API src

Found 1148 results.

Related terms

Abwassertechnologie mit Algen-Bakterien-Mischkulturen

Fuer den Einsatz von Algen-Bakterien-Mischkulturen bei der aeroben Behandlung oder Nachreinigung fluessiger Abfallstoffe sollen wissenschaftliche Grundlagen erarbeitet und energiesparende Technologien entwickelt werden. Definierte Substrate aus industriellen Fermentationsrueckstaenden werden in diese Versuche einbezogen.

Anlage zur Verwertung regionaler organischer Reststoffe (Co-Fermentation)

Die seit 10 Jahren erfolgreich betriebene Biogasanlage von Herrn Weitz soll konzeptiert und erweitert werden. Neben der Gewinnung von Biogas aus Schweineguelle ist eine Verwertung organischer regionaler Abfaelle geplant. Das Ziel ist die Untersuchung eines optimierten Verfahrensablaufes und die Zusammensetzung der Zuschlagstoffe, um einen wirtschaftlichen Betrieb zu ermoeglichen.

Biologische Wasserstoffproduktion aus Biomassefeststoffen

Wasserstoff spielt eine entscheidende Rolle in Bezug auf die angestrebte Energiewende. Im Forschungsprojekt SolidScore wird mit Hilfe der innovativen Biowasserstofftechnologie das vorhandene Spektrum der bisher zur biologischen Wasserstofferzeugung genutzten wässrigen Ausgangssubstrate erweitert. Vor diesem Hintergrund wird untersucht, inwieweit sich Reststoffe, wie zum Beispiel Bioabfälle und landwirtschaftliche bzw. pflanzliche Reststoffe, mit einem Trockenrückstand (TR) größer als 10 % eignen. Das grundlegende Prinzip ist die dunkle Fermentation. Herkömmliche Verfahren wie die Hochtemperatur-Elektrolyse oder die Dampfreformierung sind sehr energieintensiv und verwenden zumeist fossile Brennstoffe. Die biologische Wasserstofferzeugung mit Rest- und Abfallstoffen ist klimafreundlich und CO2-neutral. Im Vergleich zu den anderen biologischen Verfahren zur Wasserstofferzeugung ist die dunkle Fermentation technologisch am weitesten fortgeschritten. Es ist ein anaerobes Verfahren, bei dem organische Substrate unter Abwesenheit von Licht zu Wasserstoff (H2) und Kohlenstoffdioxid (CO2) sowie flüchtigen organischen Säuren (FOS) abgebaut werden. Versuche zeigten, dass vor allem Abwasser aus der Nahrungsmittelindustrie für die Biowasserstofferzeugung geeignet sind. Gleichzeitig konnten aber auch Limitierungen der einsetzbaren Substrate aufgezeigt werden. Das Projekt SolidScore hat das Ziel, das Reststoffspektrum der verwendbaren Substrate und somit die Einsetzbarkeit des Verfahrens deutlich zu erweitern. Darüber hinaus führt die Implementierung der dunklen Fermentation in Bioenergieanlagen zu einer Steigerung der Gesamteffizienz. Am Beispiel der Vergärung von Kohlenhydraten kann durch das im Antrag beschriebene 2-stufige Verfahren eine Gesamteffizienzsteigerung erzielt werden. Zusätzlich werden im Rahmen des Projektes Konzepte zur weiteren Verwendung des so erzeugten Wasserstoffs erstellt. Dies beinhaltet zum Beispiel auch die innerbetriebliche Nutzung des Wasserstoffs.

Biologische Wasserstoffproduktion aus Biomassefeststoffen, Teilvorhaben: Integration des Verfahrens in bestehende Anlagen und Konzepte

Wasserstoff spielt eine entscheidende Rolle in Bezug auf die angestrebte Energiewende. Im Forschungsprojekt SolidScore wird mit Hilfe der innovativen Biowasserstofftechnologie das vorhandene Spektrum der bisher zur biologischen Wasserstofferzeugung genutzten wässrigen Ausgangssubstrate erweitert. Vor diesem Hintergrund wird untersucht, inwieweit sich Reststoffe, wie zum Beispiel Bioabfälle und landwirtschaftliche bzw. pflanzliche Reststoffe, mit einem Trockenrückstand (TR) größer als 10 % eignen. Das grundlegende Prinzip ist die dunkle Fermentation. Herkömmliche Verfahren wie die Hochtemperatur-Elektrolyse oder die Dampfreformierung sind sehr energieintensiv und verwenden zumeist fossile Brennstoffe. Die biologische Wasserstofferzeugung mit Rest- und Abfallstoffen ist klimafreundlich und CO2-neutral. Im Vergleich zu den anderen biologischen Verfahren zur Wasserstofferzeugung ist die dunkle Fermentation technologisch am weitesten fortgeschritten. Es ist ein anaerobes Verfahren, bei dem organische Substrate unter Abwesenheit von Licht zu Wasserstoff (H2) und Kohlenstoffdioxid (CO2) sowie flüchtigen organischen Säuren (FOS) abgebaut werden. Versuche zeigten, dass vor allem Abwasser aus der Nahrungsmittelindustrie für die Biowasserstofferzeugung geeignet sind. Gleichzeitig konnten aber auch Limitierungen der einsetzbaren Substrate aufgezeigt werden. Das Projekt SolidScore hat das Ziel, das Reststoffspektrum der verwendbaren Substrate und somit die Einsetzbarkeit des Verfahrens deutlich zu erweitern. Darüber hinaus führt die Implementierung der dunklen Fermentation in Bioenergieanlagen zu einer Steigerung der Gesamteffizienz. Am Beispiel der Vergärung von Kohlenhydraten kann durch das im Antrag beschriebene 2-stufige Verfahren eine Gesamteffizienzsteigerung erzielt werden. Zusätzlich werden im Rahmen des Projektes Konzepte zur weiteren Verwendung des so erzeugten Wasserstoffs erstellt. Dies beinhaltet zum Beispiel auch die innerbetriebliche Nutzung des Wasserstoffs.

Biologische Wasserstoffproduktion aus Biomassefeststoffen, Teilvorhaben: Anwendung und Optimierung der biologischen Wasserstofferzeugung auf eine erweitertes Reststoffspektrum

Wasserstoff spielt eine entscheidende Rolle in Bezug auf die angestrebte Energiewende. Im Forschungsprojekt SolidScore wird mit Hilfe der innovativen Biowasserstofftechnologie das vorhandene Spektrum der bisher zur biologischen Wasserstofferzeugung genutzten wässrigen Ausgangssubstrate erweitert. Vor diesem Hintergrund wird untersucht, inwieweit sich Reststoffe, wie zum Beispiel Bioabfälle und landwirtschaftliche bzw. pflanzliche Reststoffe, mit einem Trockenrückstand (TR) größer als 10 % eignen. Das grundlegende Prinzip ist die dunkle Fermentation. Herkömmliche Verfahren wie die Hochtemperatur-Elektrolyse oder die Dampfreformierung sind sehr energieintensiv und verwenden zumeist fossile Brennstoffe. Die biologische Wasserstofferzeugung mit Rest- und Abfallstoffen ist klimafreundlich und CO2-neutral. Im Vergleich zu den anderen biologischen Verfahren zur Wasserstofferzeugung ist die dunkle Fermentation technologisch am weitesten fortgeschritten. Es ist ein anaerobes Verfahren, bei dem organische Substrate unter Abwesenheit von Licht zu Wasserstoff (H2) und Kohlenstoffdioxid (CO2) sowie flüchtigen organischen Säuren (FOS) abgebaut werden. Versuche zeigten, dass vor allem Abwasser aus der Nahrungsmittelindustrie für die Biowasserstofferzeugung geeignet sind. Gleichzeitig konnten aber auch Limitierungen der einsetzbaren Substrate aufgezeigt werden. Das Projekt SolidScore hat das Ziel, das Reststoffspektrum der verwendbaren Substrate und somit die Einsetzbarkeit des Verfahrens deutlich zu erweitern. Darüber hinaus führt die Implementierung der dunklen Fermentation in Bioenergieanlagen zu einer Steigerung der Gesamteffizienz. Am Beispiel der Vergärung von Kohlenhydraten kann durch das im Antrag beschriebene 2-stufige Verfahren eine Gesamteffizienzsteigerung erzielt werden. Zusätzlich werden im Rahmen des Projektes Konzepte zur weiteren Verwendung des so erzeugten Wasserstoffs erstellt. Dies beinhaltet zum Beispiel auch die innerbetriebliche Nutzung des Wasserstoffs.

Biologische Wasserstoffproduktion aus Biomassefeststoffen, Teilvorhaben: Ganzheitliche Betrachtung des Verfahrens auf Nachhaltigkeit und Anwendbarkeit

Wasserstoff spielt eine entscheidende Rolle in Bezug auf die angestrebte Energiewende. Im Forschungsprojekt SolidScore wird mit Hilfe der innovativen Biowasserstofftechnologie das vorhandene Spektrum der bisher zur biologischen Wasserstofferzeugung genutzten wässrigen Ausgangssubstrate erweitert. Vor diesem Hintergrund wird untersucht, inwieweit sich Reststoffe, wie zum Beispiel Bioabfälle und landwirtschaftliche bzw. pflanzliche Reststoffe, mit einem Trockenrückstand (TR) größer als 10 % eignen. Das grundlegende Prinzip ist die dunkle Fermentation. Herkömmliche Verfahren wie die Hochtemperatur-Elektrolyse oder die Dampfreformierung sind sehr energieintensiv und verwenden zumeist fossile Brennstoffe. Die biologische Wasserstofferzeugung mit Rest- und Abfallstoffen ist klimafreundlich und CO2-neutral. Im Vergleich zu den anderen biologischen Verfahren zur Wasserstofferzeugung ist die dunkle Fermentation technologisch am weitesten fortgeschritten. Es ist ein anaerobes Verfahren, bei dem organische Substrate unter Abwesenheit von Licht zu Wasserstoff (H2) und Kohlenstoffdioxid (CO2) sowie flüchtigen organischen Säuren (FOS) abgebaut werden. Versuche zeigten, dass vor allem Abwasser aus der Nahrungsmittelindustrie für die Biowasserstofferzeugung geeignet sind. Gleichzeitig konnten aber auch Limitierungen der einsetzbaren Substrate aufgezeigt werden. Das Projekt SolidScore hat das Ziel, das Reststoffspektrum der verwendbaren Substrate und somit die Einsetzbarkeit des Verfahrens deutlich zu erweitern. Darüber hinaus führt die Implementierung der dunklen Fermentation in Bioenergieanlagen zu einer Steigerung der Gesamteffizienz. Am Beispiel der Vergärung von Kohlenhydraten kann durch das im Antrag beschriebene 2-stufige Verfahren eine Gesamteffizienzsteigerung erzielt werden. Zusätzlich werden im Rahmen des Projektes Konzepte zur weiteren Verwendung des so erzeugten Wasserstoffs erstellt. Dies beinhaltet zum Beispiel auch die innerbetriebliche Nutzung des Wasserstoffs.

Ursachen und Gegenstrategien für Schaumereignisse in Biogasanlagen, Teilvorhaben 1: Bioprozesstechnische und molekularbiologische Untersuchungen zu Ursachen und Bekämpfungsstrategien von Schaumbildung in Biogasanlagen

Ziel dieses Projektes ist es, Ursachen der übermäßigen Schaumbildung im Biogasprozess, die durch Vergärung von leicht abbaubaren Substraten verursacht wird, im Detail zu untersuchen, Verständnis aufzubauen und Gegenmaßnahmen zu entwickeln. Dabei soll die Rolle der Hydrolyse-Stufe im Vordergrund stehen. Um das Forschungsthema so umfassend wie möglich zu bearbeiten, werden Expertisen aus unterschiedlichen Bereichen zusammengeführt - die Expertise zur Schaumbildung in biotechnologischen Prozessen (UFZ), zur zweiphasigen Vergärung (Universität Hohenheim), zu molekularbiologischen Aspekten der Prozessstörungen im Biogasfermenter (UFZ), sowie zur Wirtschaftlichkeitsanalyse und Akzeptanzforschung im Bereich der erneuerbaren Energien (HfWU). Am UFZ wird erforscht, welche physikochemischen Parameter der Substrate und des Fermenterinhaltes einen Einfluss auf übermäßige Schaumbildung im Biogasfermenter haben. Dabei wird untersucht, welche Parameter für die Bildung von Schaum von Bedeutung sind, wie diese Parameter so beeinflusst werden können, dass das Risiko der Schaumbildung minimiert wir und wie das Substrat vorbehandelt werden muss, um Schaumbildung im Fermenter vorzubeugen. Weiterhin wird der Frage nachgegangen, welche biotischen Parameter in der Prozessstabilisierung der anaeroben Vergärung leicht abbaubarer Substrate eine Rolle spielen. Konkret wird ermittelt, welchen Einfluss die Aktivität von Enzymen und Mikroorganismen hat und wie die Nährstoffzusammensetzung während einer Prozessstörung die Schaumentstehung beeinflusst. Dabei wird angestrebt, mikrobielle Indikatoren für ein erhöhtes Risiko zur Schaumbildung oder für einen stabilen Prozess bei der Vergärung leicht abbaubarer Substrate zu identifizieren. Auf der Basis der Ergebnisse des Projektes wird es möglich sein, stabile Prozessführung durch optimale Zusammensetzung des Substratmix und durch zielgerichtete Dosierung von Zusatzstoffen auf enzymatischer bzw. mikrobieller Basis zu gestalten.

Ursachen und Gegenstrategien für Schaumereignisse in Biogasanlagen

Ziel dieses Projektes ist es, Ursachen der übermäßigen Schaumbildung im Biogasprozess, die durch Vergärung von leicht abbaubaren Substraten verursacht wird, im Detail zu untersuchen, Verständnis aufzubauen und Gegenmaßnahmen zu entwickeln. Dabei soll die Rolle der Hydrolyse-Stufe im Vordergrund stehen. Um das Forschungsthema so umfassend wie möglich zu bearbeiten, werden Expertisen aus unterschiedlichen Bereichen zusammengeführt - die Expertise zur Schaumbildung in biotechnologischen Prozessen (UFZ), zur zweiphasigen Vergärung (Universität Hohenheim), zu molekularbiologischen Aspekten der Prozessstörungen im Biogasfermenter (UFZ), sowie zur Wirtschaftlichkeitsanalyse und Akzeptanzforschung im Bereich der erneuerbaren Energien (HfWU). Am UFZ wird erforscht, welche physikochemischen Parameter der Substrate und des Fermenterinhaltes einen Einfluss auf übermäßige Schaumbildung im Biogasfermenter haben. Dabei wird untersucht, welche Parameter für die Bildung von Schaum von Bedeutung sind, wie diese Parameter so beeinflusst werden können, dass das Risiko der Schaumbildung minimiert wir und wie das Substrat vorbehandelt werden muss, um Schaumbildung im Fermenter vorzubeugen. Weiterhin wird der Frage nachgegangen, welche biotischen Parameter in der Prozessstabilisierung der anaeroben Vergärung leicht abbaubarer Substrate eine Rolle spielen. Konkret wird ermittelt, welchen Einfluss die Aktivität von Enzymen und Mikroorganismen hat und wie die Nährstoffzusammensetzung während einer Prozessstörung die Schaumentstehung beeinflusst. Dabei wird angestrebt, mikrobielle Indikatoren für ein erhöhtes Risiko zur Schaumbildung oder für einen stabilen Prozess bei der Vergärung leicht abbaubarer Substrate zu identifizieren. Auf der Basis der Ergebnisse des Projektes wird es möglich sein, stabile Prozessführung durch optimale Zusammensetzung des Substratmix und durch zielgerichtete Dosierung von Zusatzstoffen auf enzymatischer bzw. mikrobieller Basis zu gestalten.

Elektrochemische Aufarbeitung von Fumarsäure mit CO2-Incycling zur Steigerung der biotechnologischen Kohlenstoffausbeute

Biogene Rohstoffe bilden mittelfristig die einzig industriell zugängliche Kohlenstoffquelle nicht-fossilen Ursprungs. Diese sind der Ausgangspunkt für die Produktion von biotechnologisch hergestellten Carbonsäuren, die als Grundstoffe für die Synthese zahlreicher hochwertiger Chemikalien Anwendung finden. Im Verbundvorhaben ECOYIELD soll eine kontinuierliche Fermentation von Fumarsäure aus Reststoffströmen realisiert werden. Des Weiteren soll für die Abtrennung der Fumarsäure ein elektrochemischer Aufarbeitungsprozess entwickelt werden, der eine nachhaltige und kostengünstige Produktion des Produkts erlaubt.

Steigerung der Prozessstabilität und Kinetik bei der anaeroben Vergärung von Bioabfall durch gezielte Stimulation des direkten Interspezies-Elektronentransfers zwischen syntrophen Mikroorgansimen

Die mikrobielle Umsetzung von organischem Material zu dem erneuerbaren Energieträger Methan ist eine bewährte und verbreitete Strategie der effektiven Abfallwirtschaft. In einem solchen methanproduzierenden Milieu nutzen elektrisch verbundene Bakterien und Archaeen direkten Interspezies-Elektronentransfer (DIET), als Alternative zum Interspezies-Formiat- und Wasserstofftransfer (IHT). Grundlegende Aspekte der mikrobiellen Ökologie in Bezug auf DIET sind dabei jedoch noch unerforscht, insbesondere der Stellenwert für die Biogasproduktion. Bis jetzt haben sich Studien zum Großteil auf DIET in Ko-Kulturen von wenigen Modellorganismen beschränkt, die für die Abwasserbehandlung in UASB-Reaktoren (Upflow Anaerobic Sludge Blanket) eine Rolle spielen. Wir beabsichtigen weithin anwendbare Erkenntnisse über die Zusammenhänge der syntrophen mikrobiellen Gemeinschaft und dessen Funktion in mesophilen und thermophilen Biogasreaktoren mit Hilfe moderner molekularbiologischer und mikrobiologischer Methoden zu generieren, um letztendlich eine höhere Prozessstabilität und Effizienz zu ermöglichen. Zentrale Ziele sind die Identifizierung neuer Organismen die an DIET beteiligt sind und das Verständnis der zugrundeliegenden genetischen Mechanismen. Der Schwerpunkt wird auf Bioabfall vergärende Anlagen liegen, die sich wesentlich von mesophilen UASB Reaktoren durch Konstruktion, Betriebsweise, Temperatur und Substratzusammensetzung unterscheiden. Wir vermuten, dass DIET ein weit verbreiteter Alternativprozess zum IHT bei der anaeroben Vergärung von Biomasse ist, wobei beide Prozesse wahrscheinlich parallel ablaufen. In dem vorgeschlagenen Projekt wird DIET erstmals in thermophilen aber auch in mesophilen Systemen Gegenstand der Forschung sein. Ein weiteres Ziel ist die Identifizierung neuer Substrate, die von den syntrophen Konsortien während DIET umgesetzt werden können. Hier wird der Fokus auf syntrophe Propionat- und Butyratoxidierer liegen, die für den anaeroben Abbau von organischem Material eine Schlüsselrolle spielen. Mittels Metagenomik wird das Stoffwechselpotential rekonstruiert und Genexpressionsmuster im Zusammenhang mit IHT und DIET werden mittels Transkriptomik untersucht. DIET ist möglicherweise vorteilhaft für die Stabilität des Vergärungsprozesses, da die Produktion von Wasserstoff umgangen wird, welcher schon in geringer Konzentration die Oxidation von kurzkettigen Fettsäuren inhibieren kann. Deshalb planen wir physiologische Vorteile von DIET gegenüber IHT in Anreicherungskulturen zu untersuchen. Die zu erwartenden Ergebnisse sind essentiell um das Potential der Biogasproduktion im vollen Umfang auszuschöpfen. Darüber hinaus werden die Ergebnisse auch für andere Forschungsgebiete relevant sein, wo elektrisch verbundene Mikroorganismen eine Rolle spielen, beispielsweise bei der Minimierung von Treibhausgasemission in methanogenen Habitaten oder bei der Nutzung in mikrobiellen Brennstoffzellen.

1 2 3 4 5113 114 115