Das Projekt "Online Überwachung von Grund- und Oberflächenwasser als Teil des IWRM Projekts 'Dong Nai River Basin', Vietnam" wird/wurde gefördert durch: Center of Water and Ressources Planning and Investigation, Vietnam / MONRE - Ministry of Nature, Resources and Environment. Es wird/wurde ausgeführt durch: ribeka GmbH.Das geplante IWRM-Forschungsprojekt 'Dong Nai River Basin' Phase II in Vietnam ist ein Joint-Venture Projekt mehrer Partner aus Deutschland die, in enger Kooperation mit Partnern in Vietnam, das Prinzip IWRM im Projektgebiet 'Dong Nai River Basin' in Vietnam in allen seinen Aspekten bearbeiten. Das Dong Nai Flusseinzugsgebiet liegt im Süden des Landes und ist mit einer Fläche von ca. 35.000 km2 eines der drei größten Flusseinzugsgebiete in Vietnam. Im Gegensatz zu den zwei anderen großen Gebieten, den Deltagebieten des Mekong und des Roten Flusses, liegt das Dong Nai Gebiet zum Großteil auf Vietnamesischem Territorium. Aufgrund der schnellen volkswirtschaftlichen Entwicklung im Dong Nai Gebiet wird das Ressourcen-Management immer stärker durch umwelttechnische Probleme beeinträchtigt. Seit dem Jahr 2010 wird unser System bestehend aus GW-Base® und GW-Web® bei dem CWRPI-Hanoi und der HCMC-CWRPI-Division 'Süd-Vietnam' genutzt. In 15 ausgewählten Grund- und Oberflächenwasser Messstellen wurden Multiparameter Datenlogger installiert und in Betrieb genommen. Alle Messpunkte wurden im Bezug auf Erreichbarkeit, Sicherheit, sowie GPRS-Netzabdeckung ausgewählt. Da dieses Pilotprojekt Teil einer Machbarkeitsstudie für diese Art von Messstellen in Vietnam ist, standen hydrologische Aspekte für die Wahl der Messpunktstandorte nicht im Vordergrund. Um die Nachhaltigkeit dieses Monitoringsystems zu gewährleisten wurde ansässiges Personal im Umgang mit Hard- und Software geschult.
Das Projekt "FINO3-Betrieb - Forschungsplattform 2022-2025" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Forschungs- und Entwicklungszentrum Fachhochschule Kiel GmbH.Ziel des Antrages ist eine Betriebsverlängerung der Forschungsplattform FINO3 um drei Jahre bis Mitte 2025. Technisches Hauptziel ist dabei der für Mensch und Umwelt sichere Betrieb der Forschungsplattform bei gleichzeitiger Sicherstellung der Möglichkeit hier qualitativ hochwertige Messkampagnen und Forschungsprojekte durchzuführen. Zu einem reibungslosen Betrieb gehören u.a. die regelmäßigen Prüfungen und Wartungen von Struktur und Anlagen, die Überprüfung, Instandsetzung und ggf. der Austausch von Einzelkomponenten, die Versorgung mit Betriebsstoffen sowie die Fernüberwachung des unbemannten Betriebes. Die Pflege des Sicherheitsmanagements und die Abstimmung mit den relevanten Behörden, hier insbesondere dem BSH, sowie der Prüfbeauftragten und anderen Sachverständigen sind Schwerpunkte der organisatorischen Arbeiten des FuE-Zentrums, die Onshore stattfinden. Im Rahmen der Organisation des Forschungsbetriebes koordiniert das FuE-Zentrum die Arbeiten der Forschenden und unterstützt diese im Sinne eines Dienstleisters. Das FuE-Zentrum stellt die übergeordneten Ziele und interessante Aspekte aus dem Betrieb der Forschungsplattform öffentlichkeitswirksam dar und bietet auch den Forschungsvorhaben die Möglichkeit, ihre Ergebnisse in angemessenem Rahmen öffentlich zu präsentieren.
Das Projekt "Membranverfahren zur Abtrennung von Kohlendioxid und Wasserstoff aus Industriegasen" wird/wurde ausgeführt durch: Helmholtz-Zentrum hereon GmbH.Membranverfahren für die Gasseparation haben das Potenzial eine Schlüsselrolle in einer zukünftigen Industriegesellschaft einzunehmen, die sich durch CO2-Emissionsvermeidung und -Kreislaufführung, der Verwendung von H2 sowie der Sektorenkopplung auszeichnet. Das Vorhaben MemKoWI adressiert dies durch die Erforschung von mehrstufigen Membranverfahren für die Abtrennung von CO2 aus: Rauchgas von Gichtgaskraftwerken der Stahlindustrie, Hochofengas der Stahlindustrie, Rauchgas von Frischholzkraftwerken, Abgasen der Zementindustrie und die Abtrennung von H2 aus Prozessgasen der Stahlindustrie. Hierbei sollen sowohl die modifizierte Anlage aus den Vorgängerprojekten zum Einsatz kommen als auch neue, modulare Membrananlagen konzipiert, gebaut und betrieben werden. Die darin verwendeten Membran- und Modultechnologien sollen weiter erforscht und ihre Eignung für die geschilderten Anwendungen soll nachgewiesen werden. Hierbei werden Polymer- und Keramikmembranen betrachtet und in Membranmodule integriert. Das Mehrstoffpermationsverhalten der Membranen wird experimentell untersucht werden und die Basis für die Modellierung des Trennverhaltens bilden. Diese wird zusammen mit der Beschreibung der Strömungsführung in Simulationstools für Membranmodule einfließen, welche wiederum in Prozesssimulationswerkzeuge integriert werden. Simulationen werden für die Auslegung der Anlagen, die Auswertung von Versuchsergebnissen, die Entwicklung von Verfahrensalternativen, die Übertragung auf andere Anwendungen und die Abschätzung der Wirtschaftlichkeit verwendet. Die Fernüberwachung der Anlagen wird es ermöglichen, experimentelle Daten fortlaufend mit Simulationsergebnissen abzugleichen und Regelungs- und Automatisierungsaspekte zu adressieren. Ziel des Vorhabens ist es Membranverfahren als skalierbare, bedarfsgerecht einsetzbare und einfach zu integrierende Technologie für die CO2- und H2-Abtrennung in einer sich der CO2-Neutralität annähernden Industriegesellschaft zu etablieren.
Das Projekt "Membranverfahren zur Abtrennung von Kohlendioxid und Wasserstoff aus Industriegasen, Teilvorhaben: Entwicklung und Optimierung keramischer Support- Membranen für die Abscheidung von CO2- und H2-selektiven Gastrennmembranen" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: atech innovations gmbh.Membranverfahren für die Gasseparation haben das Potenzial eine Schlüsselrolle in einer zukünftigen Industriegesellschaft einzunehmen, die sich durch CO2-Emissionsvermeidung und -Kreislaufführung, der Verwendung von H2 sowie der Sektorenkopplung auszeichnet. Das Vorhaben MemKoWI adressiert dies durch die Erforschung von mehrstufigen Membranverfahren für die Abtrennung von CO2 aus: Rauchgas von Gichtgaskraftwerken der Stahlindustrie, Hochofengas der Stahlindustrie, Rauchgas von Frischholzkraftwerken, Abgasen der Zementindustrie und die Abtrennung von H2 aus Prozessgasen der Stahlindustrie. Hierbei sollen sowohl die modifizierte Anlage aus den Vorgängerprojekten zum Einsatz kommen als auch neue, modulare Membrananlagen konzipiert, gebaut und betrieben werden. Die darin verwendeten Membran- und Modultechnologien sollen weiter erforscht und ihre dauerstabile Eignung für die geschilderten Anwendungen soll nachgewiesen werden. Hierbei werden Polymer- und Keramikmembranen betrachtet und in Module integriert. Das Mehrstoffpermationsverhalten der Membranen wird experimentell untersucht werden und die Basis für die Modellierung des Trennverhaltens bilden. Diese wird zusammen mit der Beschreibung der Strömungsführung in Simulationstools für Membranmodule einfließen, welche wiederum in Prozesssimulationswerkzeuge integriert werden. Simulationen werden für die Auslegung der Anlagen, die Auswertung von Versuchsergebnissen, die Entwicklung von Verfahrensalternativen, die Übertragung auf andere Anwendungen und die Abschätzung der Wirtschaftlichkeit verwendet. Die Fernüberwachung der Anlagen wird es ermöglichen, experimentelle Daten fortlaufend mit Simulationsergebnissen abzugleichen und Regelungs- und Automatisierungsaspekte zu adressieren. Ziel des Vorhabens ist es, Membranverfahren als skalierbare, bedarfsgerecht einsetzbare und einfach zu integrierende Technologie für die CO2- und H2-Abtrennung in einer sich der CO2-Neutralität annähernden Industriegesellschaft zu etablieren.
Das Projekt "Membranverfahren zur Abtrennung von Kohlendioxid und Wasserstoff aus Industriegasen, Teilvorhaben: Wasserstoffabtrennung aus Prozessgasen der Eisen- und Stahlindustrie" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: VDEh-Betriebsforschungsinstitut GmbH.Membranverfahren für die Gasseparation haben das Potenzial eine Schlüsselrolle in einer zukünftigen Industriegesellschaft einzunehmen, die sich durch CO2-Emissionsvermeidung und -Kreislaufführung, der Verwendung von H2 sowie der Sektorenkopplung auszeichnet. Das Vorhaben MemKoWI adressiert dies durch die Erforschung von mehrstufigen Membranverfahren für die Abtrennung von CO2 aus: Rauchgas von Gichtgaskraftwerken der Stahlindustrie, Hochofengas der Stahlindustrie, Rauchgas von Frischholzkraftwerken, Abgasen der Zementindustrie und die Abtrennung von H2 aus Prozessgasen der Stahlindustrie. Hierbei sollen sowohl die modifizierte Anlage aus den Vorgängerprojekten zum Einsatz kommen als auch neue, modulare Membrananlagen konzipiert, gebaut und betrieben werden. Die darin verwendeten Membran- und Modultechnologien sollen weiter erforscht und ihre dauerstabile Eignung für die geschilderten Anwendungen soll nachgewiesen werden. Hierbei werden Polymer- und Keramikmembranen betrachtet und in Module integriert. Das Mehrstoffpermationsverhalten der Membranen wird experimentell untersucht werden und die Basis für die Modellierung des Trennverhaltens bilden. Diese wird zusammen mit der Beschreibung der Strömungsführung in Simulationstools für Membranmodule einfließen, welche wiederum in Prozesssimulationswerkzeuge integriert werden. Simulationen werden für die Auslegung der Anlagen, die Auswertung von Versuchsergebnissen, die Entwicklung von Verfahrensalternativen, die Übertragung auf andere Anwendungen und die Abschätzung der Wirtschaftlichkeit verwendet. Die Fernüberwachung der Anlagen wird es ermöglichen, experimentelle Daten fortlaufend mit Simulationsergebnissen abzugleichen und Regelungs- und Automatisierungsaspekte zu adressieren. Ziel des Vorhabens ist es, Membranverfahren als skalierbare, bedarfsgerecht einsetzbare und einfach zu integrierende Technologie für die CO2- und H2-Abtrennung in einer sich der CO2-Neutralität annähernden Industriegesellschaft zu etablieren.
Das Projekt "KI unterstützte Kommunikationstechnologien zur dynamischen Optimierung von Mobilität und Energiespeichern zur Frequenzstabilisierung und Energieversorgung, Teilvorhaben CampusGenius: Automated Integration with the 5G-Core" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: CampusGenius GmbH.Das Ökosystem der Stromnetze ist auf dem Weg zu einem dezentralisierten Energieversorgungs- und Verteilungssystem. Haushalte können mit erneuerbaren Energiequellen wie Sonnenkollektoren oder Windgeneratoren, als verteilte Energieressourcen (DERs - Distributed Energy Resources) bezeichnet, unabhängig von den Stromanbietern operieren und Energie zurück an das Hauptnetz verkaufen. Für die Realisierung dieser Transformation des Stromnetzes wird eine kompetente Kommunikationsinfrastruktur benötigt. Die Einführung des Standards 5G in Mobilfunknetze erleichtert die Entwicklung zukünftiger Energieverwaltungslösungen. Weiterhin ermöglichen neue Technologien die Entwicklung intelligenter Algorithmen für die Steuerung zukünftiger Stromnetze. Hierzu gehören das Internet der Dinge (Internet of Things, IoT), Vernetzung über Mesh-Netzwerke zur Fernüberwachung des Netzstatus und die Künstliche Intelligenz (KI) für Management und Koordination. In Dymobat wird ein Single-User-Controller für die Verwaltung der einzelnen DERs auch unter Einsatz von privaten 5G-Netzwerken entwickelt. Anschließend wird eine zentrale Steuerungseinheit für die Synchronisierung und Optimierung des Netzbetriebs innerhalb einer kleinen Gruppe von DERs, einem Microgrid, entworfen. Die Kommunikation zwischen und innerhalb der DER soll mittels Mobilfunktechnologie erfolgen. Dabei soll die Energieoptimierung mittels KI-Algorithmen erfolgen und auch den Energietransport mit Fahrzeugen berücksichtigen. Die softwareseitige Integration der KI-Algorithmen und des Energiemanagementsystems in das Kommunikationssystem ist ein wesentlicher Bestandteil dieses Projektes. Die entwickelten Algorithmen werden virtuell in einem Testbed-Modell anhand von realen Eingangsparametern erprobt, optimiert und validiert. Im zweiten Schritt wird ein reales Testfeld konzipiert, installiert und die Leistungsfähigkeit der modellhaft erprobten Algorithmen in einer realen Testumgebung bewertet.
Das Projekt "Membranverfahren zur Abtrennung von Kohlendioxid und Wasserstoff aus Industriegasen, Teilvorhaben: Polymermembrantechnologie für die Abtrennung von Kohlendioxid und Wasserstoff" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Helmholtz-Zentrum hereon GmbH.Membranverfahren für die Gasseparation haben das Potenzial eine Schlüsselrolle in einer zukünftigen Industriegesellschaft einzunehmen, die sich durch CO2-Emissionsvermeidung und -Kreislaufführung, der Verwendung von H2 sowie der Sektorenkopplung auszeichnet. Das Vorhaben MemKoWI adressiert dies durch die Erforschung von mehrstufigen Membranverfahren für die Abtrennung von CO2 aus: Rauchgas von Gichtgaskraftwerken der Stahlindustrie, Hochofengas der Stahlindustrie, Rauchgas von Frischholzkraftwerken, Abgasen der Zementindustrie und die Abtrennung von H2 aus Prozessgasen der Stahlindustrie. Hierbei sollen sowohl die modifizierte Anlage aus den Vorgängerprojekten zum Einsatz kommen als auch neue, modulare Membrananlagen konzipiert, gebaut und betrieben werden. Die darin verwendeten Membran- und Modultechnologien sollen weiter erforscht und ihre Eignung für die geschilderten Anwendungen soll nachgewiesen werden. Hierbei werden Polymer- und Keramikmembranen betrachtet und in Membranmodule integriert. Das Mehrstoffpermationsverhalten der Membranen wird experimentell untersucht werden und die Basis für die Modellierung des Trennverhaltens bilden. Diese wird zusammen mit der Beschreibung der Strömungsführung in Simulationstools für Membranmodule einfließen, welche wiederum in Prozesssimulationswerkzeuge integriert werden. Simulationen werden für die Auslegung der Anlagen, die Auswertung von Versuchsergebnissen, die Entwicklung von Verfahrensalternativen, die Übertragung auf andere Anwendungen und die Abschätzung der Wirtschaftlichkeit verwendet. Die Fernüberwachung der Anlagen wird es ermöglichen, experimentelle Daten fortlaufend mit Simulationsergebnissen abzugleichen und Regelungs- und Automatisierungsaspekte zu adressieren. Ziel des Vorhabens ist es Membranverfahren als skalierbare, bedarfsgerecht einsetzbare und einfach zu integrierende Technologie für die CO2- und H2-Abtrennung in einer sich der CO2-Neutralität annähernden Industriegesellschaft zu etablieren.
Das Projekt "Membranverfahren zur Abtrennung von Kohlendioxid und Wasserstoff aus Industriegasen, Teilvorhaben: Einsatz von Membranverfahren zur Wasserstoff- und Kohlendioxid-Abtrennung aus Prozessgasen der Stahlindustrie" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Aktien-Gesellschaft der Dillinger Hüttenwerke.Membranverfahren für die Gasseparation haben das Potenzial eine Schlüsselrolle in einer zukünftigen Industriegesellschaft einzunehmen, die sich durch CO2-Emissionsvermeidung und -Kreislaufführung, der Verwendung von H2 sowie der Sektorenkopplung auszeichnet. Das Vorhaben MemKoWI adressiert dies durch die Erforschung von mehrstufigen Membranverfahren für die Abtrennung von CO2 aus: Rauchgas von Gichtgaskraftwerken der Stahlindustrie, Hochofengas der Stahlindustrie, Rauchgas von Frischholzkraftwerken, Abgasen der Zementindustrie und die Abtrennung von H2 aus Prozessgasen der Stahlindustrie. Hierbei sollen sowohl die modifizierte Anlage aus den Vorgängerprojekten zum Einsatz kommen als auch neue, modulare Membrananlagen konzipiert, gebaut und betrieben werden. Die darin verwendeten Membran- und Modultechnologien sollen weiter erforscht und ihre dauerstabile Eignung für die geschilderten Anwendungen soll nachgewiesen werden. Hierbei werden Polymer- und Keramikmembranen betrachtet und in Module integriert. Das Mehrstoffpermationsverhalten der Membranen wird experimentell untersucht werden und die Basis für die Modellierung des Trennverhaltens bilden. Diese wird zusammen mit der Beschreibung der Strömungsführung in Simulationstools für Membranmodule einfließen, welche wiederum in Prozesssimulationswerkzeuge integriert werden. Simulationen werden für die Auslegung der Anlagen, die Auswertung von Versuchsergebnissen, die Entwicklung von Verfahrensalternativen, die Übertragung auf andere Anwendungen und die Abschätzung der Wirtschaftlichkeit verwendet. Die Fernüberwachung der Anlagen wird es ermöglichen, experimentelle Daten fortlaufend mit Simulationsergebnissen abzugleichen und Regelungs- und Automatisierungsaspekte zu adressieren. Ziel des Vorhabens ist es, Membranverfahren als skalierbare, bedarfsgerecht einsetzbare und einfach zu integrierende Technologie für die CO2- und H2-Abtrennung in einer sich der CO2-Neutralität annähernden Industriegesellschaft zu etablieren.
Das Projekt "KI unterstützte Kommunikationstechnologien zur dynamischen Optimierung von Mobilität und Energiespeichern zur Frequenzstabilisierung und Energieversorgung, Teilvorhaben Comfortcharge: Bidirektionales Laden" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Comfortcharge GmbH.Das Ökosystem der Stromnetze ist auf dem Weg zu einem dezentralisierten Energieversorgungs- und Verteilungssystem. Haushalte können mit erneuerbaren Energiequellen wie Sonnenkollektoren oder Windgeneratoren, als verteilte Energieressourcen (DERs - Distributed Energy Resources) bezeichnet, unabhängig von den Stromanbietern operieren und Energie zurück an das Hauptnetz verkaufen. Für die Realisierung dieser Transformation des Stromnetzes wird eine kompetente Kommunikationsinfrastruktur benötigt. Die Einführung des Standards 5G in Mobilfunknetze erleichtert die Entwicklung zukünftiger Energieverwaltungslösungen. Weiterhin ermöglichen neue Technologien die Entwicklung intelligenter Algorithmen für die Steuerung zukünftiger Stromnetze. Hierzu gehören das Internet der Dinge (Internet of Things, IoT), Vernetzung über Mesh-Netzwerke zur Fernüberwachung des Netzstatus und die Künstliche Intelligenz (KI) für Management und Koordination. In Dymobat wird ein Single-User-Controller für die Verwaltung der einzelnen DERs entwickelt. Anschließend wird eine zentrale Steuerungseinheit für die Synchronisierung und Optimierung des Netzbetriebs innerhalb einer kleinen Gruppe von DERs, Microgrid, entworfen. Im Anschluss werden Mobilitätsalgorithmen für die Nutzung von batterieelektrischen Fahrzeugen als mobile Energiespeicher entwickelt, die temporäre Selbstversorgung von Teilnetzen ermöglichen. Die entwickelten Algorithmen werden virtuell in einem Testbed-Modell anhand von realen Eingangsparametern erprobt, optimiert und validiert. Im zweiten Schritt wird ein reales Testfeld konzipiert, installiert und die Leistungsfähigkeit der modellhaft erprobten Algorithmen in einer realen Testumgebung bewertet und anhand des dadurch erarbeiteten Know-hows weiter verbessert. Das übergeordnete Ziel des Projektes DymoBat ist die Entwicklung von marktfähigen Lösungen für die zukünftige Stromnetzverwaltung zur Nutzung von verteilten Energieressourcen auf Basis der Anwendung von 5G-Technologien.
Das Projekt "KI unterstützte Kommunikationstechnologien zur dynamischen Optimierung von Mobilität und Energiespeichern zur Frequenzstabilisierung und Energieversorgung, Teilvorhaben SachsenNetze: Konzepterstellung Frequenzstabilisierung aus dem Verteilnetz" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: SachsenNetze GmbH.Das Ökosystem der Stromnetze ist auf dem Weg zu einem dezentralisierten Energieversorgungs- und Verteilungssystem. Haushalte können mit erneuerbaren Energiequellen wie Sonnenkollektoren oder Windgeneratoren, als verteilte Energieressourcen (DERs - Distributed Energy Resources) bezeichnet, unabhängig von den Stromanbietern operieren und Energie zurück an das Hauptnetz verkaufen. Für die Realisierung dieser Transformation des Stromnetzes wird eine kompetente Kommunikationsinfrastruktur benötigt. Die Einführung des Standards 5G in Mobilfunknetze erleichtert die Entwicklung zukünftiger Energieverwaltungslösungen. Weiterhin ermöglichen neue Technologien die Entwicklung intelligenter Algorithmen für die Steuerung zukünftiger Stromnetze. Hierzu gehören das Internet der Dinge (Internet of Things, IoT), Vernetzung über Mesh-Netzwerke zur Fernüberwachung des Netzstatus und die Künstliche Intelligenz (KI) für Management und Koordination. In Dymobat wird ein Single-User-Controller für die Verwaltung der einzelnen DERs entwickelt. Anschließend wird eine zentrale Steuerungseinheit für die Synchronisierung und Optimierung des Netzbetriebs innerhalb einer kleinen Gruppe von DERs, Microgrid, entworfen. Im Anschluss werden Mobilitätsalgorithmen für die Nutzung von batterieelektrischen Fahrzeugen als mobile Energiespeicher entwickelt, die temporäre Selbstversorgung von Teilnetzen ermöglichen. Die entwickelten Algorithmen werden virtuell in einem Testbed-Modell anhand von realen Eingangsparametern erprobt, optimiert und validiert. Im zweiten Schritt wird ein reales Testfeld konzipiert, installiert und die Leistungsfähigkeit der modellhaft erprobten Algorithmen in einer realen Testumgebung bewertet und anhand des dadurch erarbeiteten Know-hows weiter verbessert. Das übergeordnete Ziel des Projektes DymoBat ist die Entwicklung von marktfähigen Lösungen für die zukünftige Stromnetzverwaltung zur Nutzung von verteilten Energieressourcen auf Basis der Anwendung von 5G-Technologien.
Origin | Count |
---|---|
Bund | 225 |
Land | 16 |
Type | Count |
---|---|
Förderprogramm | 220 |
Text | 15 |
Umweltprüfung | 1 |
unbekannt | 5 |
License | Count |
---|---|
geschlossen | 18 |
offen | 223 |
Language | Count |
---|---|
Deutsch | 216 |
Englisch | 55 |
Resource type | Count |
---|---|
Bild | 1 |
Dokument | 4 |
Keine | 123 |
Webseite | 114 |
Topic | Count |
---|---|
Boden | 144 |
Lebewesen & Lebensräume | 135 |
Luft | 110 |
Mensch & Umwelt | 241 |
Wasser | 131 |
Weitere | 239 |