technologyComment of cyclohexane production (RER, RoW): Over 90 % of all cyclohexane is produced commercially by hydrogenation of benzene. A small amount is produced by superfractionation of the naphtha fraction from crude oil. Naturally occurring cyclohexane can be supplemented by fractionating methylcyclopentane from naphtha and isomerizing it to cyclohexane. Hydrogenation of benzene: Benzene can be hydrogenated catalytically to cyclohexane in either the liquid or the vapor phase in the presence of hydrogen. Several cyclohexane processes, which use nickel, platinum, or palladium as the catalyst, have been developed. Usually, the catalyst is supported, e.g., on alumina, but at least one commercial process utilizes Raney nickel. Hydrogenation proceeds readily and is highly exothermic (Δ H500K = – 216.37 kJ/mol). From an equilibrium standpoint, the reaction temperature should not exceed 300 °C. Above this, the equilibrium begins to shift in favor of benzene so that high-purity cyclohexane cannot be produced. As a result of these thermodynamic considerations, temperature control of the reaction is critical to obtaining essentially complete conversion of benzene to cyclohexane. Temperature control requires economic and efficient heat removal. This has been addressed in a number of ways by commercial processes. The earlier vapor-phase processes used multistage reactors with recycle of cyclohexane as a diluent to provide a heat sink, staged injection of benzene feed between reactors, and interstage steam generators to absorb the exothermic heat of hydrogenation. In the 1970s processes have been developed that use only one reactor or a combination of a liquid-and a vaporphase reactor. The objectives of the later processes were to reduce capital cost and improve energy utilization. However, all of the commercial processes have comparably low capital cost and good energy efficiency. In the vapor-phase process with multistage reactors in series, the benzene feed is divided and fed to each of the first two reactors. Recycled cyclohexane is introduced to the first reactor along with hydrogen. The recycled cyclohexane enables higher conversion in the reactors by absorbing part of the heat of hydrogenation. Steam generators between the reactors remove the heat of hydrogenation. The outlet temperature of the last reactor is controlled to achieve essentially 100 % conversion of benzene to cyclohexane. The effluent from the last reactor is cooled, and the vapor and liquid are separated. Part of the hydrogen-rich vapor is recycled to the first reactor, and the rest is purged to fuel gas or hydrogen recovery facilities. The liquid from the separator goes to a stabilizer where the overhead gas is sent to fuel gas; the remaining material is cyclohexane product, part of which is recycled to the first reactor. In the process with liquid- and vapor-phase reactors, benzene and hydrogen are fed to the liquid-phase reactor, which contains a slurry of finely divided Raney nickel. Temperature is maintained at 180 – 190 °C by pumping the slurry through a steam generator and by vaporization in the reactor. Roughly 95 % of the benzene is converted in this reactor. The vapor is fed to a fixed-bed reactor where the conversion of benzene is completed. The effluent from the fixed-bed reactor is processed as described previously for the vapor-phase process. Benzene hydrogenation is done typically at 20 – 30 MPa. The maximum reactor temperature is limited to ca. 300 °C so that a typical specification of < 500 mg/kg benzene and < 200 mg/kg methylcyclopentane in the product can be achieved. This is necessary because of the thermodynamic equilibrium between cyclohexane – benzene and cyclohexane – methylcyclopentane. Actually, equilibrium strongly favors methylcyclopentane, but the isomerization reaction is slow enough with the catalysts employed to avoid a problem if the temperature is controlled. The hydrogen content of the makeup hydrogen has no effect on product purity but it does determine the makeup, recycle, and purge gas rates. Streams with as low as 65 vol % hydrogen can be used. Carbon monoxide and sulfur compounds are catalyst deactivators. Both can be present in the hydrogen from catalytic naphtha reformers or ethylene units, which are typical sources of makeup hydrogen. Therefore, the hydrogen-containing stream is usually passed through a methanator to convert carbon monoxide to methane and water. Prior to methanation, hydrogen-containing gas can be scrubbed with caustic to remove sulfur compounds. Commercial benzene contains less than 1 mg/kg sulfur. In some cases, the recycle gas is also scrubbed with caustic to prevent buildup of hydrogen sulfide from the small amount of sulfur in the benzene. With properly treated hydrogen and specification benzene, a catalyst life in excess of three years can be achieved easily in fixed-bed reactors that use noble-metal catalysts supported on a base. The catalyst in the process that uses Raney nickel in suspension is reported to have a typical life of about six months before it must be replaced. Reference: Campbell, M. L. 2011. Cyclohexane. Ullmann's Encyclopedia of Industrial Chemistry.
Der unmittelbar an der Rummelsburger Bucht in Berlin-Lichtenberg gelegene Standort hat eine mehr als 100-jährige Industriegeschichte. Zunächst als Färberei genutzt, entstand 1880 am Standort einschließlich benachbarter Grundstücke die “AG für Anilinfabrikation”, später Aceta, die ab 1920 in die IG Farben aufging. Es wurden Acetatseiden und Acetatfasern (Zellwolle) hergestellt und veredelt (gefärbt, versponnen oder verwebt). Bei der Anilinproduktion auf der Basis von Nitrobenzolen und Nitrotoluolen wurden als Vor- und Zwischenprodukte Chlorbenzol, Chlornitrobenzol, Nitrophenol, Dichlorbenzol, Chloroform und Toluol eingesetzt. Nach 1945 gab es eine Umnutzung des IG Farben-Standortes. Es entstanden ein Gummiwerk (VEB Polymant), in dem auch in größerem Umfang Mineralölkohlenwasserstoffe im Rahmen der Vulkanisation eingesetzt wurden, eine Fotochemische Fabrik und ein Produktionswerk für Elektrorelais. Das Gummiwerk und die fotochemische Fabrik wurden im Zeitraum zwischen 1990 und 1993 aufgelöst und ein Großteil der Produktionsgebäude zurückgebaut. Die Grundstücke wurden seit 1994 durch die Wasserstadt GmbH Berlin entwickelt. Durch die ab 1991 durchgeführten umfangreichen Boden- und Grundwasseruntersuchungen sind erhebliche Boden- und Grundwasserbelastungen am Standort festgestellt worden. Entsprechend der Produktionsspezifik handelt es sich um einen Schadstoffcocktail aus v.a. organischen Schadstoffen. Hauptkontaminanten im Boden und im Grundwasser sind chlororganische Verbindungen, Arsen, aromatische Kohlenwasserstoffe (AKW) sowie lokal Mineralölkohlenwasserstoffe (MKW) mit aufschwimmender Ölphase. Die Quellbereiche im Boden konnten auf Grundlage einer in 2004 durchgeführten vertiefenden Archivrecherche weitestgehend lokalisiert werden. Das Grundwasser ist flächenhaft durch Chlorbenzole, Chloraniline und Chlornitrobenzole in hohen Konzentrationen (lokal bis zu 10.000 µg/l) sowie in Teilbereichen durch Chlormethylaniline, Methylaniline und Nitrotoluole sowie Arsen verunreinigt. Die Hauptkontaminanten konnten bis in eine Tiefe von > 50 m unter GOK auf der Aquifersohle nachgewiesen werden. Im Rahmen von Erschließungsmaßnahmen zur Standortent-wicklung wurden Sanierungsmaßnahmen mit vorheriger Tiefenenttrümmerung durchgeführt. In diesem Zusammenhang wurde mit AKW, MKW und Chlororganika belasteter Boden entsorgt. Im Herbst/Winter 2003/2004 erfolgte die Sanierung eines lokalen MKW-Schadens mit aufschwimmender Ölphase. Dabei wurden 2.100 m³ mit MKW und Chlororganika belasteter Boden ausgetauscht, über 13 t Ölphase (Öl-Wasser-Gemisch) abgesaugt und rund 3.200 m³ Wasser im Rahmen der begleitenden Bauwasserhaltung gereinigt. Im Frühjahr/Sommer 2005 wurde im Vorlauf von Investionsmaßnahmen (Ansiedlung eines Hi-Tech-Unternehmens) an zwei durch vertiefende Erkundungen lokalisierten Eintragsquellen Bodensanierungsmaßnahmen durch Rüttelsenkkasten- (Waben-)verfahren (2.600 m³) und Großlochbohrungen (600 m³) durchgeführt. Im Zusammenhang mit der Sanierungsmaßnahme wurden insgesamt ca. 5.400 t mit Chlorbenzolen, Chloranilinen und Chlornitrobenzolen belasteter Boden ausgetauscht sowie begleitend insgesamt ca. 7.000 m³ Grundwasser gereinigt. Weitere lokale Bodensanierungen sowie Tiefenenttrümmerungen im Zusammenhang mit der Grundstücksentwicklung erfolgten 2008 bis 2010. Im Rahmen der Bodensanierung und Tiefenenttrümmerung wurden ca. 9,2 t der chlor- und nitroorganischen Schadstoffe und ca. 91 t MKW (incl. Phase) aus dem Boden entfernt. Den Bodensanierungen nachfolgend wurde eine kombinierte Sicherungs- und Sanierungsmaßnahme des Grundwassers installiert. Durch die gewählte Anordnung der Brunnen, Leitungen und Stellflächen wurden Einschränkungen der Grundstücksnutzung und –entwicklung erfolgreich vermieden. Über vertikale Entnahmebrunnen wird verunreinigtes Grundwasser einer zentralen Reinigungsanlage am Standort zugeführt. Ein Teilstrom durchläuft einen hydraulischen Kreislauf. Die Grundwasserreinigungsanlage befindet sich seit Februar 2010 im Regelbetrieb. Es werden durchschnittlich 20 m³/h Grundwasser gefördert und mit Hilfe von Festbettreaktoren und einer vorgeschalteten Arsenstufe abgereinigt. Die Entnahmemengen der zu Beginn 8 Förderbrunnen (später 6) wurden laufend angepasst. Nach Bestandsaufnahme und der Erarbeitung eines Ge-samtsanierungskonzeptes durch alle am Projekt beteiligten Ingenieurbüros wurde auf Basis der bisherigen Ergebnisse der Sanierung, des begleitenden Monitorings und der aktualisierten Modellierung die Einbeziehung des tieferen Grundwasserleiters bis >50 m sowie die Einbeziehung von bisher nicht erfassten Hot-Spot-Bereichen vorgenommen. Dazu wurden u.a. neue Förderbrunnen bis >50 m sowie weitere vier Infiltrationsbrunnen installiert. Seit August 2016 erfolgt bei gleicher Sanierungstechnologie die Förderung über neun Förderbrunnen mit einer Gesamtförderrate von rund 30 m³/h. Bis Ende April 2015 konnten damit 1.895 kg chlororganische Schadstoffe und 287 kg Arsen aus dem Grundwasser entfernt werden. Bis Ende Januar 2019 konnten damit 3.782 kg chlororganische Schadstoffe und 580 kg Arsen aus dem Grundwasser entfernt werden. Derzeit wird eine Anlagenlaufzeit bis 2020 vorgesehen, wobei von einer zwischenzeitlichen Anpassung der Entnahmemengen auszugehen ist. Für die Zeit nach der hydraulischen Sanierung wird derzeit die Möglichkeit des Einsatzes von ENA-Maßnahmen geprüft. Für die Erkundungs-, Planungs- und Sanierungsmaßnahmen einschließlich Grundwassermonitoring entstanden bisher Kosten in Höhe von rund 7,5 Mio. €. Am Standort erfolgte eine Gewerbeansiedlung. Auf dem Grundstück haben sich ein Werftbetrieb, ein Hi-Tech-Unternehmen, zwei mittelständische Betriebe des verarbeiten-den Gewerbes sowie Ateliers niedergelassen. Straßen und Wege wurden dem Bezirk Lichtenberg übergeben.
Im Berliner Ortsteil Prenzlauer Berg befindet sich der etwa 24 ha große Ernst-Thälmann-Park. 1872 entstand hier das vierte Berliner Städtische Gaswerk. Neben Gas wurden Koks und die üblichen Nebenprodukte wie Teer, Schwefel und Ammoniak hergestellt. Das Produktionsprofil erweiterte sich durch die 1915 gebaute Benzolanlage, welche durchgängig hohe Mengenumsätze erwirtschaftete. Im Verlauf der Jahrzehnte folgten zahlreiche Um- und Anbauten am Gebäude- und Anlagenbestand. Im Ergebnis des Zweiten Weltkrieges war ein beträchtlicher Teil des Geländes beschädigt oder zerstört. Aufgrund des immer desolateren Zustandes der Anlagentechnik ließ sich die Produktion nicht mehr aufrechterhalten. Mit dem politischen Beschluss, hier ein Wohngebiet zu errichten, begann 1982 der schrittweise Abriss. Die technisch aufwändigen Baumaßnahmen vollzogen sich unter starkem zeitlichen Druck. Das aus Wohngebäuden, öffentlichen Grünflächen, Sport- und Freizeitanlagen angelegte Wohngebiet wurde 1986 eingeweiht. Es ist davon auszugehen, dass vor allem in der Betriebszeit des Gaswerkes große Mengen an Schadstoffen in den Untergrund gelangten. Im Fokus der Betrachtungen steht die ehemalige Benzolanlage im südlichen Teil des Geländes. Zu anderen gefahrenträchtigen verfahrenstechnischen Anlagen gehörten die Gasgeneratorenstation, die Teerbecken, die Ofenblöcke und die Gasometer. Die Zerstörungen im Zweiten Weltkrieg sowie der unsachgemäße Umgang mit Schadstoffen im Produktionsprozess und beim Abriss haben zu einer hohen Kontaminierung beigetragen. Nachdem beim Gesundheitsamt des Bezirkes zu Beginn der 1990er Jahre vermehrt Klagen der Anwohner über gesundheitliche Beeinträchtigungen eingingen, begann 1991 ein umfangreiches Untersuchungsprogramm, welches fortwährend bis in die Gegenwart durch die verschiedensten Erkundungstechniken erweitert wurde. Die Untersuchungen erbrachten sehr hohe Schadstoffkonzentrationen im Boden und Grundwasser an Mineralölkohlenwasserstoffen (MKW), Monoaromatische Kohlenwasserstoffen (BTEX), Phenolen, Polycyclische aromatische Kohlenwasserstoffen (PAK) und Cyaniden. Zudem war die Bodenluft durch leicht flüchtige Stoffgruppen wie BTEX und Naphthalin kontaminiert. Der Schwerpunkt der Belastungen lag in Tiefen bis etwa 4 m unter Gelände. Das gut lösliche Benzol breitete sich jedoch deutlich weitreichender über eine Fahnenlänge von mehr als 250 m und eine Tiefe von bis zu 40 m unter Gelände aus. Auf Forderung der Bodenschutz- Altlastenbehörde und mit Finanzmitteln des Landes Berlin wurden zwischen 1991 und 1994 drei Bodenluftabsauganlagen betrieben, eine weitere Anlage dieser Art bis 2009, zwischen 1994 und 1996 folgte der Bodenaustausch auf einer Grundfläche von 2.000 m² bis in die Tiefe von 4 m. Durch die Sanierungsmaßnahmen, die ein hohes Maß an Arbeits- und Emissionsschutz erforderten, wurden 7.100 t hoch belasteter Boden, 110 t Bauschutt/Öl, 4.000 l Teeröl aus Absetzbecken, diverse mit Schadstoffen gefüllte Rohrleitungen, Schächte und Fundamente sowie 68 t abgepumpte Flüssigkeiten entfernt. Aufgrund der umfangreichen Sanierungsmaßnahmen, insbesondere des Bodenaushubs und der Bodenluftabsaugung, kann eine Gefährdung für die sensiblen Nutzungen des Ernst-Thälmann-Parks als Wohngebiet ausgeschlossen werden. Messungen der Bodenluft in der obersten Bodenschicht dokumentieren diese Bewertung. Diese historischen Fotos dokumentieren die Untergrundverhältnisse in seiner Komplexität mit den noch vorhandenen gefahrenträchtigen Altanlagensystemen, hochkontaminierten Böden, Fundamenten und Rohrleitungen. Sie machen deutlich, wie technisch anspruchsvoll die Bodensanierungen der hochtoxischen und kanzerogenen Schadstoffe in einem eng bebauten urbanen Raum geplant und umgesetzt wurden. Nach Beendigung der Gefahrenabwehr im Jahr 1996 folgten verschiedene Phasen der Erfolgskontrolle. Dabei war festzustellen, dass die Schadstoffbelastungen nach Entfernung der Eintragsquelle um eine Potenz zurückgingen. Dennoch sind die Kontaminierungen in den tieferen Boden- und Grundwasserschichten, also tiefer als 10 m unter Gelände, so erheblich, dass eine hydraulische Sicherung des Grundwasserabstroms geplant werden musste. Nach Vorversuchen und Erstellung eines hydraulischen Modells wurde die technische Anlage unter Zuständigkeit des Referats V E der Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt konzipiert und im Herbst 2004 im Parkgelände aufgestellt. An derzeit sieben Brunnenstandorten wird das Grundwasser aus den relevanten Teufen mit 15 bis 16 m³/h gefördert, in einer Wasserreinigungsanlage gereinigt und nachfolgend wieder in den Untergrund infiltriert. Die Reinigung erfolgt durch einen mikrobiologischen Schadstoffabbau in vier Festbettreaktoren und einen Ionenaustauscher für die Cyanidreinigung. Nach der Entkeimung durch ein Elektrolyseverfahren kann das gereinigte Wasser wieder in den Untergrund gegeben werden. Die Anlage wird monatlich durch ein Labor überwacht. Im halbjährlichen Rhythmus findet ein Grundwassermonitoring statt. Im Zeitraum von Herbst 2004 bis zum Ende des Jahres 2023 wurden rund 25 t Schadstoffe aus dem Grundwasser ausgetragen. Im Frühjahr 2021 ist die Abstromfahne südlich der Danziger Straße erstmals abgerissen. Ausgedehnte Fläche und Konzentration in der Fahne haben sich deutlich verringert. In den Jahren 2009 bis 2014 folgten zur abschließenden Bewertung der Schadenssituation und zur Erarbeitung der Gesamtstrategie weitere umfangreiche Untersuchungen. Aus den Ergebnissen ist zu bilanzieren, dass eine Quellensanierung des Bodens ab einer Tiefe von mehr als 10 m unter Gelände technisch schwierig, mit einem sehr hohen Entsorgungsaufwand verbunden und allein aus diesem Grund nicht finanzierbar ist. Das Gelände und der Grundwasserabstrom werden deshalb dauerhaft mit der vorstehend beschriebenen hydraulischen Maßnahme beiderseits der Danziger Straße gesichert. Durch Niederschlagsdefizite wird der jährliche Bedarf an Wasser für Bewässerungszwecke in öffentlichen Parkanlagen zunehmend größer. Im unter Denkmalschutz stehenden Thälmannpark kommt hinzu, dass dem dort befindlichen Kiezteich kontinuierlich Wasser zugeführt werden muss, um den Wasserstand zu halten. Über viele Jahre schon engagieren sich die Anwohner des Parks für die Pflege und Auffüllung des Teiches. Mehrmals im Jahr sammelt eine Bürgerinitiative private Spendengelder, um die Zuspeisung aus dem öffentlichen Trinkwassernetz realisieren zu können. Zur Verbesserung der hydrologischen Situation und zur nachhaltigen Unterstützung der Bürger wurde im Zusammenwirken mit dem Straßen- und Grünflächenamt Pankow, der Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt, dem Anlagenbetreiber und den beteiligten Planungsbüros die bauliche und verfahrenstechnische Planung für eine zusätzliche Reinigungsstufe sowie ein Wasserspeicher- und Bewässerungssystem entwickelt. War es bisher nicht möglich, dass gereinigte Wasser aufgrund des verbliebenen Ammoniums wirtschaftlich zu nutzen, werden nun ein Bodenfilter, bestehend aus vier mit Schilf bepflanzten Becken, und das nachgeschaltete Stauraum- und Bewässerungssystem für den rückstandsfreien Abbau sorgen. Etwa 10% des aus der Grundwasserreinigungsanlage anfallenden Reinwassers, etwa 30 m³ am Tag, stehen in Zukunft für die Park- und Kiezteichpflege zur Verfügung. Vom Spätherbst bis zum Frühjahr, wenn weder der Park noch der Kietzteich Wasser benötigen, schaltet sich die vollautomatische Grundwasserreinigungsanlage auf einen vollständigen Infiltrationsbetrieb um. Mit dieser Maßnahme kann der Verbrauch von Trinkwasser für Bewässerungs- und Auffüllzwecke erheblich minimiert, im Idealfall sogar gänzlich vermieden werden. Das Verfahrensprinzip der vollständigen Wiederverwertung dekontaminierten Grundwassers zur Stützung des Wasserhaushaltes eines Teiches / Sees sowie des Hauptgrundwasserleiters und zur Bewässerung von Parkflächen hat aktuell in Berlin ein Alleinstellungsmerkmal und soll ein positives Beispiel auch für andere vergleichbare Standorte sein. Die Maßnahmen dienen der Verbesserung des Stadtklimas und dem Wohlbefinden der Menschen am Standort und leisten einen wesentlichen Beitrag zum Klimaschutz. Die baulichen Maßnahmen zur Errichtung des Bodenfilters und des Stauraum- und Bewässerungssystems sind im Juni 2022 abgeschlossen worden. Die Schilfpflanzen haben sich bis zum Frühjahr 2023 etabliert. Die Inbetriebnahme der Anlagenstufe erfolgte im Mai 2023. Im Juni 2024 wurde der Betrieb der Grundwasserreinigungsanlage durch auf den Containerdachflächen montierte Photovoltaikmodule ergänzt. Die PV-Technologie unterstützt eine nachhaltige Stromerzeugung, mit der über das Jahr gesehen etwa 15 % des Stromverbrauches gedeckt werden kann. Für die Ersterkundung und die akuten Gefahrenabwehrmaßnahmen mittels Bodenaushub wurden bis zur Mitte der 1990er Jahre über 9 Mio. € aufgewendet. Die seit 2004 anfallenden Kosten für die Grundwassersicherung, für Erweiterungen und sanierungsvorbereitende Untersuchungen sowie aller im Zusammenhang mit der Sanierung anfallenden Leistungen belaufen sich derzeit auf ca. 8,3 Mio. €. Die Kosten für die Errichtung der zusätzlichen Anlagenstufe mit Stauraum- und Bewässerungssystem betragen rund 1 Mio. €. Dafür hat der Bezirk Pankow Fördermittel des Landes Berlin akquiriert.
Das Projekt "Neue energiesparende Prozessablaeufe in der Industrie: Die direkte Umwandlung von Methan in Ethylen, Methanol und Formaldehyd" wird vom Umweltbundesamt gefördert und von Universität Karlsruhe (TH), Institut für Chemische Verfahrenstechnik durchgeführt. The development of direct (one-step) and energy efficient processes for the conversion of methane to ethylene and to methanol/formaldehyde has been a long-sought goal. Despite intensive research during the last twelve years the maximum ethylene and formaldehyde yields obtained in laboratory-scale reactors until 1994 was of the order of 20 percent and 5 percent respectively. This is due to the much higher reactivity with oxygen of the partial oxidation products (ethylene and methanol/formaldehyde respectively) than that of methane. In 1994 one of the participating research teams (University Patras) developed a novel laboratory scale gas-recycle reactor separator which gave ethylene yields up to 85 percent for the oxidative coupling of methane (OCM) (Science 264, 1583, 1994). In this novel reactor-seperator ethylene and ethane are trapped, and thus protected from further oxidation, in a molecular sieve trap in the recycle loop. They are then released by subsequent heating of the molecular sieve trap. The above very encouraging results were obtained in a small microreactor (catalyst mass 0.1 g, molecular sieve mass 2-3g) able to handle up to 3 ccSTP/min of CH4. The objectives of the research are: 1. To study the scale-up of the novel reactor separator for ethylene production by building benchscale units able to convert up to 1000 ccSTP/mm of CH4 each to ethylene. The units will employ a fixed-bed reactor with an optimized catalyst composition, and an optimally designed swing-bed molecular sieve trap. The target is to achieve ethylene yields above 65 percent with a recycle ratio less than eight. 2. To construct and test a similar catalytic reactor-separator for the production of methanol/formaldehyde from methane (up to 1000 ccSTP/min). The difference from case 1 is in the selection of the catalytic and adsorbent materials. The target for the methane to methanol/formaldehyde (MMF) process is a total product yield of 55 percent at a recycle ratio less than fifty. These new one-step processes are both exothermic and will have a very strong potential to replace the existing two- or three-step commercial routes for the production of ethylene and methanol which involve severely endothermic steps.
Das Projekt "Teilprojekt Schoop" wird vom Umweltbundesamt gefördert und von Ingenieurbüro Dr.-Ing. Schoop GmbH durchgeführt. Biokatalyse2021 - ProTool: Entwicklung neuer Tools und verfahrenstechnischer Konzepte zur mikrobiellen Biotransformation unter extremen Bedingungen: modulare Multi-Bioreaktoren (Fa. medorex, Fa. Schoop, Pörtner); Entwicklung spezieller Festbettreaktoren, integriert in Multi-Bioreaktoren (Fa. medorex, Pörtner); modellgestützte Prozessführung von Fermentationsprozessen (Fa. Schoop, FA. ZytoVision, BIS Bremerhaven, Hass, Fa. medorex, Pörtner); Echtzeit- und Trainingssimulatoren (Hass, Fa. Schoop, Fa. ZytoVision, Pörtner). Laufzeit 36 Monate gemäß Balken- und Meilensteinplan medorex - Modulare Multi-Bioreaktoren mit der von Schoop erstellten Regelungs- und Automatisierungstechnik, Schoop 'Regelungs- und Automatisierungstechnik sowie Echtzeit-Simulatoren / Trainingssimulatoren. ZytoVision - 'Pilotanwender' und Ausbau des Wettbewerbsvorsprung bei der Entwicklung und Produktion neuer rekombinanter Produkte sowie Erweiterung der Produktionskapazitäten, AG Pörtner (TUHH) - Dienstleistungen zur Entwicklung von Bioreaktoren sowie zur Bioprozessentwicklung, AG Hass (HS Bremen) Bioprozessentwicklungen und - zusammen mit Schoop - Trainingssimulatoren, Schulungen. BIS - Koordination Verwertung
Das Projekt "Teilprojekt HS Bremen" wird vom Umweltbundesamt gefördert und von Hochschule Bremen, Institut für Umwelt- und Biotechnik durchgeführt. Biokatalyse2021 - ProTool: Entwicklung neuer Tools und verfahrenstechnischer Konzepte zur mikrobiellen Biotransformation unter extremen Bedingungen: modulare Multi-Bioreaktoren (Fa. medorex, Fa. Schoop, Pörtner); Entwicklung spezieller Festbettreaktoren, integriert in Multi-Bioreaktoren (Fa. medorex, Pörtner); modellgestützte Prozessführung von Fermentationsprozessen (Fa. Schoop, FA. ZytoVision, BIS Bremerhaven, Hass, Fa. medorex, Pörtner); Echtzeit- und Trainingssimulatoren (Hass, Fa. Schoop, Fa. ZytoVision, Pörtner). Laufzeit 36 Monate gemäß Balken- und Meilensteinplan medorex - Modulare Multi-Bioreaktoren mit der von Schoop erstellten Regelungs- und Automatisierungstechnik, Schoop - Regelungs- und Automatisierungstechnik sowie Echtzeit-Simulatoren / Trainingssimulatoren. ZytoVision - 'Pilotanwender' und Ausbau des Wettbewerbsvorsprung bei der Entwicklung und Produktion neuer rekombinanter Produkte sowie Erweiterung der Produktionskapazitäten, AG Pörtner (TUHH) - Dienstleistungen zur Entwicklung von Bioreaktoren sowie zur Bioprozessentwicklung, AG Hass (HS Bremen) Bioprozessentwicklungen und - zusammen mit Schoop - Trainingssimulatoren, Schulungen. BIS - Koordination Verwertung
Das Projekt "Mechanismen der NOx-Entstehung und -Reduktion bei der Verbrennung von Kohle" wird vom Umweltbundesamt gefördert und von Bergbau-Forschung, Forschungsinstitut des Steinkohlenbergbauvereins durchgeführt. NOx entsteht bei der Kohleverbrennung zum grossen Teil aus dem Brennstoffstickstoff, der sich waehrend der im Feuerungsraum ablaufenden Pyrolyse auf den Restkoks und die Fluechtigen aufteilt. Ausschlaggebend fuer primaere Minderungsmassnahmen sind Reduktionsreaktionen in der Gasphase und am Restkoks. Zur Aufklaerung des komplexen Reaktionsgeschehens werden folgende Reaktionsgruppen getrennt untersucht: Fuer die Pyrolyse bei 300 - 1000 Grad C ein Sandwirbelbett und ein gasdurchstroemtes, elektrisch beheiztes Drahtnetz; fuer die Verbrennung des im Sandwirbelbett erzeugten Fluechtigenstromes ein elektrisch beheizter Rohrofen (geplant); fuer die NOx-Reduktion ein durchstroemter Festbettreaktor. Die Verteilung des Kohlestickstoffs bei der Pyrolyse wurde in Abhaengigkeit von Inkohlungsgrad, Temperatur, Maceralzusammensetzung und Korngroesse untersucht. die gasfoermigen Produkte wurden mit einem Gaschromatographen und nasschemisch analysiert, die kondensierbaren Produkte (Teere) durch Ionenaustauschchromatographie aufgetrennt und mittels nichtwaessriger potentiometrischer Titration charakterisiert. Dabei ergab sich folgendes: Stickstoff ist in Kohle und Teeren vorwiegend heterozyklisch in groesseren aromatischen Ringen gebunden. Teere gehen oberhalb etwa 600 Grad C Sekundaerreaktionen ein, durch die aber die Basizitaet der Stickstoffverbindungen nicht beeinflusst wird. An stickstoffhaltigen Gasen entstehen bei der Pyrolyse vorwiegend HCN und als dessen Folgeprodukt NH3. Gegenueber der Kohle enthaelt der Restkoks bei kurzer Verweilzeit leicht erhoehte Stickstoffkonzentrationen; im Gas werden unabhaengig vom Inkohlungsgrad etwa 6 - 7 v.H. des Gesamtstickstoffs.
Das Projekt "Teilprojekt TUHH" wird vom Umweltbundesamt gefördert und von Technische Universität Hamburg-Harburg, Institut für Bioprozess- und Biosystemtechnik durchgeführt. Biokatalyse2021 - Protool: Entwicklung neuer Tools und verfahrenstechnischer Konzepte zur mikrobiellen Biotransformation unter extremen Bedingungen: modulare Multi-Bioreaktoren (Fa. medorex, Fa. Schoop, Pörtner); Entwicklung spezieller Festbettreaktoren, integriert in Multi-Bioreaktoren (Fa. medorex, Pörtner); modellgestützte Prozessführung von Fermentationsprozessen (Fa. Schoop, FA. ZytoVision, BIS Bremerhaven, Hass, Fa. medorex, Pörtner); Echtzeit- und Trainingssimulatoren (Hass, Fa. Schoop, Fa. ZytoVision, Pörtner). Laufzeit 36 Monate gemäß Balken- und Meilensteinplan medorex - Modulare Multi-Bioreaktoren mit der von Schoop erstellten Regelungs- und Automatisierungstechnik, Schoop Regelungs- und Automatisierungstechnik sowie Echtzeit-Simulatoren / Trainingssimulatoren. ZytoVision - 'Pilotanwender' und Ausbau des Wettbewerbsvorsprung bei der Entwicklung und Produktion neuer rekombinanter Produkte sowie Erweiterung der Produktionskapazitäten, AG Pörtner (TUHH) - Dienstleistungen zur Entwicklung von Bioreaktoren sowie zur Bioprozessentwicklung, AG Hass (HS Bremen) Bioprozessentwicklungen und - zusammen mit Schoop - Trainingssimulatoren, Schulungen. BIS - Koordination Verwertung
Das Projekt "Biomass fluidised bed gasification with in situ hot gas cleaning (AER-GAS II)" wird vom Umweltbundesamt gefördert und von Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg durchgeführt. Objective: The project aim is a low-cost gasification process with integrated in-situ gas cleaning for the conversion of biomass into a product gas with high hydrogen concentration, high heating value and low tar/alkali/sulphur concentration in one process step for s ubsequent power production. The proposed process uses in-situ CO2 capture (AER, Absorption Enhanced Reforming). It is more efficient than conventional gasification due to (i) the in-situ integration of the reaction heat of CO2 absorption and water-gas shif t reaction heat (both exothermic) into the gasification and (ii) the internal reforming of primary and secondary tars, which cuts off the formation of higher tars. Thus, the chemical energy of tars remains in the product gas. The product gas after dust rem oval can directly be used in a gas engine for electricity generation. Due to the low operation temperature (up to 700 C) and due to CaO-containing bed materials, the proposed process allows the use of problematic feedstocks such as biomass with high minera l and high moisture content, e.g. straw, sewage sludge, etc., leading to an increased market potential for biomass gasification processes. Screening/development of absorbent materials with high attrition stability and tar cracking properties will be carrie d out. Analysis of tar formation/decomposition process will be studied in a lab-scale fixed bed reactor and a 100 kWth circulating fluidised bed reactor (continuous mode). With the acquired data, the 8 MWth biomass plant at Guessing, Austria, will be opera ted with absorbent bed material in order to prove the feasibility of a scale-up and to assess the economical aspects of the process. In order to point out the market potential, the cost reduction of the AER technology will be quantified in comparison with the conventional gasification power plant. Expected results will be: (i) a broad knowledge of the proposed process and (ii) a low-cost technology for biomass gasification with subsequent power production.
Das Projekt "Teilprojekt 10" wird vom Umweltbundesamt gefördert und von Technische Universität Berlin, Institut für Technischen Umweltschutz, Fachgebiet Umweltverfahrenstechnik durchgeführt. Entwicklung eines Prozesses zur Entfernung von Spurenstoffen mit eisenoxidierenden und -reduzierenden Bakterien für kommunale Kläranlagen. Der Prozess soll kostengünstig, einfach integrierbar und sowohl in situ als auch nachgeschaltet anwendbar sein. Dabei sollen keine kritischen Transformationsprodukte gebildet und bereits vorhandene eliminiert werden. Auf Grundlage bereits vorhandener Ergebnisse und Bakterienstämme der UMB werden die Wachstumskinetiken und Abbaubedingungen der Eisenbakterien ermittelt und optimiert; anschließend werden ausgewählte Bakterienarten in Festbettreaktoren kultiviert und an reale Betriebsbedingungen adaptiert. Parallel wird die Konzentration der Eisenbakterien zunächst in Technikumskläranlagen (Festbettreaktor, Belebtschlammverfahren) mit Modellabwasser durch Einstellung der Betriebsparameter (z.B. erhöhte Fe2+-Dosierung, O2 Eintrag) so erhöht, dass ein Abbau der im Projekt priorisierten Spurenstoffe stattfindet. In der zweiten Projekthälfte wird die Festbett-Technikumsanlage in Darmstadt parallel zu den dort installierten Technologien betrieben (Vergleich, chemisch-analytische und ökotoxikologische Bewertungen). Das Verhalten unter großtechnischen Bedingungen wird mit einer Festbett-Pilotanlage (V ca. 2 m3, SPA) mit dem Ablauf der KA Ulm sowie in einer ca. 10.000 EW Kläranlage im Donauried (in situ) über 9 Monate untersucht und optimiert. Die mikrobiologische Begleitung sichert die Einbindung der neusten Laborergebnisse.
Origin | Count |
---|---|
Bund | 191 |
Land | 2 |
Type | Count |
---|---|
Förderprogramm | 190 |
Text | 3 |
License | Count |
---|---|
geschlossen | 2 |
offen | 190 |
unbekannt | 1 |
Language | Count |
---|---|
Deutsch | 193 |
Englisch | 10 |
Resource type | Count |
---|---|
Archiv | 1 |
Datei | 1 |
Dokument | 1 |
Keine | 160 |
Webseite | 32 |
Topic | Count |
---|---|
Boden | 124 |
Lebewesen & Lebensräume | 158 |
Luft | 101 |
Mensch & Umwelt | 193 |
Wasser | 170 |
Weitere | 193 |