Bioraffineriekonzepte, zu welchen das hier beantragte Projekt gehört, werden in Zukunft mehr und mehr dazu beitragen, fossile durch heimische und biobasierte Rohstoffquellen zu ersetzen. Ein bereits lange bestehendes Konzept resultiert aus der Zellstoffproduktion. Hierfür werden schon immer biobasierte Produkte eingesetzt. Jedoch werden die Reststoffe der Zellstoffproduktion meist nur energetisch genutzt. In den letzten Jahrzehnten ist das Interesse an Lignin und den enthaltenen Fettsäuren aber stetig gewachsen, wobei bis heute noch kein industrieller Prozess zur stark wertgesteigerten Verwertung dieser Reststoffe, und somit eine Erweiterung des Bioraffineriekonzeptes zur Herstellung von Spezialchemikalien, erreicht werden konnte. Dies soll mit dem hier beschriebenen Projekt erfolgen. Gesamtziel des Projektes ist die Entwicklung (i) der chemischen Umsetzung von Fettsäuren mittels Kolbe-Elektrolyse (ii) eines passgenauen Elektrolyseurs und (iii) der Hochskalierung zur Herstellung von Mustermengen an Weiß- bzw. Paraffinölen auf Basis von biobasierten Fettsäuren aus der Tallöldestillation. Diese sollen in Formulierungen für Kosmetik- oder Bauprodukten getestet werden. Am Ende soll ein technischer Elektrosyntheseprozess grundlegend etabliert sein und dessen Wirtschaftlichkeit inkl. einer ersten LCA abgeschätzt werden. Dazu sollen im Projekt mehrere Teilziele erarbeitet werden.
Bioraffineriekonzepte, zu welchen das hier beantragte Projekt gehört, werden in Zukunft mehr und mehr dazu beitragen, fossile durch heimische und biobasierte Rohstoffquellen zu ersetzen. Ein bereits lange bestehendes Konzept resultiert aus der Zellstoffproduktion. Hierfür werden schon immer biobasierte Produkte eingesetzt. Jedoch werden die Reststoffe der Zellstoffproduktion meist nur energetisch genutzt. In den letzten Jahrzehnten ist das Interesse an Lignin und den enthaltenen Fettsäuren aber stetig gewachsen, wobei bis heute noch kein industrieller Prozess zur stark wertgesteigerten Verwertung dieser Reststoffe, und somit eine Erweiterung des Bioraffineriekonzeptes zur Herstellung von Spezialchemikalien, erreicht werden konnte. Dies soll mit dem hier beschriebenen Projekt erfolgen. Gesamtziel des Projektes ist die Entwicklung (i) der chemischen Umsetzung von Fettsäuren mittels Kolbe-Elektrolyse (ii) eines passgenauen Elektrolyseurs und (iii) der Hochskalierung zur Herstellung von Mustermengen an Weiß- bzw. Paraffinölen und Paraffinen auf Basis von biobasierten Fettsäuren aus der Tallöldestillation. Diese sollen in Formulierungen für Kosmetik- oder Bauprodukten sowie als Verarbeitungshilfsmittel bei Polymeren getestet werden. Am Ende soll ein technischer Elektrosyntheseprozess grundlegend etabliert sein und dessen Wirtschaftlichkeit inkl. einer ersten LCA abgeschätzt werden. Dazu sollen im Projekt mehrere Teilziele erarbeitet werden.
Lipide haben wahrscheinlich große Bedeutung für die Stabilisierung organischer Substanz in Böden, sie wurden aber bisher mittels moderner strukturchemischer und isotopischer Methoden nur wenig untersucht. Durch die Kombination dieser Methoden sollen erstmals gleichzeitg Aussagen über Herkunft (Pflanzen, Bakterien, Pilze) und Umsatzraten (d13C) der Lipide auf molekularer Ebene ermöglichen. Der Nutzungswechsel von Roggen- (C3-) zu Mais-Monokultur (C4-Pflanze) markierte die zugeführte Biomasse strukturell und isotopisch. Die Nutzung von Rückstellproben ermöglicht eine über vier Jahrzehnte zeitlich aufgelöste Auswertung dieses landwirtschaftlichen Freilandversuchs. Die Lipide sollen mit einer Kombination moderner struktureller, spektroskopischer und isotopischer Analysetechniken der Bodenchemie, organischen Geochemie und Biochemie untersucht werden. Untersuchungen sollen an Gesamtböden und ausgewählten PartikelgrößenFraktionen erfolgen. Die Bodenlipide werden erstmalig über eine automatisierte sequentielle Flüssigkeitschromatographie in folgende Fraktionen getrennt: a) Aliphaten, b) Ketone/Alkohole, c) Fettsäuren, d) Aromaten, e) basische Lipide und f) hochpolare Biopolymere. Diese Fraktionen sollen anschließend strukturell identifiziert (13C NMR, GC-MS) und die Fraktionen a) bis c) gesamt- und komponentenspezifisch (GC-irmMS) d 13C-isotopisch charakterisiert werden.
Das beantragte Projekt untersucht Veränderungen in der Struktur von Boden-Nahrungsnetzen mit dem Waldtyp und der Intensität der forstlicher Waldnutzung in den drei Regionen der Biodiversitäts-Exploratorien. Die geplanten Arbeiten sind in vier Arbeitspakete (WPs) gegliedert. WP1 untersucht Dichte, Biomasse und Zusammensetzung der Meso- und Makrofauna von jeweils 16 Flächen der drei Exploratorien. Die Untersuchung erlaubt die langfristige zeitliche Dynamik in der Struktur von Bodentiergemeinschaften zu analysieren und erweitert die existierende Zeitreihe auf 15 Jahre. WP2 fokussiert auf Energieflüsse durch Zersetzergemeinschaften und ihre Variation mit Waldtyp / Intensität der Waldnutzung, und quantifiziert wichtige Ökosystem-Dienstleistungen der Bodenfauna wie Zersetzung und Prädation; hierzu werden Untersuchungen mit stabilen Isotopen sowie Komponenten-spezifische Analysen von Fettsäuren und Aminosäuren durchgeführt, die es erlauben, die trophische Struktur sowie die relative Bedeutung von Energiekanälen im Boden, mit Pflanzen, Bakterien und Pilzen als basalen Ressourcen, zu quantifizieren. WP3 fokussiert auf die Analyse der Nahrungsbeziehung zwischen mikrobivoren Mikroarthropoden und ihrer mikrobiellen Beute unter Verwendung von molekularer Darminhaltsanalyse basierend auf generellen Primern für Bakterien und Pilzen. In WP 4 wird im Rahmen des neuen 'forest gap' Experiments die Reaktion der Bodenfauna auf eine starke Störung untersucht. Die Ergebnisse der Untersuchungen erlauben (1) die Struktur und zeitliche Dynamik von Bodennahrungsnetzen in bisher unerreichter Genauigkeit zu verstehen und zu modellieren (WP1, WP2, WP4); (2) allgemeine Charakteristika von Bodentiergemeinschaften zu erkennen und deren Beitrag zu Ökosystemfunktionen in Wäldern unterschiedlicher Nutzungsintensität zu quantifizieren (WP2, WP3); (3) neue Methoden zur Untersuchung der Struktur von Boden-Nahrungsnetzen zu verwenden, die ein genaueres Verständnis der relativen Bedeutung von Energiekanälen in Wäldern unterschiedlicher Nutzungsintensität ermöglichen (WP2, WP3); und (4) die Reaktion von Boden-Nahrungsnetzen auf starke Störungen zu verstehen (WP4). Insgesamt erlaubt das Projekt die Struktur von Boden-Nahrungsnetzen, deren Variation in Raum und Zeit, und deren strukturierende Größen in bisher unerreichtem Umfang und Genauigkeit zu charakterisieren. Allgemein trägt das Projekt dazu bei, Variationen in der Struktur und Funktion von Waldökosystemen mit der Intensität menschlicher Eingriffe zu verstehen, und bildet damit eine essentielle Komponente der Biodiversitäts-Exploratorien.
Pflanzliche Öle werden als energiereiche Reservestoffe in Speicherorgane von Pflanzen eingelagert. Sie sind chemisch gesehen Ester aus Glycerin und drei Fettsäuren. In Deutschland konzentriert sich der Ölsaatenanbau auf Raps, Sonnenblume und Lein. Im Freistaat Sachsen dominiert auf Grund der Standortbedingungen und vor allem der Wirtschaftlichkeit eindeutig der Raps. Der maximal mögliche Anbauumfang von Raps liegt aus anbautechnischer Sicht bei 25 % der Ackerfläche und ist noch nicht ausgeschöpft (Sachsen 2004: 17 %). Für den landwirtschaftlichen Anbau kommen eine Reihe weiterer ölliefernder Pflanzenarten oder spezieller Sorten in Betracht. Interessant sind sie aus der Sicht der Verwertung insbesondere, wenn sie hohe Gehalte einzelner spezieller Fettsäuren aufweisen. Bei der Verarbeitung können dann aufwändige Aufbereitungs- und Trennprozesse eingespart und die Synthesevorleistung der Natur optimal genutzt werden. Der Anbauumfang ist jedoch meist noch sehr gering. Beispiele sind Nachtkerze und Iberischer Drachenkopf, aber auch Erucaraps und ölsäurereiche Sonnenblumensorten. a) stoffliche Verwertung In der stofflichen Verwertung reichen die Einsatzfelder pflanzlicher Öle von biologisch schnell abbaubaren Schmierstoffen, Lacken und Farben, über Tenside, Kosmetika, Wachse bis zu Grundchemikalien, aber auch Bitumen. b) energetische Verwertung Desweiteren können Pflanzenöle in Fahrzeugen, stationären oder mobilen Anlagen energetisch verwertet werden. Für den breiten Einsatz ist derzeit vor allem Biodiesel geeignet. Dieser kommt als reiner Kraftstoff zum Einsatz, seit 2004 auch in Beimischung zu Dieselkraftstoff. Eine weitere Möglichkeit eröffnet sich durch die Verwendung von reinem Rapsöl.
Gebrauchte oder minderwertige native Fette und Öle sind eine interessante Energiequelle für Dieselmaschinen, die sich durch eine ausgezeichnete Ökobilanz auszeichnen und nicht in Konkurrenz zu Nahrungs- oder Futtermitteln stehen. Dem Einsatz in Dieselmschinen stehen der i.d.R. hohe Gehalt an Schlackebildnern (Ca, Mg, Na, K, P) und an freien Fettsäuren entgegen. Ziel des Vorhabens ist es, ein Verfahren zu entwickeln, mit dem die o.g. Rohstoffe so aufzuarbeiten sind, dass sie ohne weiteres in Dieselmaschinen eingesetzt werden können. Dazu wurde der Rohstoff einer sauer katalysierten Veresterung mit biogenem Ethanol unterworfen, mit dem die Gehalte sowohl an freien Fettsäuren, als auch an den genannten Schlackebildnern soweit gesenkt werden konnten, dass die Maßgaben der DIN-VN 51 605 erfüllt werden. Abgesehen davon, dass die so gewonnen Treibstoffe aus rein biogenen Rohstoffen bestehen, weisen sie Stockpunkte von teilweise unter -20 Grad Celsius auf.
Die Versorgung der Bevoelkerung mit ernaehrungsphysiologisch hochwertigen Pflanzenfetten ist ein wichtiges Anliegen zur Gesunderhaltung der Menschen. Mit dem Ziel der Verbesserung der Fettsaeuremuster in den wichtigsten oelliefernden Pflanzen wird gearbeitet mit: Winterraps, Sommerraps, Rueben, Lein, Sojabohnen, Sonnenblumen.
| Origin | Count |
|---|---|
| Bund | 1126 |
| Land | 5 |
| Type | Count |
|---|---|
| Chemische Verbindung | 685 |
| Daten und Messstellen | 5 |
| Förderprogramm | 429 |
| Gesetzestext | 239 |
| Text | 6 |
| Umweltprüfung | 3 |
| unbekannt | 3 |
| License | Count |
|---|---|
| geschlossen | 699 |
| offen | 430 |
| unbekannt | 2 |
| Language | Count |
|---|---|
| Deutsch | 1113 |
| Englisch | 53 |
| Resource type | Count |
|---|---|
| Datei | 4 |
| Dokument | 2 |
| Keine | 978 |
| Webseite | 151 |
| Topic | Count |
|---|---|
| Boden | 324 |
| Lebewesen und Lebensräume | 349 |
| Luft | 157 |
| Mensch und Umwelt | 1131 |
| Wasser | 170 |
| Weitere | 441 |