit Wärmetauschern. Zu den umweltrelevanten Zielen von LUMUMBA zählen (i) der Schutz der menschlichen Gesundheit durch bedarfsangepasste Lüftung in einer Umgebung, für die in Bezug auf luftgetragene Schadstoffe keine weitreichenden und verbindlichen immissionsschutzrechtlichen Bestimmungen gelten, (ii) die Ressourcenschonung durch Reduktion von lüftungsbedingten Heizenergieverlusten und damit verbundener Reduktion des Verbrauchs von vorwiegend fossilen Energieträgern, (iii) die Minderung von CO2-Emissionen durch reduzierten Verbrauch an fossilen Energieträgern zur Gebäudebeheizung, (iv) die Stärkung des Nachhaltigkeitsbewusstseins und -handelns der Lernenden in teilnehmenden Einrichtungen durch den zugrundeliegenden partizipativen Reallabor-Ansatz sowie (v) die nachhaltige Sicherung der gewonnenen Erkenntnisse durch Verankerung im Sinne betrieblicher Managementsysteme zur kontinuierlichen Verbesserung von Innenraumluftqualität und Umweltleistung der teilnehmenden Einrichtungen. Die notwendigen Schritte umfassen die Identifikation und messtechnische Charakterisierung geeigneter Räumlichkeiten in den teilnehmenden Einrichtungen, die numerische Simulation von Luftqualität und lüftungsbedingten Energieverbräuchen der Räumlichkeiten, die Planung, Umsetzung und Validierung von Verbesserungsmaßnahmen sowie die Gesamtevaluation und Verstetigung der Ergebnisse.

Wenn ausreichend Lüften nicht geht: Ventilatorgestützte

Nr.: 12/2021 Halle (Saale), 20.07.2021 Wenn ausreichend Lüften nicht geht: Ventilatorgestützte Fensterlüftungssysteme sorgen für mehr Frischluft und weniger Keime Zentrale raumlufttechnische Anlagen oder regelmäßige Fensterlüftung in Aufenthalts-, Arbeits- und Klassenräumen sind die effektivste Art für frische und keimarme Luft zu sorgen. Unzureichend belüftete Räume werden auch durch mobile Luftreiniger nicht nutzbar Räume, deren Fenster sich nicht ausreichend öffnen lassen und die auch nicht über geeignete gebäudetechnische Belüftungsanlagen verfügen sind grundsätzlich nicht als Aufenthalts-, Arbeits- oder Klassenräume geeignet. Müssen diese aus zwingenden Gründen dennoch dafür genutzt werden, hat eine raumlufttechnische Ertüchtigung, die mit baulichen Veränderungen verbunden ist, absoluten Vorrang gegenüber anderen Versuchen, die Luftqualität zu beeinflussen. Minimierung der baulichen Eingriffe mit FLS Für eine Verbesserung der Lüftungseffizienz bei gleichzeitiger Minimierung der baulichen Eingriffe hat das Max-Planck-Institut für Chemie (MPIC) sogenannte ventilatorgestützte Fensterlüftungssysteme (FLS) im Sinne einer Brückentechnologie entwickelt. In der einfachsten technischen Ausführung der FLS wird ein Abluftventilator möglichst hoch in ein Fenster oder in die Außenwand eingebaut. Die Frischluftzufuhr erfolgt durch ein anderes geöffnetes Fenster. Bei den benötigten Bauteilen ist ein Rückgriff auf sehr preisgünstige, leichte und transparente Materialien möglich. Erläuterung des Max-Planck-Instituts für Chemie zu FLS Pressemitteilung Die Präsidentin praesidentin@ lau.mlu.sachsen-anhalt.de Ergänzende mobile Luftreiniger nur in Einzelfällen Nur in Einzelfällen kann unter bestimmten Rahmenbedingungen der Einsatz eines mobilen Luftreinigers in Betracht gezogen werden. Zum einen ist zu beachten, dass deren Wirksamkeit von technischen Spezifikationen Landesamt für Umweltschutz 06116 Halle (Saale) Tel.: 0345 5704-101 Fax: 0345 5704-190 www.lau.sachsen-anhalt.de 1/2 abhängt, die individuell auf die Raumnutzungsbedingungen abgestimmt sein müssen. Außerdem sind die Mindestanforderungen nach der SARS- CoV-2-Arbeitsschutzregel des Bundesministeriums für Arbeit und Soziales einzuhalten: 1. ausschließlicher Einsatz als Ergänzung zu Lüftungsmaßnahmen 2. Gewährleistung einer sachgerechten Aufstellung, eines bestimmungsgemäßen Betriebs und einer sachgerechten regelmäßigen Wartung/Instandhaltung (Reinigung, Dichtsitzprüfung, Filterwechsel usw.) durch zu beteiligende Fachfirmen 3. Sicherstellung bestimmter technischer Produktspezifikationen, z. B. Verwendung von Hepa-Filtern in Geräten, deren Wirkungsweise auf einer reinen Aerosolabscheidung beruhen 4. Gewährleistung, dass durch den Betrieb der Geräte keine gesundheitsgefährdenden Stoffe oder Reaktionsprodukte (z. B. Ozon, Stickstoffoxide) in nennenswerten, die Innenraumluftqualität beeinträchtigenden Mengen, freigesetzt werden. Überprüfung der Raumluftqualität Da die Keimbelastung der Luft nicht ohne weiteres messbar ist, kann stellvertretend die CO2-Konzentration als leicht messbarer indirekter Indikator für die Luftqualität herangezogen werden: Wenn eine CO2- Konzentration von 1000 ppm - die sogenannte Pettenkofer-Zahl - dauerhaft unterschritten wird, sind nach derzeitigem Kenntnisstand auch die virenbelasteten Aerosole hinreichend verdünnt. CO2-Sensoren für alle Arbeits-, Aufenthalts- und Klassenräume sowie die Vorhaltung eines leistungsstärkeren, digitalen CO2-Messgerätes pro Gebäude für Detailanalysen werden daher empfohlen. Fachliche Beurteilung von Handlungsoptionen von Lüftungs-/ Luftreinigungsmaßnahmen in Aufenthaltsräumen (insbesondere Klassenräume) vor dem Hintergrund der Vermeidung und Begrenzung der Infektionsübertragung durch Aerosole 2/2

IO-Scan - Integral optischer Scanner zur Luftwechselmessung

Das Projekt "IO-Scan - Integral optischer Scanner zur Luftwechselmessung" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Institut für Luft- und Kältetechnik gemeinnützige Gesellschaft mbH.

Dunstabzugshauben

: Auf Energieeffizienz und Lärm achten Welche Dunstabzugshauben wo sinnvoll sind Welcher Gerätetyp (Umluft- oder Ablufthaube) besser geeignet ist, hängt von den baulichen Gegebenheiten und vom Nutzerverhalten ab. Eine offene Küche spricht eher für den Einbau von Ablufthauben. In separaten Küchenräumen kann bei guter Fensterlüftung auch eine Umlufthaube ausreichend sein. Achten Sie beim Kauf von Dunstabzugshauben auf Energieeffizienz und Lärmemissionen. Gewusst wie Dunstabzugshauben benötigen Strom für das Ansaugen von Luft und für die Beleuchtung. Aus Umweltsicht ist es deshalb empfehlenswert, den Stromverbrauch zu reduzieren. Dunstabzugshauben, die die (aufgeheizte) Luft ins Freie leiten ("Ablufthauben"), führen im Winter zu einem zusätzlichen Bedarf an Heizenergie. Darüber hinaus können einfache Dunstabzugshauben sehr laut sein. Umluft- versus Ablufthauben: Umlufthauben leiten die Luft durch einen Fett- und durch einen Geruchsfilter. Anschließend wird die gefilterte Luft wieder zurück in die Küche "gepustet" (Kreislaufsystem). Sie haben zwei zentrale Vorteile: Sie können ohne bauliche Einschränkungen überall angebaut werden und sie reduzieren den Verlust an Heizenergie im Vergleich zu Ablufthauben, da sie keine Öffnung durch die Außenwand benötigen. Allerdings ist ihre Leistung hinsichtlich Fettabscheidung und Geruchsreduzierung schlechter als bei Ablufthauben. Der Fettabscheidungsgrad sollte deshalb mindestens 85 Prozent (mindestens Klasse B) und der Geruchsreduzierungsgrad mindestens 70 Prozent betragen. Ablufthauben saugen die Luft über der Kochstelle ab. Diese wird in einem Fettfilter gereinigt und über ein Abluftsystem ins Freie geleitet. Die Fettabscheidungsgrad sollte mindestens 85 Prozent und der Geruchsreduzierungsgrad mindestens 92 Prozent betragen. Bei der Kombination von Ablufthauben und offenen raumluftabhängigen Feuerstellen (z.B. Gasetagenheizung) kann es passieren, dass Abgase in die Wohnung gelangen. Dies geschieht dann, wenn der durch Feuerstelle und Ablufthaube erzeugte Unterdruck nicht durch nachströmende Luft ausreichend ausgeglichen werden kann. Deshalb sollte ein Fachmann beurteilen, ob der Betrieb einer Ablufthaube gefahrlos möglich ist. Richtig einkaufen: Achten Sie beim Kauf von Dunstabzugshauben auf Geräte mit niedrigem Stromverbrauch (A-Geräte). Sie finden auf dem Label zur Energiekennzeichnung auch Informationen zur Effizienz der Luftabsaugung, zur  Fettabscheidung, zur Beleuchtung und zu den Lärmemissionen der Geräte: Das Gerät sollte einen energieeffizienten Ventilator besitzen. Als Richtwert für Ablufthauben können 0,40 W/(m 3 /h)* und für Umlufthauben 0,45 W/(m 3 /h) herangezogen werden. (* Zur Beurteilung der Energieeffizienz des Ventilators wird der Quotient von elektrischer Leistungsaufnahme und Volumenstrom ("Specific Fan Power"; Einheit W/(m 3 /h)) benutzt.) Das Gerät sollte über einen netztrennenden Ausschalter verfügen. Es sollte eine geringe Leistungsaufnahme im Bereitschaftszustand haben (≤ 0,5 W). Achten Sie auf die Geräuschemissionen des Gerätes, die in den Produktunterlagen stehen. Diese sollten im Abluftbetrieb 62 dB(A) und im Umluftbetrieb 67 dB(A) nicht überschreiten. Die richtige Größe: Bei Umlufthauben gibt es für die maximale Luftfördermenge (m 3 /h) folgende Faustformel: m 2 x Raumhöhe x zehn. Richtig entsorgen: Weitere Informationen zur richtigen Entsorgung Ihrer Dunstabzugshaube und anderer Elektroaltgeräte finden Sie in unserem ⁠ UBA ⁠-Umwelttipp "Alte Elektrogeräte richtig entsorgen" . Was Sie noch tun und beachten können: Fettfilter bestehen bei Umluft- und Ablufthauben aus Metall, die in der Spülmaschine gereinigt werden können. Viele Filtersysteme geben den Zeitpunkt einer notwendigen Reinigung an (akustische oder optische Signale). Umlufthauben sind mit einem Geruchsfilter aus Aktivkohle ausgestattet, dessen Leistungsfähigkeit mit zunehmender Beladung sinkt. Er muss deshalb regelmäßig erneuert werden. Schalten Sie zeitnah auf eine niedrigere Stufe, sobald eine geringere Belastung mit Geruch, Fett und Wasserdampf besteht. Kochen Sie mit geschlossenem Topf. Hintergrund Hintergrundinformationen finden Sie auf: Ökodesign-Richtlinie und Energieverbrauchskennzeichnung für Dunstabzugshauben (⁠ UBA ⁠-Dokumente)

EnOB: MinInfekt - Notwendige Luftmengen zur Minderung des Infektionsrisikos über Aerosole effektiv und energieeffizient bereitstellen

Das Projekt "EnOB: MinInfekt - Notwendige Luftmengen zur Minderung des Infektionsrisikos über Aerosole effektiv und energieeffizient bereitstellen" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Technische Universität Berlin, Institut für Energietechnik.

FAQ: Absenkung der Raumtemperatur in Herbst und Winter

In der Ukraine fürchten wegen des russischen Krieges täglich Menschen um Leib und Leben. In Deutschland hat die aggressive russische Politik zu einer Energiekrise geführt. Um Gas zu sparen, empfiehlt das UBA, die Heiztemperatur zu optimieren. Denn die beste Energie ist die, die gar nicht verbraucht wird. Zu kalt sollte die Heizung aber nicht eingestellt werden, sonst droht Schimmel. Es wird derzeit intensiv diskutiert, ob und in welchem Ausmaß man im Herbst und Winter die Raumlufttemperaturen in Wohnungen und Büros senken kann, um Heizenergie einzusparen. Im Gespräch ist eine Temperaturabsenkung von 1-2 Grad während des Tages. Einzelne Wohnungsgesellschaften waren sogar mit Vorschlägen, die Raumtemperaturen auf 16-18 °C zu senken, an die Öffentlichkeit gegangen. Zu starke Temperaturabsenkungen bergen aber ein erhebliches Risiko für Schimmelbefall und gesundheitlich negative Folgen. Welche Temperaturabsenkungen aus gesundheitlicher Sicht akzeptabel sind und was Betroffene im Herbst und Winter beachten sollen, um Schimmelrisiken zu vermeiden, mindestens aber zu minimieren, wird im Folgenden dargelegt. Im Zuge der Maßnahmen zum Gassparen kündigen immer mehr Wohnungsunternehmen an, im Herbst die Temperatur der Heizungsanlagen drosseln zu wollen. Begünstigt die Drosselung der Temperatur der Heizkörper und anderer Heizungen wie Fußbodenheizungen die Entstehung von Schimmelpilz in Wohnungen? Unter welchen Bedingungen steigt die Gefahr von Schimmelbildung durch niedrigere Temperatur in den Wohnungen? Die folgenden Ausführungen gelten schwerpunktmäßig für Wohnungen. Eine generelle Absenkung der Raumlufttemperaturen in regelmäßig genutzten Wohnräumen erhöht das Schimmelrisiko. Wärmere Luft kann physikalisch mehr Feuchte aufnehmen als kältere. Im Umkehrschluss erhöht kältere Raumluft die Gefahr für höhere relative Luftfeuchte und für Feuchtekondensation (= Bildung eines flüssigen Wasserfilms) entlang kühler Oberflächen. Besonders gefährdet sind kalte Außenwände, kühle Oberflächen im Raum, aber auch Nischenbereiche, wo anfallende Feuchte nur schwer durch das Lüften abtransportiert werden kann. Eine Erhöhung der relativen Luftfeuchte über Tage und Wochen oberhalb von mehr als 60 % (der genaue Wert kann je nach Gebäudetyp und Dämmstandard variieren) kann bereits binnen weniger Tage das Wachstum von Schimmelpilzen begünstigen. Wie kann man eine gute und behagliche Wohnraumatmosphäre beibehalten? Aus hygienischer Sicht (präventiver Gesundheitsschutz) sind folgende Punkte zu beachten (Link: vgl. Schimmelleitfaden des UBA, 2017 ): Bei Absenkung von Innenraumlufttemperaturen in der Heizperiode unter 16-18 °C steigt das Risiko für Schimmelbildung in genutzten Wohnungen zum Teil massiv. Schimmel in Innenräumen erhöht das Risiko für die Entstehung und Verschlimmerung von Asthma und für weitere mit Schimmel assoziierte gesundheitliche Probleme. Empfohlen wird in Wohnungen tagsüber die Raumtemperaturen nicht unter 19-20 °C zu senken, nachts kann (über Nachtabsenkung) 18 °C eingestellt werden. Weitere Absenkungen erhöhen das Schimmelrisiko deutlich. Ältere Gebäude mit schlecht gedämmten Außenwänden erhöhen bei gleicher Innenraumtemperatur das Risiko für Kondenswasserbildung an kalten Flächen deutlich mehr als Neubauten oder energetisch sanierte Gebäude gemäß. Aber auch diese Gebäude sind nicht frei von Schimmelbefall, wenn nicht ausreichend geheizt und gelüftet wird. Viele Personen auf engem Raum erhöhen die Wasserdampfabgaben (ein Drei-Personenhaushalt produziert ca. 6-12 Liter Wasser als Dampf in der Wohnung. Je mehr Wasserdampf produziert wird, umso wichtiger wird regelmäßiges Lüften.) In Gebäuden mit schlechter Wärmedämmung sollte man im Winter keine massiven Möbel oder Betten direkt an die Außenwände stellen. Zur Vorbeugung von Schimmelbildung sind Gegenstände einige Zentimeter entfernt von der Außenwand aufzustellen, damit dort angereicherte Feuchte beim Lüften abtransportiert werden kann. Verstärkt betroffen sind Personen und Familien mit niedrigem ökonomischen Status bzw. Armutsgefährdete, z.B. weil diese häufig in schlechter gedämmten Wohnhäusern leben. Könnte die Einführung von Fenstern, die sich nicht mehr kippen, sondern ausschließlich zur Gänze öffnen lassen, der Schimmelpilzbildung in Wohnungen entgegenwirken? Im Zusammenhang mit der Prävention von Schimmel in Wohngebäuden kommt dem Lüften die wichtige Aufgabe zu, überschüssige Feuchte nach außen abzutransportieren. Im Wohnbereich reicht im Winter das mehrmalige Lüften am Tag über weit geöffnete Fenster (Stoßlüftung). Dauerhafte Kipplüftung wird im Winter wegen der starken Energieverluste nicht empfohlen. Auch wird man bei dauerhaft abgesenkten Raumlufttemperaturen (dauerhaft unter 18 °C) und gleichzeitiger Nutzung von Wohnungen nicht allein durch Lüften das Schimmelrisiko vermeiden können. Man müsste dazu dann über Stunden Lüften im Winter. Dies dürfte aus Komfortgründen niemand akzeptieren. Es soll immer gelüftet und geheizt werden. Wie kann man Schimmel auch bei geringeren Raumtemperaturen vermeiden? Ausreichend Lüften, vor allem nach Feuchtespitzen (Kochen, Duschen, Wäschetrocknen) Raumtemperatur und Luftfeuchte in Räumen regelmäßig verfolgen. Digitale Raumluftfeuchtemesser bzw. Thermohygrometer sind für wenige Euro im Baumarkt erhältlich. In allen Räumen spätestens oberhalb von 60 % relativer Feuchte vermehrt lüften. Nach außen und nicht in benachbarte Räume lüften. Bei Fensterlüftung Fenster komplett öffnen (Stoßlüften). Dauerkippstellung der Fenster vermeiden, da dies im Winter nur zu verstärkten Wärmeverlusten führt, jedoch kaum zum raschen Lüftungserfolg beiträgt. In Wohnungen sollen im Winter 2-3 mal am Tag für jeweils ca. 5 Minuten zum Lüften ein oder mehrere Fenster weit geöffnet werden. Im Schlafzimmer soll morgens nach dem Aufstehen für 5-10 Minuten bei weit offenem Fenster gelüftet werden, da hier der Wasserdampfanfall über Nacht durch Schwitzen und Atmen meist hoch ist. In Küche und Bad sollen unmittelbar nach dem Kochen oder Duschen für 5-10 Minuten die Fenster weit geöffnet werden. Nasse Fliesen im Bad sollte man mit einem Abzieher wischen. In Büros sollte alle 2-3 Stunden kurz für 3-5 Minuten das Fenster geöffnet werden. Möglichst alle genutzten Räume einer Wohnung beheizen. Die Innentüren zu kühleren Räumen geschlossen halten. Die für Bürogebäude aktuell diskutierte Nicht-Beheizung von Fluren und Korridoren ist nur dann hygienisch vertretbar, wenn die Räume zu den beheizten Büros geschlossen bleiben. Ansonsten besteht die Gefahr des Eintrages wärmerer, mit Feuchte beladener Luft aus den Büros in die kühleren Flure, wo die Feuchte sich verstärkt abscheiden könnte. Abhilfe: Auch die Flure unbedingt regelmäßig belüften! In schlecht gedämmten Wohnungen keine massiven Möbel (Schränke, Bett) direkt an die Außenwände stellen. Mindestens 3-5 Zentimeter Abstand von der Außenwand einhalten. Lassen sich die Warmwassertemperaturen senken, ohne Gefahr des Legionellen-Keimwachstums? Trinkwasser muss bis unmittelbar vor der Mischarmatur entweder kalt oder heiß sein. Wenn das nicht sichergestellt ist, besteht ein Risiko für das Wachstum von Legionellen. Um das Wachstum von Legionellen im Warmwasser und deren Freisetzung z.B. beim Duschen zu vermeiden, muss bei Großanlagen mit mehr als 400 Litern Speicherinhalt oder mehr als drei Litern Warmwasser in den Leitungen die Temperatur am Trinkwassererwärmer dauerhaft auf 60 °C eingestellt sein. An keiner Stelle in der Trinkwasserinstallation dürfen die Warmwassertemperaturen unter 55 °C absinken. Wenn der Temperaturverlust zwischen dem Warmwasserspeicher und Entnahmearmaturen oder anderen Teilen der Trinkwasserinstallation höher ist als 5 °C muss der hydraulische Abgleich überprüft und neu justiert werden. Der Betrieb von Trinkwassererwärmern oder Speichern bei höheren Temperaturen, beispielsweise durch „Legionellenschaltungen“, ist weder sinnvoll noch wirksam. Der Betrieb von Großanlagen der Trinkwasserinstallationen bei geringeren Temperaturen entspricht nicht den Anforderungen der allgemein anerkannten Regeln der Technik. Daher besteht ein erhebliches Haftungsrisiko für die Betreiber der Trinkwasser-Installationen, wenn die Betriebstemperaturen abgesenkt werden. Trinkwasserinstallationen mit kleineren Warmwasserspeichern und geringeren Mengen Warmwasser in den Leitungen sollten in Anlehnung an die Temperaturanforderungen für Großanlagen betrieben werden, auch wenn bei diesen Anlagen das Risiko einer Verkeimung mit Legionellen geringer ist. Eine Aussage, ob eine Trinkwasserinstallation mit Legionellen verkeimt ist oder nicht, kann nur anhand der Untersuchung von Wasserproben durch eine zugelassene Trinkwasseruntersuchungsstelle erfolgen.

Mobile Luftreiniger: Nur als Ergänzung zum Lüften sinnvoll

Mobile Luftreinigungsgeräte versprechen, virushaltige Partikel in Innenräumen zu reduzieren. Ob die Minderungen ausreichen, eine Infektionsgefahr in dicht belegten Klassenräumen abzuwenden, ist nach jetzigem Wissensstand unsicher. Da die Geräte weder CO2 noch Wasserdampf aus der Raumluft entfernen, empfiehlt das UBA weiter auch in der kalten Jahreszeit die Fensterlüftung als prioritäre Maßnahme. Dieser Text bildet den Stand am 11.02.2021 ab. Hier finden Sie die aktuelle Einschätzung des UBA zur Thematik . Vor dem Hintergrund einer möglichen Übertragung des SARS-CoV-2-Virus über ⁠ Aerosole ⁠ in Klassenräumen werden mobile Luftreinigungsgeräte (d. h. frei im Raum aufstellbare Geräte) als Maßnahme diskutiert, um virushaltige Aerosolpartikel aus der Luft zu entfernen. Mobile Luftreinigungsgeräte sind je nach technischer Auslegung (Prinzip; Dimensionierung) in der Lage, Viren aus der Luft zu entfernen bzw. zu inaktivieren. Allerdings hängt ihre Wirksamkeit in realen Räumen neben den technischen Spezifikationen auch von den Aufstellbedingungen vor Ort und von der Luftausbreitung im Raum ab. Da mobile Luftreinigungsgeräte nicht das in Klassenräumen anfallende Kohlendioxid (CO 2 ) und den Wasserdampf aus der Raumluft entfernen, können sie nicht als vollständigen Ersatz für Lüftungsmaßnahmen eingesetzt werden, sondern allenfalls als Ergänzung ( Kommission Innenraumlufthygiene (IRK), Stellungnahme vom 16.11.2020 [1]). Priorisierung der Lüftungsmaßnahmen an Schulen aus Sicht des UBA Das Umweltbundesamt empfiehlt, Lüftungsmaßnahmen an Schulen in folgender Rangfolge zu betrachten: In Schulen mit raumlufttechnischen (RLT-)Anlagen sollen für die Dauer der Pandemie die Frischluftzufuhr erhöht werden, und die Betriebszeiten der Anlagen verlängert werden. Arbeitet die Anlage mit Umluft, ist der Einbau zusätzlicher Partikelfilter (Hochleistungsschwebstofffilter H 13 oder H 14) zu erwägen. In Schulen ohne RLT-Anlagen (schätzungsweise 90 % der Schulen) soll intervallartig über weit geöffnete Fenster gelüftet werden, wie in der gemeinsam mit der Kultusministerkonferenz (KMK) verfassten UBA-Handreichung zum Lüften in Schulen vom 15.10.2020 beschrieben. Diese Maßnahmen sind rasch und einfach umsetzbar und bieten einen wirksamen Schutz, weil die Außenluft nahezu virenfrei ist. Die im Winter unvermeidliche Abkühlung der Raumluft durch Stoßlüften hält nur für wenige Minuten an und ist aus medizinischer Sicht unbedenklich. ⁠ CO2 ⁠-Sensoren können als Orientierung dienen, ob und wie rasch die Frischluftzufuhr von außen gelingt. Sofern sich Fenster in Klassenräumen nicht genügend öffnen lassen , sollte geprüft werden, ob durch den Einbau einfacher ventilatorgestützter Zu- und Abluftsysteme (z.B. in Fensteröffnungen) eine ausreichende Außenluftzufuhr erreicht werden kann. Sind die Maßnahmen unter 1 bis 3 nicht anwendbar, ist ein Raum aus innenraumhygienischer Sicht nicht für den Unterricht geeignet. Sollen solche Räume dennoch zum Unterricht genutzt werden, kann der Einsatz mobiler Luftreinigungsgeräte erwogen werden (Ausnahmefall). Um die Wahrscheinlichkeit einer Infektion über Aerosole wirksam zu vermindern, wird eine Reinigungsleistung des Geräts gefordert, die mindestens dem sechsfachen des Raumvolumens pro Stunde entspricht. Bei einem Klassenraumvolumen von zum Beispiel 200 m³ entspricht dies einer Reinigungsleistung von mindestens 1.200 m³ an keimfreier Luft pro Stunde. Technische Optionen bei mobilen Luftreinigungsgeräten Im Grundsatz sind vier Technologien bei Luftreinigern zu unterscheiden: Filtertechnologien UV-C Technologien Ionisations- und Plasmatechnologien Ozontechnologien Hierzu ist im Einzelnen anzumerken: Mobile Filtergeräte sollten möglichst mit hocheffizienten Gewebefiltern (Filterklassen H 13 oder H 14)) ausgestattet sein, da nur diese eine vollständige Entfernung von Viren aus der durch das Gerät gesaugten Luft gewährleisten. Feinfilter der Klassen F7 bis F9 (alte Bezeichnung) bzw. ISO ePM2,5 65% bis ISO ePM1 80% (neue Bezeichnung), wie sie z.B. in herkömmlichen raumlufttechnischen Anlagen (RLT-Anlagen) mit zwei Filterstufen zum Einsatz kommen, lassen einen Anteil der Aerosolpartikel in der behandelten Luft übrig. Filtergeräte mit hocheffizienten Filtern sind in der Lage, die Zahl der die Aerosolpartikel in einem Raum zu senken. Um die bestmögliche Wirkung mit Filtergeräten zu erzielen und über die Dauer der Betriebszeit zu erhalten, müssen die Filter in der Regel nach einer gewissen Betriebszeit gewechselt werden. Je nach Staub- und Partikelbelastung kann das nach einem halben bis einem Jahr der Fall sein. Hierzu sind Fachkenntnisse oder geschultes Personal erforderlich. Um keinen störenden Geräuschpegel im Raum entstehen zu lassen, sollten vor Beschaffungen entsprechende Kenndaten zur Geräuschentwicklung vom Hersteller eingeholt werden. UV-C Strahlung ist vom Grundsatz her in der Lage, Mikroorganismen wie Bakterien und Viren zu inaktivieren. Geräte mit UV-C Strahlungsquellen werden schon seit langem zur Entkeimung von Oberflächen z. B. in Laboren oder zur Raumluftdesinfektion in lebensmittelverarbeitenden Betrieben eingesetzt. Für die Wirksamkeit gegen infektiöse Aerosole in einem Innenraum ist entscheidend, ob ein Gerät einen ausreichend großes Luftvolumen desinfizieren und die gereinigte Luft gut im Raum zirkulieren kann. Die Wirksamkeit ist abhängig von der Bestrahlungsintensität und von der Bestrahlungszeit der Luft im Gerät. Für Augen und Haut stellt UV-C Strahlung ein gesundheitliches Risiko dar. Deshalb wird der Einsatz dieser Strahlungsquellen als offene UV-C Lampe und auch in mobilen Luftreinigern vom UBA für den nicht gewerblichen Einsatz als kritisch betrachtet. Geräte sollten in öffentlichen Bereichen wie Schulen nur eingesetzt werden, wenn gesichert ist, dass kein UV-Licht in den Raum freigesetzt werden kann. Die IRK empfiehlt in ihrer Stellungnahme vom 16.11.2020 daher a) den Nachweis der Gerätesicherheit und b) den Nachweis der Wirksamkeit – als Prüfung des eingesetzten mobilen Geräts. In privaten Wohnungen sieht das UBA den Einsatz solcher Geräte aus Sicherheitsgründen weiterhin kritisch, denn hier bestehen meist wenig Kontrollmöglichkeiten, was die sachgerechte Verwendung, Wartung und den bestimmungsgemäßen Gebrauch angeht. Mobile Geräte mit UV-C-Technik haben gegenüber solchen mit Filtration den Vorteil der meist geringeren Geräuschentwicklung im Betrieb. Auch Ionisation und Plasma sind in der Lage, Mikroorganismen wie Bakterien und Viren zu inaktivieren. Im Rahmen von Luftreinigungsanlagen findet diese Technologie seit vielen Jahren Anwendung. Tendenziell sind auch die Geräte wartungsärmer als solche mit Filtration, weil keine Filter zu ersetzen sind. Auch die Geräuschentwicklung ist im Allgemeinen geringer als bei filtrierenden Geräten. Dem UBA liegen derzeit jedoch keine Daten vor, ob die Effizienz der im Handel befindlichen Geräte ausreicht, um einen ausreichenden Schutz gegen eine Infektion mit SARS-CoV-2 in großen und dicht belegten Innenräumen wie Klassenräumen zu gewährleisten. Generell sollte vor Beschaffung entsprechender Geräte eine Wirksamkeitsprüfung vom Hersteller eingeholt werden. Bei Ionisations- und Plasmatechnologie kann aufgrund des physikalischen Prinzips im Gerät Ozon entstehen. Es wird empfohlen, Herstellerinformationen einzuholen, inwieweit Ozon als unerwünschtes Nebenprodukt bei einem bestimmten Gerät auch in den Innenraum gelangen kann. Eine gezielte Behandlung von Raumluft mit Ozon (auch während der Durchleitung der Luft durch einen mobilen Luftreiniger) lehnt das UBA grundsätzlich ab. Ozon ist ein Reizgas und kann mit anderen Stoffen, allen voran mit flüchtigen organischen Verbindungen (⁠ VOC ⁠), chemisch reagieren und dabei unbekannte Folgeprodukte bilden. Diese Kategorie von Luftreinigern ist ungeeignet für eine Anwendung in Räumen, in denen sich Personen befinden. Für eine größtmögliche Wirksamkeit von mobilen Luftreinigungsgeräten (egal mit welcher Technologie sie arbeiten) ist die sorgfältige Planung und Realisation des Aufstellungsortes im Raum und die Berücksichtigung der Raumgegebenheiten (Raumvolumen, Luftführung und Luftströmungen im Raum) von entscheidender Bedeutung. Die Reinigungsleistung muss in Abhängigkeit der Raumgröße und der Anzahl der Personen im Raum einstellbar sein. Bei Geräten, deren Wirkung auf einer Luftreinigung innerhalb des Geräts beruht (wie z.B. Filtergeräte), sind die Ansaug- und Abblasrichtung der Luft mit entscheidend dafür, dass die Geräte wesentliche Anteile der Mischluft im Raum erfassen und als gereinigte Luft wieder in den Raum abgeben können. In der Produktliteratur finden sich häufig Prüfberichte zu Luftreinigungsgeräten, wo zu Beginn des Experiments ein Raum einmalig mit Partikeln gefüllt wird, und anschließend Abklingkurven infolge der Luftreinigung ausgewertet werden. Solche Prüfberichte erwecken den Eindruck, man könne die Konzentration von Aerosolen in einem Realraum beliebig reduzieren. Die reale Situation ist jedoch verschieden, insofern eine infektiöse Person kontinuierlich virushaltige Aerosole in die Raumluft emittiert. Ein mobiles Gerät kann die Konzentration von Aerosolen in einer realen Situation somit reduzieren, aber zu keinem Zeitpunkt auf null bringen. Sind mehrere infektiöse Personen anwesend, würde die Reinigungswirkung mobiler Geräte in Bezug auf virushaltige Aerosole entsprechend weiter sinken. Mobile Luftreinigungsgeräte dürfen daher nicht als absoluter Schutz vor infektiösen Aerosolen angesehen werden. Fazit Zur Einschätzung der Leistungsfähigkeit mobiler Luftreinigungsgeräte benötigt man Prüfnachweise, dass ein Gerät die geforderte Menge an keimfreier Luft (sechsfaches Raumvolumen pro Stunde) breitstellen kann. Im Fall von Techniken, welche ihre Wirkung durch Inaktivierung der Erreger entfalten, erfordern diese Prüfungen Versuche mit echten Erregern (Bakterien, Viren) unter den geplanten Betriebsbedingungen und nicht nur den grundsätzlichen Nachweis des Effekts unter Laborbedingungen. Vor Beschaffungen wird empfohlen, entsprechende Prüfnachweise der Geräte unter Realbedingungen von den Herstellern einzuholen. Da mobile Luftreinigungsgeräte nicht das in Klassenräumen anfallende Kohlendioxid und den Wasserdampf aus der Raumluft entfernen, können sie nicht als vollständigen Ersatz für Lüftungsmaßnahmen eingesetzt werden, sondern allenfalls als Ergänzung Das Umweltbundesamt empfiehlt daher weiter auch in der kalten Jahreszeit die Fensterlüftung als prioritäre Maßnahme. Die Kommission für Innenraumhygiene (IRK) ist in Ihrer Stellungnahme vom 16.11.2020 zum selben Schluss gekommen und hat die hier beschriebenen Empfehlungen weiter detailliert [1]. Langfristige und nachhaltige Ziele Aus gesundheitlichen und Nachhaltigkeits-Gründen sollten perspektivisch alle dicht belegten Veranstaltungsräume in Schulen und Bildungseinrichtungen mit raumluft-technischen (RLT)-Anlagen ausgerüstet bzw. nachgerüstet werden [7]. Solche Anlagen beseitigen die Vielzahl innenraumhygienischer Probleme in dicht belegten Räumen (Luftgetragene Erreger, Kohlendioxid, Wasserdampf, Gerüche) in einem Gang. Stand der Technik sind Anlagen mit Wärmerückgewinnung, welche die Außenluft energiesparend mittels der Abluft anwärmen. Als „Komfortlüftung“ werden Systeme bezeichnet, die eine kontrollierte Erwärmung oder auch Abkühlung (Sommer) erlauben. Solche Systeme sind auch als dezentrale Anlagen verfügbar, mit denen Räume einzeln ausgestattet werden können. Quellen [1] IRK (2020): Einsatz mobiler Luftreiniger als lüftungsunterstützende Maßnahme in Schulen während der SARS-CoV-2 Pandemie. Stellungnahme der Kommission Innenraumlufthygiene (IRK) am Umweltbundesamt. https://www.umweltbundesamt.de/presse/pressemitteilungen/corona-in-schul... [2] Kähler, C. J., T. Fuchs, B. Mutsch, R. Hain (2020): Schulunterricht während der SARS-CoV-2 Pandemie ‒ Welches Konzept ist sicher, realisierbar und ökologisch vertretbar? doi: 10.13140/RG.2.2.11661.56802 [3] Curtius, J., M. Granzin, J. Schrod (2020): Testing mobile air purifiers in a school classroom: Reducing the airborne transmission risk for SARS-CoV-2. medRxiv 2020.10.02.20205633; doi: https://doi.org/10.1101/2020.10.02.20205633 [4] Exner, M. et al. (2020): Zum Einsatz von dezentralen mobilen Luftreinigungsgeräten im Rahmen der Prävention von COVID-19. Stellungnahme der Deutschen Gesellschaft für Krankenhaushygiene (DGKH), Stand 25.9.2020. [5] Gunschera, J., Markewitz, D., Bansen, B., Salthammer, T., Ding, H., 2016. Portable photocatalytic air cleaners: efficiencies and by-product generation. Environ Sci Pollut Res 23, 7482–7493. https://doi.org/10.1007/s11356-015-5992-3 [6] Siegel, J.A., 2016. Primary and secondary consequences of indoor air cleaners. Indoor Air 26, 88- 96. https://doi.org/10.1111/ina.12194 [7] IRK (2015): Stellungnahme der Innenraumlufthygiene-Kommission zu Luftreinigern, Bundesgesundheitsblatt 58, S. 1192 [8] UBA (2017): Anforderungen an Lüftungskonzeptionen in Gebäuden. Teil I: Bildungseinrichtungen https://www.umweltbundesamt.de/publikationen/anforderungen-an-lueftungsk...

Substitution von Nachtstromspeicherheizungen durch hocheffiziente Niedertemperaturflächenheizungen unter gleichzeitiger Reduktion von CO2-Emission und Integration der Verbrauchssektoren Strom und Wärme, Substitution von Nachtstromspeicherheizungen durch hocheffiziente Niedertemperaturflächenheizungen unter gleichzeitiger Reduktion von CO2-Emission und Integration der Verbrauchssektoren Strom und Wärme

Das Projekt "Substitution von Nachtstromspeicherheizungen durch hocheffiziente Niedertemperaturflächenheizungen unter gleichzeitiger Reduktion von CO2-Emission und Integration der Verbrauchssektoren Strom und Wärme, Substitution von Nachtstromspeicherheizungen durch hocheffiziente Niedertemperaturflächenheizungen unter gleichzeitiger Reduktion von CO2-Emission und Integration der Verbrauchssektoren Strom und Wärme" wird/wurde gefördert durch: Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit. Es wird/wurde ausgeführt durch: Fraunhofer-Institut für Bauphysik, Institutsteil Holzkirchen.In Deutschland gibt es aktuell noch ca. 1,6 Mio. Wohnungen mit Nachtstromªspeicherheizungen. Die großen Nachteile der Heizungen sind der niedrige Gesamtwirkungsgrad und die eingeschränkte Steuerbarkeit. Durch den Austausch mit einem neuartigen elektrischenFlächenheizsystem sollen Energieeffizienz und Komfort verbessert werden. An 20 ausgewählten Wohnungen der Wohnungsgesellschaft Westgrund AG in Berlin-Spandau werden hierzu die bisherigen Nachtspeicherheizungen durch aelectra-Flächenheizungen ersetzt und die energetischen und raumklimatischen Auswirkungen im Vergleich zu 20 Bestandswohnungen analysiert. In den betreffenden Wohnungen sind aktuell Nachtspeicherheizungen installiert. Im Rahmen eines energetischen Monitorings ist geplant während der Heizperiode 2015/2016, eine detaillierte Datenerfassung der elektrischen Energieverbräuche im Vergleich zu Wohneinheiten mit den bisher installierten elektrischen Nachtspeicherheizungen gegenüber zu stellen (ebenfalls 20 Wohneinheiten). Als weitere Indikatoren werden die Raumlufttemperaturen und die Fensteröffnungszeiten in diesen Wohnungen aufgezeichnet. Ein am Fraunhofer IBP entwickelter Äquivalenttemperatursensor, der sowohl Strahlungseffekte als auch konvektive Wärmeverluste erfassen kann, soll parallel in ausgewählten Wohnungen zur Bewertung der thermischen Behaglichkeit eingesetzt werden. Zur umfassenden Ermittlung der durch die Nutzer empfundenen Behaglichkeit soll eine Befragung aller Bewohner in 35 Wohnungen mit Flächenheizung und einer identischen Anzahl an Bewohnern in Wohnungen mit Nachtspeicheröfen durchgeführt werden. Der Schwerpunkt des beantragten Forschungsvorhabens liegt im messtechnischen Nachweis der praktischen Anwendbarkeit einer elektrischen aelectra-Flächenheizung als Ersatz für Nachtspeicherheizungen und der Darstellung der Einsparpotentiale in Hinblick auf: - Energieverbrauch - Heizkosten - Spezifische Investitionskosten. Darüber hinaus soll die Nutzerakzeptanz in Hinblick auf die Bedienung und Regelbarkeit der aelectra-Flächenheizung sowie deren Einfluss auf das Raumklima und die individuell empfundene Behaglichkeit bewertet werden. Es werden Kosteneinspareffekte für den Wohnungseigentümer bei den Investitionskosten im Vergleich zu einem konventionellen Heizungssystem und beim Wohnungsnutzer bei den laufenden Kosten im Vergleich zu Nachtspeicherheizungen erwartet. Durch den geringeren Energieverbrauch für die Flächenheizsysteme ergibt sich auch eine Reduzierung der CO2-Emissionen. Bezogen auf den Gesamtbestand von rund 1,6 Mio. in Deutschland mit Nachtspeicherheizungen ausgestatteten Wohnungen ergibt sich entsprechend ein Einsparpotential von ca. 566.000 t CO2 pro Jahr, wenn man unterstellt, dass 20 % dieser Wohnungen auf das aelectra-Flächenheizungssystem umgestellt würden.

Substitution von Nachtstromspeicherheizungen durch hocheffiziente Niedertemperaturflächenheizungen unter gleichzeitiger Reduktion von CO2-Emission und Integration der Verbrauchssektoren Strom und Wärme^Substitution von Nachtstromspeicherheizungen durch hocheffiziente Niedertemperaturflächenheizungen unter gleichzeitiger Reduktion von CO2-Emission und Integration der Verbrauchssektoren Strom und Wärme, Substitution von Nachtstromspeicherheizungen durch hocheffiziente Niedertemperaturflächenheizungen unter gleichzeitiger Reduktion von CO2-Emission und Integration der Verbrauchssektoren Strom und Wärme

Das Projekt "Substitution von Nachtstromspeicherheizungen durch hocheffiziente Niedertemperaturflächenheizungen unter gleichzeitiger Reduktion von CO2-Emission und Integration der Verbrauchssektoren Strom und Wärme^Substitution von Nachtstromspeicherheizungen durch hocheffiziente Niedertemperaturflächenheizungen unter gleichzeitiger Reduktion von CO2-Emission und Integration der Verbrauchssektoren Strom und Wärme, Substitution von Nachtstromspeicherheizungen durch hocheffiziente Niedertemperaturflächenheizungen unter gleichzeitiger Reduktion von CO2-Emission und Integration der Verbrauchssektoren Strom und Wärme" wird/wurde gefördert durch: Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit. Es wird/wurde ausgeführt durch: aelectra Deutschland GmbH.In Deutschland gibt es aktuell noch ca. 1,6 Mio. Wohnungen mit Nachtstromªspeicherheizungen. Die großen Nachteile der Heizungen sind der niedrige Gesamtwirkungsgrad und die eingeschränkte Steuerbarkeit. Durch den Austausch mit einem neuartigen elektrischenFlächenheizsystem sollen Energieeffizienz und Komfort verbessert werden. An 20 ausgewählten Wohnungen der Wohnungsgesellschaft Westgrund AG in Berlin-Spandau werden hierzu die bisherigen Nachtspeicherheizungen durch aelectra-Flächenheizungen ersetzt und die energetischen und raumklimatischen Auswirkungen im Vergleich zu 20 Bestandswohnungen analysiert. In den betreffenden Wohnungen sind aktuell Nachtspeicherheizungen installiert. Im Rahmen eines energetischen Monitorings ist geplant während der Heizperiode 2015/2016, eine detaillierte Datenerfassung der elektrischen Energieverbräuche im Vergleich zu Wohneinheiten mit den bisher installierten elektrischen Nachtspeicherheizungen gegenüber zu stellen (ebenfalls 20 Wohneinheiten). Als weitere Indikatoren werden die Raumlufttemperaturen und die Fensteröffnungszeiten in diesen Wohnungen aufgezeichnet. Ein am Fraunhofer IBP entwickelter Äquivalenttemperatursensor, der sowohl Strahlungseffekte als auch konvektive Wärmeverluste erfassen kann, soll parallel in ausgewählten Wohnungen zur Bewertung der thermischen Behaglichkeit eingesetzt werden. Zur umfassenden Ermittlung der durch die Nutzer empfundenen Behaglichkeit soll eine Befragung aller Bewohner in 35 Wohnungen mit Flächenheizung und einer identischen Anzahl an Bewohnern in Wohnungen mit Nachtspeicheröfen durchgeführt werden. Der Schwerpunkt des beantragten Forschungsvorhabens liegt im messtechnischen Nachweis der praktischen Anwendbarkeit einer elektrischen aelectra-Flächenheizung als Ersatz für Nachtspeicherheizungen und der Darstellung der Einsparpotentiale in Hinblick auf: - Energieverbrauch - Heizkosten - Spezifische Investitionskosten. Darüber hinaus soll die Nutzerakzeptanz in Hinblick auf die Bedienung und Regelbarkeit der aelectra-Flächenheizung sowie deren Einfluss auf das Raumklima und die individuell empfundene Behaglichkeit bewertet werden. Es werden Kosteneinspareffekte für den Wohnungseigentümer bei den Investitionskosten im Vergleich zu einem konventionellen Heizungssystem und beim Wohnungsnutzer bei den laufenden Kosten im Vergleich zu Nachtspeicherheizungen erwartet. Durch den geringeren Energieverbrauch für die Flächenheizsysteme ergibt sich auch eine Reduzierung der CO2-Emissionen. Bezogen auf den Gesamtbestand von rund 1,6 Mio. in Deutschland mit Nachtspeicherheizungen ausgestatteten Wohnungen ergibt sich entsprechend ein Einsparpotential von ca. 566.000 t CO2 pro Jahr, wenn man unterstellt, dass 20 % dieser Wohnungen auf das aelectra-Flächenheizungssystem umgestellt würden.

1 2 3 4