Dieses Projekt untersucht die 16O-17O-18O and the H-D Isotopensysteme im Kristallwasser von Gips (CaS04-2H20) und Bassanit (CaS04-2H20). Ziel ist der prinzipielle Nachweis, ob es möglich ist aus der Isotopie des Kristallwassers atmosphärische Parameter, wie z.B. die Luftfeuchtigkeit zum Zeitpunkt der Mineral(um)bildung, zu rekonstruieren.
Nutrient and water supply for organisms in soil is strongly affected by the physical and physico-chemical properties of the microenvironment, i.e. pore space topology (pore size, tortuosity, connectivity) and pore surface properties (surface charge, surface energy). Spatial decoupling of biological processes through the physical (spatial) separation of SOM, microorganisms and extracellular enzyme activity is apparently one of the most important factors leading to the protection and stabilization of soil organic matter (SOM) in subsoils. However, it is largely unknown, if physical constraints can explain the very low turnover rates of organic carbon in subsoils. Hence, the objective of P4 is to combine the information from the physical structure of the soil (local bulk density, macropore structure, aggregation, texture gradients) with surface properties of particles or aggregate surfaces to obtain a comprehensive set of physical important parameters. It is the goal to determine how relevant these physical factors in the subsoil are to enforce the hydraulic heterogeneity of the subsoil flow system during wetting and drying. Our hypothesis is that increasing water repellency enforces the moisture pattern heterogeneity caused already by geometrical factors. Pore space heterogeneity will be assessed by the bulk density patterns via x-ray radiography. Local pattern of soil moisture is evaluated by the difference of X-ray signals of dry and wet soil (project partner H.J. Vogel, UFZ Halle). With the innovative combination of three methods (high resolution X-ray radiography, small scale contact angle mapping, both applied to a flow cell shaped sample with undisturbed soil) it will be determined if the impact of water repellency leads to an increase in the hydraulic flow field heterogeneity of the unsaturated sample, i.e. during infiltration events and the following redistribution phase. An interdisciplinary cooperation within the research program is the important link which is realized by using the same flow cell samples to match the spatial patterns of physical, chemical, and biological factors in undisturbed subsoil. This cooperation with respect to spatial pattern analysis will include the analysis of enzyme activities within and outside of flow paths and the spatial distribution of key soil properties (texture, organic carbon, iron oxide content) evaluated by IR mapping. To study dissolved organic matter (DOM) sorption in soils of varying mineral composition and the selective association of DOM with mineral surfaces in context with recognized flow field pattern, we will conduct a central DOM leaching experiment and the coating of iron oxides which are placed inside the flow cell during percolation with marked DOM solution. Overall objective is to elucidate if spatial separation of degrading organisms and enzymes from the substrates may be interconnected with defined physical features of the soil matrix thus explaining subsoil SOM stability and -dynami
The IUKD26 TTAAii Data Designators decode as: T1 (I): Observational data (Binary coded) - BUFR T1T2 (IU): Upper air T1T2A1 (IUK): Radio soundings from fixed land stations (up to 100 hPa) A2 (D): 90°E - 0° northern hemisphere(The bulletin collects reports from stations: 10548;Meiningen;) (Remarks from Volume-C: High resolution 2 sec., BUFR309057) IUKD26 BUFR bulletin available 10548 Meiningen from EDZW (Deutscher Wetterdienst) up to 100 hPa. at 00 UTC, 12 UTC, ON DEMAND 06 UTC, 18 UTC
The IUXD36 TTAAii Data Designators decode as: T1 (I): Observational data (Binary coded) - BUFR T1T2 (IU): Upper air T1T2A1 (IUX): Other upper air reports A2 (D): 90°E - 0° northern hemisphere(The bulletin collects reports from stations: 10548;Meiningen;) (Remarks from Volume-C: High resolution 2 sec., BUFR309057, Level 300) IUXD36 BUFR bulletin available 10548 Meiningen from EDZW (Deutscher Wetterdienst) up to 300 hPa. at 00 UTC, 12 UTC, ON DEMAND 06 UTC, 18 UTC
The IUXD65 TTAAii Data Designators decode as: T1 (I): Observational data (Binary coded) - BUFR T1T2 (IU): Upper air T1T2A1 (IUX): Other upper air reports A2 (D): 90°E - 0° northern hemisphere(The bulletin collects reports from stations: 10954;Altenstadt;) (Remarks from Volume-C: High resolution 2 sec., BUFR309057, Level 500) IUXD65 BUFR bulletin available 10954 Altenstadt from EDZW (Deutscher Wetterdienst) up to 500 hPa. at 05, 11, 17 UTC Mon-Fri
The IUSD24 TTAAii Data Designators decode as: T1 (I): Observational data (Binary coded) - BUFR T1T2 (IU): Upper air T1T2A1 (IUS): Radio soundings from fixed land stations (entire sounding) A2 (D): 90°E - 0° northern hemisphere(The bulletin collects reports from stations: 10393;Lindenberg;) (Remarks from Volume-C: High resolution 2 sec., BUFR309057) IUSD24 BUFR bulletin available 10393 Lindenberg from EDZW (Deutscher Wetterdienst) at 00 UTC, 06 UTC, 12 UTC, 18 UTC
The present-day configuration of Indonesia and SE Asia is the results of a long history of tectonic movements, volcanisms and global eustatic sea-level changes. Not indifferent to these dynamics, fauna and flora have been evolving and dispersing following a complicate pattern of continent-sea changes to form what are today defined as Sundaland and Wallacea biogeographical regions. The modern intraannual climate of Indonesia is generally described as tropical, seasonally wet with seasonal reversals of prevailing low-level winds (Asian-Australian monsoon). However at the interannual scale a range of influences operating over varying time scales affect the local climate in respect of temporal and spatial distribution of rainfall. Vegetation generally reflects climate and to simplify it is possible to distinguish three main ecological elements in the flora of Malaysia: everwet tropical, seasonally dry tropical (monsoon) and montane. Within those major ecological groups, a wide range of specific local conditions caused a complex biogeography which has and still attract the attention of botanists and biogeographers worldwide. Being one of the richest regions in the Worlds in terms of species endemism and biodiversity, Indonesia has recently gone through intensive transformation of previously rural/natural lands for intensive agriculture (oil palm, rubber, cocoa plantations and rice fields). Climate change represents an additional stress. Projected climate changes in the region include strengthening of monsoon circulation and increase in the frequency and magnitude of extreme rainfall and drought events. The ecological consequences of these scenarios are hard to predict. Within the context of sustainable management of conservation areas and agro-landscapes, Holocene palaeoecological and palynological studies provide a valuable contribution by showing how the natural vegetation present at the location has changed as a consequence of climate variability in the long-term (e.g. the Mid-Holocene moisture maximum, the modern ENSO onset, Little Ice Age etc.). The final aim of my PhD research is to compare the Holocene history of Jambi province and Central Sulawesi. In particular: - Reconstructing past vegetation, plant diversity and climate dynamics in the two study areas Jambi (Sumatra) and Lore Lindu National Park (Sulawesi) - Comparing the ecological responses of lowland monsoon swampy rainforest (Sumatra) and everwet montane rainforests (Sulawesi) to environmental variability (vulnerability/resilience) - Investigating the history of human impact on the landscape (shifting cultivation, slash and burn, crop cultivation, rubber and palm oil plantation) - Assessing the impact and role of droughts (El Niño) and fires - Adding a historical perspective to the evaluation of current and future changes.
Die ständige Weiterentwicklung und Verbesserung der Wetter- und Klimamodelle stellt die Fernerkundung der Atmosphäre vor große Herausforderungen. Für die Evaluierung der Modelle werden immer besser aufgelöste Messungen und Methoden benötigt. Herkömmliche Ansätze scheitern hier vor allem an fehlenden kontinuierlichen Beobachtungen der Temperatur und Feuchte bei allen Wetterbedingungen und insbesondere bei Regen. Ein Windprofiler ist allerdings auch bei solchen Bedingungen in der Lage Vertikalinformationen der Temperatur- und Feuchtegradienten zu messen. Der hier vorgeschlagene neuartige Ansatz aus einer Synergie aus Windprofiler (inklusive Radio Acoustic Sounding System), Ramanlidar, Mikrowellenradiometer und Wolkenradar ermöglicht eine automatisierte und kontinuierliche Erstellung von Temperatur- und Feuchteprofilen sogar bei Niederschlägen. Die zu verwendende variationelle Methode (optimale Schätzung, in engl. â€Ìoptimal estimationâ€Ì) bietet dabei ein robustes Hilfsmittel für die Kombination mehrerer Messgeräte unter Einbeziehung der Unsicherheiten der einzelnen Systeme. Bei der optimalen Schätzung wird ein vorgegebener Anfangszustand (z.B. die Klimatologie des Standorts oder der letzte bekannte Zustand) so lange iterativ variiert, bis er mit den Beobachtungen der verschiedenen Messgeräte innerhalb der Unsicherheiten übereinstimmt. Die Methode ermöglicht auch eine ausführliche Analyse der Unsicherheiten der Resultate und eine Einschätzung der Beiträge der einzelnen Geräte.Die langen Zeitreihen an Daten und die Kombination an sich ergänzenden Messinstrumenten, insbesondere mit dem 482 MHz Windprofiler am Meteorologischen Observatorium Lindenberg â€Ì Richard Aßmann Observatorium (MOL-RAO), sind einzigartig. Der Antragsteller kann hier seine umfangreichen Erfahrungen mit Instrumentensynergie und der Entwicklung von Algorithmen zur Ableitung atmosphärischer Variablen einbringen, um eine kontinuierliche Zeitreihe von Temperatur- und Feuchteprofilen mit bisher nicht erreichter Genauigkeit innerhalb und oberhalb von Wolken und insbesondere bei Niederschlag zu erstellen. Die thermodynamischen Profile bieten die ideale Möglichkeit, die Verdunstungsraten und die daraus resultierende Abkühlung mit einer verbesserten Genauigkeit zu quantifizieren. Die Unsicherheiten, die durch ungenaue Profile der relativen Feuchte und Temperatur entstehen, werden mit Hilfe von Simulationen abgeschätzt. Langzeitbeobachtungen an MOL-RAO werden genutzt, um aussagekräfige Statistiken über die Verdunstungs- und Abkühlungsraten zu erstellen. Die Ergebnisse werden für verschiedene Bedingungen wie stratiformen und konvektiven Niederschlag und für verschiedenen Jahreszeiten evaluiert. Dies wird den Modellieren helfen, die Parametrisierungen der Verdunstungsraten in kleinskaligen Modellen zu evaluieren.
The IUXD61 TTAAii Data Designators decode as: T1 (I): Observational data (Binary coded) - BUFR T1T2 (IU): Upper air T1T2A1 (IUX): Other upper air reports A2 (D): 90°E - 0° northern hemisphere(The bulletin collects reports from stations: 10238;Bergen;) (Remarks from Volume-C: High resolution 2 sec., BUFR309057, Level 500) IUXD61 BUFR bulletin available 10238 Bergen from EDZW (Deutscher Wetterdienst) up to 500 hPa. at 00, 06, 12, 18 UTC
The SMVX01 TTAAii Data Designators decode as: T1 (S): Surface data T1T2 (SM): Main synoptic hour (Remarks from Volume-C: SHIP)
| Origin | Count |
|---|---|
| Bund | 1013 |
| Europa | 20 |
| Global | 31 |
| Land | 311 |
| Wissenschaft | 19 |
| Type | Count |
|---|---|
| Daten und Messstellen | 5 |
| Förderprogramm | 701 |
| unbekannt | 318 |
| License | Count |
|---|---|
| geschlossen | 1 |
| offen | 710 |
| unbekannt | 313 |
| Language | Count |
|---|---|
| Deutsch | 568 |
| Englisch | 518 |
| Resource type | Count |
|---|---|
| Archiv | 1 |
| Datei | 4 |
| Keine | 510 |
| Webseite | 509 |
| Topic | Count |
|---|---|
| Boden | 670 |
| Lebewesen und Lebensräume | 866 |
| Luft | 836 |
| Mensch und Umwelt | 1023 |
| Wasser | 455 |
| Weitere | 1024 |