Das Vorhaben hat zum Ziel Melasse als Rohstoff für die elektrochemische Umsetzung zu Folgeprodukten zu verwenden. Bisher wird Melasse vor allem als Futtermittel oder als Kohlenstoffquelle für Fermentationen verwendet. Sie zeichnet sich durch einen hohen Anteil an Kohlenhydraten aus. Diese sollen durch anodische Oxidation zu Hydroxycarbonsäuren bzw. durch gepaarte Elektrolyse zu Polyolen umgesetzt werden, wobei katalytisch aktive Nickelhydroxidelektroden als innovativer Ansatz zur Anwendung kommen sollen. Dabei kommt es zunächst zu einer Spaltung der Kohlenhydrate und Oxidation zu Hydroxycarbonsäuren, welche anschließend kathodisch hydriert werden (Domino-Oxidationsreduktions-Sequenz, DoORs). Neben den im Mittelpunkt stehenden elektrochemischen Umsetzungen sind Untersuchungen zur Zusammensetzung der Melasse sowie zu den möglichen Reaktionsprodukten notwendig. Dazu werden einerseits Kopplungsmethoden wie LC- und GC-MS eingesetzt sowie direkt an die MS gekoppelte elektrochemische Durchflusszellen (EC-MS). Störende Komponenten, die entweder die elektrochemische Umsetzung verhindern oder zu störenden Nebenprodukten führen, sollen durch eine Vorbehandlung der Melasse abgetrennt werden. Hier kommen Membranverfahren wie Nanofiltration oder Elektrodialyse zum Einsatz. Für die Optimierung der Versuchs- und Prozessbedingungen werden notwendige kinetische Parameter bestimmt und auf Basis einfacher formalkinetischer Modelle die Reaktionen beschrieben. Daneben kommen statistische Methoden der Versuchsplanung zum Einsatz, um die komplexen Zusammenhänge im Hinblick auf Selektivität, Ausbeute und Energieverbrauch zu optimieren. In einem abschließenden Arbeitspaket soll in einem Durchflussreaktor unter GMP-Bedingungen Material im kg-Maßstab für Anwendungsuntersuchungen gewonnen werden.
Wasserstoff spielt eine entscheidende Rolle in Bezug auf die angestrebte Energiewende. Im Forschungsprojekt SolidScore wird mit Hilfe der innovativen Biowasserstofftechnologie das vorhandene Spektrum der bisher zur biologischen Wasserstofferzeugung genutzten wässrigen Ausgangssubstrate erweitert. Vor diesem Hintergrund wird untersucht, inwieweit sich Reststoffe, wie zum Beispiel Bioabfälle und landwirtschaftliche bzw. pflanzliche Reststoffe, mit einem Trockenrückstand (TR) größer als 10 % eignen. Das grundlegende Prinzip ist die dunkle Fermentation. Herkömmliche Verfahren wie die Hochtemperatur-Elektrolyse oder die Dampfreformierung sind sehr energieintensiv und verwenden zumeist fossile Brennstoffe. Die biologische Wasserstofferzeugung mit Rest- und Abfallstoffen ist klimafreundlich und CO2-neutral. Im Vergleich zu den anderen biologischen Verfahren zur Wasserstofferzeugung ist die dunkle Fermentation technologisch am weitesten fortgeschritten. Es ist ein anaerobes Verfahren, bei dem organische Substrate unter Abwesenheit von Licht zu Wasserstoff (H2) und Kohlenstoffdioxid (CO2) sowie flüchtigen organischen Säuren (FOS) abgebaut werden. Versuche zeigten, dass vor allem Abwasser aus der Nahrungsmittelindustrie für die Biowasserstofferzeugung geeignet sind. Gleichzeitig konnten aber auch Limitierungen der einsetzbaren Substrate aufgezeigt werden. Das Projekt SolidScore hat das Ziel, das Reststoffspektrum der verwendbaren Substrate und somit die Einsetzbarkeit des Verfahrens deutlich zu erweitern. Darüber hinaus führt die Implementierung der dunklen Fermentation in Bioenergieanlagen zu einer Steigerung der Gesamteffizienz. Am Beispiel der Vergärung von Kohlenhydraten kann durch das im Antrag beschriebene 2-stufige Verfahren eine Gesamteffizienzsteigerung erzielt werden. Zusätzlich werden im Rahmen des Projektes Konzepte zur weiteren Verwendung des so erzeugten Wasserstoffs erstellt. Dies beinhaltet zum Beispiel auch die innerbetriebliche Nutzung des Wasserstoffs.
Wasserstoff spielt eine entscheidende Rolle in Bezug auf die angestrebte Energiewende. Im Forschungsprojekt SolidScore wird mit Hilfe der innovativen Biowasserstofftechnologie das vorhandene Spektrum der bisher zur biologischen Wasserstofferzeugung genutzten wässrigen Ausgangssubstrate erweitert. Vor diesem Hintergrund wird untersucht, inwieweit sich Reststoffe, wie zum Beispiel Bioabfälle und landwirtschaftliche bzw. pflanzliche Reststoffe, mit einem Trockenrückstand (TR) größer als 10 % eignen. Das grundlegende Prinzip ist die dunkle Fermentation. Herkömmliche Verfahren wie die Hochtemperatur-Elektrolyse oder die Dampfreformierung sind sehr energieintensiv und verwenden zumeist fossile Brennstoffe. Die biologische Wasserstofferzeugung mit Rest- und Abfallstoffen ist klimafreundlich und CO2-neutral. Im Vergleich zu den anderen biologischen Verfahren zur Wasserstofferzeugung ist die dunkle Fermentation technologisch am weitesten fortgeschritten. Es ist ein anaerobes Verfahren, bei dem organische Substrate unter Abwesenheit von Licht zu Wasserstoff (H2) und Kohlenstoffdioxid (CO2) sowie flüchtigen organischen Säuren (FOS) abgebaut werden. Versuche zeigten, dass vor allem Abwasser aus der Nahrungsmittelindustrie für die Biowasserstofferzeugung geeignet sind. Gleichzeitig konnten aber auch Limitierungen der einsetzbaren Substrate aufgezeigt werden. Das Projekt SolidScore hat das Ziel, das Reststoffspektrum der verwendbaren Substrate und somit die Einsetzbarkeit des Verfahrens deutlich zu erweitern. Darüber hinaus führt die Implementierung der dunklen Fermentation in Bioenergieanlagen zu einer Steigerung der Gesamteffizienz. Am Beispiel der Vergärung von Kohlenhydraten kann durch das im Antrag beschriebene 2-stufige Verfahren eine Gesamteffizienzsteigerung erzielt werden. Zusätzlich werden im Rahmen des Projektes Konzepte zur weiteren Verwendung des so erzeugten Wasserstoffs erstellt. Dies beinhaltet zum Beispiel auch die innerbetriebliche Nutzung des Wasserstoffs.
Wasserstoff spielt eine entscheidende Rolle in Bezug auf die angestrebte Energiewende. Im Forschungsprojekt SolidScore wird mit Hilfe der innovativen Biowasserstofftechnologie das vorhandene Spektrum der bisher zur biologischen Wasserstofferzeugung genutzten wässrigen Ausgangssubstrate erweitert. Vor diesem Hintergrund wird untersucht, inwieweit sich Reststoffe, wie zum Beispiel Bioabfälle und landwirtschaftliche bzw. pflanzliche Reststoffe, mit einem Trockenrückstand (TR) größer als 10 % eignen. Das grundlegende Prinzip ist die dunkle Fermentation. Herkömmliche Verfahren wie die Hochtemperatur-Elektrolyse oder die Dampfreformierung sind sehr energieintensiv und verwenden zumeist fossile Brennstoffe. Die biologische Wasserstofferzeugung mit Rest- und Abfallstoffen ist klimafreundlich und CO2-neutral. Im Vergleich zu den anderen biologischen Verfahren zur Wasserstofferzeugung ist die dunkle Fermentation technologisch am weitesten fortgeschritten. Es ist ein anaerobes Verfahren, bei dem organische Substrate unter Abwesenheit von Licht zu Wasserstoff (H2) und Kohlenstoffdioxid (CO2) sowie flüchtigen organischen Säuren (FOS) abgebaut werden. Versuche zeigten, dass vor allem Abwasser aus der Nahrungsmittelindustrie für die Biowasserstofferzeugung geeignet sind. Gleichzeitig konnten aber auch Limitierungen der einsetzbaren Substrate aufgezeigt werden. Das Projekt SolidScore hat das Ziel, das Reststoffspektrum der verwendbaren Substrate und somit die Einsetzbarkeit des Verfahrens deutlich zu erweitern. Darüber hinaus führt die Implementierung der dunklen Fermentation in Bioenergieanlagen zu einer Steigerung der Gesamteffizienz. Am Beispiel der Vergärung von Kohlenhydraten kann durch das im Antrag beschriebene 2-stufige Verfahren eine Gesamteffizienzsteigerung erzielt werden. Zusätzlich werden im Rahmen des Projektes Konzepte zur weiteren Verwendung des so erzeugten Wasserstoffs erstellt. Dies beinhaltet zum Beispiel auch die innerbetriebliche Nutzung des Wasserstoffs.
Das Vorhaben hat zum Ziel Melasse als Rohstoff für die elektrochemische Umsetzung zu Folgeprodukten zu verwenden. Bisher wird Melasse vor allem als Futtermittel oder als Kohlenstoffquelle für Fermentationen verwendet. Sie zeichnet sich durch einen hohen Anteil an Kohlenhydraten aus. Diese sollen durch anodische Oxidation zu Hydroxycarbonsäuren bzw. durch gepaarte Elektrolyse zu Polyolen umgesetzt werden, wobei katalytisch aktive Nickelhydroxidelektroden als innovativer Ansatz zur Anwendung kommen sollen. Dabei kommt es zunächst zu einer Spaltung der Kohlenhydrate und Oxidation zu Hydroxycarbonsäuren, welche anschließend kathodisch hydriert werden (Domino-Oxidationsreduktions-Sequenz, DoORs). Neben den im Mittelpunkt stehenden elektrochemischen Umsetzungen sind Untersuchungen zur Zusammensetzung der Melasse sowie zu den möglichen Reaktionsprodukten notwendig. Dazu werden einerseits Kopplungsmethoden wie LC- und GC-MS eingesetzt sowie direkt an die MS gekoppelte elektrochemische Durchflusszellen (EC-MS). Störende Komponenten, die entweder die elektrochemische Umsetzung verhindern oder zu störenden Nebenprodukten führen, sollen durch eine Vorbehandlung der Melasse abgetrennt werden. Hier kommen Membranverfahren wie Nanofiltration oder Elektrodialyse zum Einsatz. Für die Optimierung der Versuchs- und Prozessbedingungen werden notwendige kinetische Parameter bestimmt und auf Basis einfacher formalkinetischer Modelle die Reaktionen beschrieben. Daneben kommen statistische Methoden der Versuchsplanung zum Einsatz, um die komplexen Zusammenhänge im Hinblick auf Selektivität, Ausbeute und Energieverbrauch zu optimieren. In einem abschließenden Arbeitspaket soll in einem Durchflussreaktor unter GMP-Bedingungen Material im kg-Maßstab für Anwendungsuntersuchungen gewonnen werden.
Biogene Rohstoffe bilden mittelfristig die einzig industriell zugängliche Kohlenstoffquelle nicht-fossilen Ursprungs. Diese sind der Ausgangspunkt für die Produktion von biotechnologisch hergestellten Carbonsäuren, die als Grundstoffe für die Synthese zahlreicher hochwertiger Chemikalien Anwendung finden. Im Verbundvorhaben ECOYIELD soll eine kontinuierliche Fermentation von Fumarsäure aus Reststoffströmen realisiert werden. Des Weiteren soll für die Abtrennung der Fumarsäure ein elektrochemischer Aufarbeitungsprozess entwickelt werden, der eine nachhaltige und kostengünstige Produktion des Produkts erlaubt.
Voraussetzung fuer eine sequentielle Prozessfuehrung ist die genaue Kenntnis der reaktionskinetischen Daten fuer die einzelnen biologischen Systeme. Sie bilden die Grundlage fuer die Bemessung, Optimierung und Steuerung der Verfahrenselemente. Ausschlaggebend fuer die Wahl der Reaktortypen ist die Aufrechterhaltung optimaler Umweltbedingungen (z.B. pH-O2-Konzentration) sowie die Erhaltung einer moeglichst grossen Organismenmenge im System. Fuer die Nitrifikation sind Ruehrkessel-, Festbett- und Wirbelschichtreaktor die zu untersuchenden Alternativen. Die Loesung dieses Problems wird als Beitrag zur Leistungssteigerung von Klaeranlagen sowie zur Entwicklung einer Hochleistungsnitrifikation fuer Industrieabwaesser verstanden.
| Origin | Count |
|---|---|
| Bund | 1147 |
| Land | 35 |
| Type | Count |
|---|---|
| Chemische Verbindung | 5 |
| Förderprogramm | 1124 |
| Gesetzestext | 4 |
| Text | 20 |
| Umweltprüfung | 31 |
| unbekannt | 2 |
| License | Count |
|---|---|
| geschlossen | 47 |
| offen | 1124 |
| unbekannt | 11 |
| Language | Count |
|---|---|
| Deutsch | 1140 |
| Englisch | 152 |
| Resource type | Count |
|---|---|
| Archiv | 9 |
| Bild | 1 |
| Datei | 9 |
| Dokument | 44 |
| Keine | 676 |
| Webseite | 463 |
| Topic | Count |
|---|---|
| Boden | 809 |
| Lebewesen und Lebensräume | 1182 |
| Luft | 469 |
| Mensch und Umwelt | 1182 |
| Wasser | 470 |
| Weitere | 1182 |