API src

Found 1183 results.

Related terms

Optimierung und Steuerung eines Fermentationssystems mit sequentieller Prozessfuehrung, dargestellt am System Ammonifikation-Nitrifikation

Voraussetzung fuer eine sequentielle Prozessfuehrung ist die genaue Kenntnis der reaktionskinetischen Daten fuer die einzelnen biologischen Systeme. Sie bilden die Grundlage fuer die Bemessung, Optimierung und Steuerung der Verfahrenselemente. Ausschlaggebend fuer die Wahl der Reaktortypen ist die Aufrechterhaltung optimaler Umweltbedingungen (z.B. pH-O2-Konzentration) sowie die Erhaltung einer moeglichst grossen Organismenmenge im System. Fuer die Nitrifikation sind Ruehrkessel-, Festbett- und Wirbelschichtreaktor die zu untersuchenden Alternativen. Die Loesung dieses Problems wird als Beitrag zur Leistungssteigerung von Klaeranlagen sowie zur Entwicklung einer Hochleistungsnitrifikation fuer Industrieabwaesser verstanden.

Konvertierung von Hemicellulosen zu Beschichtungsmaterialien

Biologische Wasserstoffproduktion aus Biomassefeststoffen

Wasserstoff spielt eine entscheidende Rolle in Bezug auf die angestrebte Energiewende. Im Forschungsprojekt SolidScore wird mit Hilfe der innovativen Biowasserstofftechnologie das vorhandene Spektrum der bisher zur biologischen Wasserstofferzeugung genutzten wässrigen Ausgangssubstrate erweitert. Vor diesem Hintergrund wird untersucht, inwieweit sich Reststoffe, wie zum Beispiel Bioabfälle und landwirtschaftliche bzw. pflanzliche Reststoffe, mit einem Trockenrückstand (TR) größer als 10 % eignen. Das grundlegende Prinzip ist die dunkle Fermentation. Herkömmliche Verfahren wie die Hochtemperatur-Elektrolyse oder die Dampfreformierung sind sehr energieintensiv und verwenden zumeist fossile Brennstoffe. Die biologische Wasserstofferzeugung mit Rest- und Abfallstoffen ist klimafreundlich und CO2-neutral. Im Vergleich zu den anderen biologischen Verfahren zur Wasserstofferzeugung ist die dunkle Fermentation technologisch am weitesten fortgeschritten. Es ist ein anaerobes Verfahren, bei dem organische Substrate unter Abwesenheit von Licht zu Wasserstoff (H2) und Kohlenstoffdioxid (CO2) sowie flüchtigen organischen Säuren (FOS) abgebaut werden. Versuche zeigten, dass vor allem Abwasser aus der Nahrungsmittelindustrie für die Biowasserstofferzeugung geeignet sind. Gleichzeitig konnten aber auch Limitierungen der einsetzbaren Substrate aufgezeigt werden. Das Projekt SolidScore hat das Ziel, das Reststoffspektrum der verwendbaren Substrate und somit die Einsetzbarkeit des Verfahrens deutlich zu erweitern. Darüber hinaus führt die Implementierung der dunklen Fermentation in Bioenergieanlagen zu einer Steigerung der Gesamteffizienz. Am Beispiel der Vergärung von Kohlenhydraten kann durch das im Antrag beschriebene 2-stufige Verfahren eine Gesamteffizienzsteigerung erzielt werden. Zusätzlich werden im Rahmen des Projektes Konzepte zur weiteren Verwendung des so erzeugten Wasserstoffs erstellt. Dies beinhaltet zum Beispiel auch die innerbetriebliche Nutzung des Wasserstoffs.

Biologische Wasserstoffproduktion aus Biomassefeststoffen, Teilvorhaben: Integration des Verfahrens in bestehende Anlagen und Konzepte

Wasserstoff spielt eine entscheidende Rolle in Bezug auf die angestrebte Energiewende. Im Forschungsprojekt SolidScore wird mit Hilfe der innovativen Biowasserstofftechnologie das vorhandene Spektrum der bisher zur biologischen Wasserstofferzeugung genutzten wässrigen Ausgangssubstrate erweitert. Vor diesem Hintergrund wird untersucht, inwieweit sich Reststoffe, wie zum Beispiel Bioabfälle und landwirtschaftliche bzw. pflanzliche Reststoffe, mit einem Trockenrückstand (TR) größer als 10 % eignen. Das grundlegende Prinzip ist die dunkle Fermentation. Herkömmliche Verfahren wie die Hochtemperatur-Elektrolyse oder die Dampfreformierung sind sehr energieintensiv und verwenden zumeist fossile Brennstoffe. Die biologische Wasserstofferzeugung mit Rest- und Abfallstoffen ist klimafreundlich und CO2-neutral. Im Vergleich zu den anderen biologischen Verfahren zur Wasserstofferzeugung ist die dunkle Fermentation technologisch am weitesten fortgeschritten. Es ist ein anaerobes Verfahren, bei dem organische Substrate unter Abwesenheit von Licht zu Wasserstoff (H2) und Kohlenstoffdioxid (CO2) sowie flüchtigen organischen Säuren (FOS) abgebaut werden. Versuche zeigten, dass vor allem Abwasser aus der Nahrungsmittelindustrie für die Biowasserstofferzeugung geeignet sind. Gleichzeitig konnten aber auch Limitierungen der einsetzbaren Substrate aufgezeigt werden. Das Projekt SolidScore hat das Ziel, das Reststoffspektrum der verwendbaren Substrate und somit die Einsetzbarkeit des Verfahrens deutlich zu erweitern. Darüber hinaus führt die Implementierung der dunklen Fermentation in Bioenergieanlagen zu einer Steigerung der Gesamteffizienz. Am Beispiel der Vergärung von Kohlenhydraten kann durch das im Antrag beschriebene 2-stufige Verfahren eine Gesamteffizienzsteigerung erzielt werden. Zusätzlich werden im Rahmen des Projektes Konzepte zur weiteren Verwendung des so erzeugten Wasserstoffs erstellt. Dies beinhaltet zum Beispiel auch die innerbetriebliche Nutzung des Wasserstoffs.

Elektrochemische Aufarbeitung von Fumarsäure mit CO2-Incycling zur Steigerung der biotechnologischen Kohlenstoffausbeute

Biogene Rohstoffe bilden mittelfristig die einzig industriell zugängliche Kohlenstoffquelle nicht-fossilen Ursprungs. Diese sind der Ausgangspunkt für die Produktion von biotechnologisch hergestellten Carbonsäuren, die als Grundstoffe für die Synthese zahlreicher hochwertiger Chemikalien Anwendung finden. Im Verbundvorhaben ECOYIELD soll eine kontinuierliche Fermentation von Fumarsäure aus Reststoffströmen realisiert werden. Des Weiteren soll für die Abtrennung der Fumarsäure ein elektrochemischer Aufarbeitungsprozess entwickelt werden, der eine nachhaltige und kostengünstige Produktion des Produkts erlaubt.

Biotechnologische Umwandlung von Methanol (C1) in Tocochromanole, Teilvorhaben C

Biotechnologische Umwandlung von Methanol (C1) in Tocochromanole, Teilvorhaben B

Biotechnologische Fumarat-Wertschöpfungskette - Von CO2 und Zucker bis hin zu biologisch abbaubaren Chemikalien, Teilprojekt A

Entwicklung maßgeschneiderter Biokatalysatoren für die Herstellung von 2,5-Furandicarbonsäure auf Basis von Zuckern aus Lignocellulose

FDCA (2,5-Furandicarbonsäure) ist eine biobasierte Alternative zu petrochemisch hergestellter Terephthalsäure, die bei der Herstellung von PET und Polyestern für die Verpackungs- und Textilindustrie verwendet wird. Eine wirtschaftliche Produktion von FDCA und seinem Polymer PEF ist bisher nicht möglich. Ziel des Projektes ist daher die Entwicklung eines biotechnologischen Verfahrens zur wirtschaftlichen Herstellung von FDCA. Hierzu sollen Peroxidase-produzierende Hefestämme in Kombination mit HMF-Oxidasen eingesetzt werden, die durch Fermentation auf Lignocellulose-Zuckerlösungen hergestellt werden. Das biotechnisch synthetisierte FDCA wird durch geeignete Kristallisation- und Fällungsverfahren aufgereinigt. Schließlich soll die gesamte Prozesskette - Fermentation und Produktion der Enzyme auf Basis von LCZuckerlösungen, Biokatalyse und Produktgewinnung - im 1.000-Liter-Maßstab demonstriert und auf ihre Machbarkeit im industriellen Maßstab analysiert werden.

Elektrochemische Aufarbeitung von Fumarsäure mit CO2-Incycling zur Steigerung der biotechnologischen Kohlenstoffausbeute, Teilvorhaben 1: Elektrochemische pH-Shift-Kristallisation von biotechnologisch hergestellter Fumarsäure

Biogene Rohstoffe bilden mittelfristig die einzig industriell zugängliche Kohlenstoffquelle nicht-fossilen Ursprungs. Diese sind der Ausgangspunkt für die Produktion von biotechnologisch hergestellten Carbonsäuren, die als Grundstoffe für die Synthese zahlreicher hochwertiger Chemikalien Anwendung finden. Im Verbundvorhaben ECOYIELD soll eine kontinuierliche Fermentation von Fumarsäure aus Reststoffströmen realisiert werden. Des Weiteren soll für die Abtrennung der Fumarsäure ein elektrochemischer Aufarbeitungsprozess entwickelt werden, der eine nachhaltige und kostengünstige Produktion des Produkts erlaubt.

1 2 3 4 5117 118 119