API src

Found 1668 results.

Erarbeitung eines Kostenmodells für die Umsetzung von Artikel 8 Absatz 2 und 3 der EU-Einwegkunststoffrichtlinie

Hersteller bestimmter Einwegkunststoffprodukte müssen zukünftig für die Kosten aufkommen, die die im öffentlichen Raum also beispielsweise in Parks oder Straßen entsorgten Abfälle ihrer Produkte verursachen. Zu übernehmen sind insbesondere die Kosten für die Sammlung in öffentlichen Sammelsystemen sowie für Reinigungs- und Sensibilisierungsmaßnahmen. Die Studie hat Kosten und Abfallzusammensetzungen analysiert und ein Modell zur Einnahme und Verteilung produktbezogener Kostenbeiträge entwickelt. Die Studie hat ergeben, dass sich die von den betroffenen Herstellern zu tragenden Kosten jährlich auf insgesamt 434 Millionen Euro belaufen. Davon ausgehend wurden individuelle Abgabesätze für die betroffenen Produktgruppen ermittelt, die minimal 0,001 €/kg für Getränkebehälter (bepfandet) und maximal 8,945 €/kg für Tabakprodukte mit kunststoffhaltigem Filter und Filter für Tabakprodukte betragen. Die Abgabensätze als auch das entwickelte Punktesystem zur Mittelauskehr an die öffentlich-rechtlichen Anspruchsberechtigte bilden zukünftig die Berechnungsgrundlage für die Ein- und Auszahlungen in den vom Umweltbundesamt zu betreibenden Einwegkunststofffonds. Veröffentlicht in Texte | 132/2022.

Filter und Puffer für Schadstoffe

Für die Bewertung der Bodenteilfunktion „Ausgleichsmedium für stoffliche Einwirkungen“ wird u.a. das Kriterium „Filter und Puffer für Schadstoffe“ herangezogen. Unter „Filter und Puffer für Schadstoffe“ wird die Fähigkeit des Bodens verstanden, gelöste oder suspendierte Stoffe von ihrem Transportmittel zu trennen. Die Fähigkeit kann aus mechanischen oder physikalisch-chemischen Filtereigenschaften abgeleitet werden. Böden nehmen mit der Deposition aus der Luft oder direkt durch anthropogenen Auftrag Stoffe auf, verlagern und speichern diese vorrangig in den Bodenporen. Je nach Bodeneigenschaft variiert das Speicher- oder Filterpotential. Die Bewertung des Kriteriums „Filter und Puffer für Schadstoffe“ erfolgt durch die Beurteilung der potenziellen Kationenaustauschkapazität sowie der Luftkapazität des Bodens bis in die Bodentiefe des effektiven Wurzelraumes. Die Kenndaten hierfür sind: Bodenart des Feinbodens, Grobbodenanteile, Durchwurzelungstiefe, Luftkapazität, Bodendichte sowie Humusgehalte des Bodens. Für die Ableitung werden die Horizont- und Schichtdaten der Leitprofile des FIS Boden herangezogen. Böden in hoher Hangneigung erhalten Bewertungsabschläge. Bei der Bewertung wird die Geländeposition und die klimatischen Standortbedingungen nicht direkt bewertet, obwohl diese für das Wasserspeichervermögen relevant sind.

Luftkapazität im effektiven Wurzelraum

Die Auswertekarte bildet die abgeleiteten Werte zur Luftkapazität (LK) des Porenraumes des Gesamtbodens bei Feldkapazität des effektiven Wurzelraumes in Form von LK-Stufen ab. Diese Eingangsdaten sind für die Bewertung der Bodenteilfunktion "Filter und Puffer für Schadstoffe" erforderlich und wurden in Abhängigkeit von Feinbodenart und Grobbodenanteil, Trockenroh- und Lagerungsdichte des Bodens sowie Humusgehalten des Mineralbodens bzw. Substanzvolumen der Torfartengruppen nach dem sächsischen Bodenbewertungsinstrument (LfULG, 2009) ermittelt.

Steine-Erden\Steinwolle-DE-2010

Herstellung von Steinwolle: Das Dämmaterial Steinwolle besteht zum größten Teil aus Basalt und Dolomit. Diese Rohstoffe werden zusammen mit verschiedenen Produktionsabfällen und Rezyklaten, die in Formsteine eingebunden sind, in einen schachtartigen Kupolofen mit Koks als Energieträger und mit O2-angereicherter Luft bei ca. 1500°C zum Schmelzen gebracht (#1+#2). Der Strahl flüssigen Gesteins wird im Anschluß mit einer Spinnmaschine meistens nach dem Kaskadenschleuderverfahren zerfasert und anschließend mit Bindemitteln (Harze) und Imprägniermitteln (Ölprodukte) besprüht. Der mittlere Faserdurchmesser beträgt 3-6 µm bei einer mittleren Länge von 3 mm (#3). Die losen Fasern werden auf einem Förderband zu einem Vlies gesammelt und auf die gewünschte Stärke gepreßt (#1). Anschließend werden sie in einem Ofen ausgehärtet (#2). Die internen Produktionsabfälle inklusive der Filterabfälle werden gesammelt, soweit wie nötig zerkleinert und mit Zement als Bindemittel zu Formkörpern verpreßt, die anschließend erneut aufgeschmolzen werden (#2). Als Quellen für die vorliegende Bilanzierung wurden die Studien #1-#3 untersucht. Die beiden letztgenannten stützen sich auf Primärdaten Deutscher und Schweizer marktbestimmender Hersteller mit dem Basisjahr ca. 1992. Ein Vergleich Deutscher und Schweizer Daten zeigt keine wesentlichen Unterschiede. Einen vollständigen Datensatz, der auch mit der Systematik von GEMIS kompatibel ist, stellt #1 (EMPA 1995) zur Verfügung. Dieser diente als Basis für die vorliegende Bilanzierung und wurde durch weitere Studien verifiziert und ergänzt. Die Datenqualität ist insgesamt als gut zu bezeichnen. Die Unsicherheit der Daten ist nach dem Vergleich der Studien als gering anzusehen. Verbesserungen des Datensatzes sind vor allen Dingen auf dem Wasserpfad, teilweise auch beim Rohstoffbedarf wünschenswert. Allokation: Als Nebenprodukte der Steinwollen-Herstellung fallen in geringen Mengen an Eisen und Granulat. Sie werden in dieser Studie nicht als Koppelprodukte betrachtet. Weder bei der Betrachtung physischer Parameter der Allokation noch bei der Betrachtung ökonomischer Parameter ergibt sich eine Signifikanz der Nebenprodukte. Daher wird keine Allokation zwischen den Steinwolle-Matten und den angesprochenen Nebenprodukten vorgenommen. Sämtliche betrachteten Prozeßparameter werden daher voll der Steinwolle angerechnet. Genese der Kennziffern Massenbilanz: Als Roh- und Hilfsstoffe werden massenmäßig vorwiegend Dolomit und Basalt in den Prozeß eingebracht (in GEMIS werden beide Stoffe mit den Daten der Extraktion des Kalksteins bilanziert). Neben den Primärrohstoffen werden auch Mineralien über Recyclingmaterial eingebracht. Dabei handelt es sich sowohl um interne Abfälle aus der Zerfaserung als auch um div. Wollabfälle von Baustellen und produktionsinterne Stäube (sie tauchen in der Input/Output-Bilanz von GEMIS nicht auf). Diese werden zusammen mit Zusatzsteinen (Felsbrocken/Kies) in Zement eingebunden als Briketts in den Prozeß eingebracht (#1). Bei der Aufstellung der einzelnen Rohstoffe bestehen leichte Abweichungen zwischen den deutschen und Schweizer Quellen (#2, #1). In der Gesamtsumme stimmen die Quellen jedoch sehr gut überein. Die Unterschiede beruhen auf Differenzen bei der Deklaration. In dieser Studie werden die Angaben der Schweizer Studie übernommen. Roh- und Hilfsstoffe, die weit weniger als 1 Masse% ausmachen (Ammoniumbicarbonat, Kalkhydrat, Salzsäure und Silan) werden aufgrund geringerer Relevanz und fehlender Vorketten nicht mitbilanziert. Zusätzlich zum aufgeführten Roh- und Hilfsstoffbedarf werden ca. 28 kg reiner Sauerstoff pro Tonne Steinwolle in den Prozeß eingebracht, um die Verbrennungsluft im Kupolofen anzureichern (#2). Nebenprodukte: Neben den Steinwollenmatten fällt ein Granulat der Steinwolle an, das nicht vollständig aufgefasert werden kann. Es wird jedoch nicht wieder in den Prozeß eingebracht, sondern als Schüttdämmstoff verwendet (#1). Außerdem fällt im Sumpf des Kupolofens Eisen an. Dieses ist als Eisen(II)- oder als Eisen(III)-Oxid in den Mineralien Basalt und Diabas enthalten. Als Folge der reduzierenden Ofenatmosphäre sammelt es sich in Ofensumpf und wird dort diskontinuierlich abgezogen (#2). Energiebedarf: Der Energiebedarf für die Herstellung der Steinwolle beträgt ca. 8170 MJ/t Steinwolle. Dabei gliedert er sich folgendermaßen nach den einzelnen Energieträgern: Tab.: Anteile Energieträger zur Energiebereitstellung bei der Herstellung von Steinwolle (#1+#3) Energieträger Menge in MJ/t Steinwolle Anteil in % Steinkohlenkoks 5115 63 Heizöl EL 1970 24 Strom 1085 13 Summe 8170 100 Steinkohlenkoks wird direkt im Schachtofen zum Schmelzen der Mineralien eingesetzt. Heizöl EL wird jeweils ungefähr zur Hälfte im Schmelzofen und in den Härteöfen eingesetzt. Der Strom wird unter anderem für Transportprozesse und die Rauchgasreinigung benötigt (#3). Prozessbedingte Luftemissionen: Prozeßbedingte Luftemissionen entstammen dem Kupolofen, dem Härteofen mit Kühlzone und der Sägeanlage. Die Abgase laufen alle über Filter im Falle des Kupolofens über eine weitergehende Rauchgasreinigung. Die besten verfügbaren Daten finden sich in #1 für die Schweiz. Sie werden in der vorliegenden Form in dieser Studie übernommen. Ein Vergleich mit #2 zeigt keine signifikanten Abweichungen. Wasserinanspruchnahme: Wasser wird vor allen Dingen und in großen Mengen zu Kühlzwecken eingesetzt. Von den 12,7 m³/t Steinwolle eingesetzten Wassers fallen 11,2 m³ als nicht oder nur gering verunreinigtes Abwasser an. Lediglich das in dieser Studie nicht betrachtete Sanitärwasser wird stärker verunreinigt einer Abwasserreinigung zugeführt (#1). Abwasserinhaltsstoffe: Da das Wasser vorwiegend zu Kühlzwecken eingesetzt wird, tritt keine nennenswerte stoffliche Verunreinigung auf. Reststoffe: Der mengenmäßig größte Teil der Reststoffe kann wieder in den Prozeß eingebracht werden. Weitere Abfälle wie Lösungsmittelabfälle, Altöle und Filtermaterial fallen nicht in nennenswerten Mengen an (#1). Sie werden in GEMIS nicht weiter betrachtet. Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2010 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 160% Produkt: Baustoffe

Bodenbewertung - Gesamtfilterwirkung (GFW), landesweit einheitlich

Die Gesamtfilterwirkung ist ein Kennwert zur Bewertung des Bodens als Filter für sorbierbare Stoffe und wird über das mechanische und physiko-chemische Filtervermögen bewertet. Unter sorbierbare Stoffe fallen insbesondere Stoffgruppen wie die Kationen der Nährstoffe, Schwermetalle und Organika, die entweder im Bodenwasser gelöst sind oder an kleinen Partikeln haften bzw. selbst in Partikelform vorliegen. In gelöster Form werden die genannten Stoffe an den Austauschern (Bodenmaterial) gebunden und so der Bodenlösung entzogen. In Partikelform werden sie im Boden gefiltert, wenn sie aufgrund mechanischer Hindernisse, wie z. B. am Ende von Wurmröhren, mit dem Sickerwasser nicht mehr weiter transportiert werden können. Die Gesamtfilterwirkung kann in Abhängigkeit von der Kationenaustauschkapazität und der Luftkapazität geschätzt werden. Das Schätzergebnis besteht aus insgesamt 11 Stufen, von denen in Schleswig-Holstein nur 8 relevant sind. Je höher die Stufe ist, desto höher ist die Gesamtfilterwirkung. Sie ist in feinkörnigem Bodenmaterial mit geringer Luftkapazität am größten, wie z. B. in der Marsch und im Östlichen Hügelland, und in grobkörnigem Bodenmaterial mit hoher Luftkapazität am geringsten, wie z. B. in der Vorgeest. Mit der Gesamtfilterwirkung wird eine natürliche Bodenfunktionen nach § 2 Abs. 2 BBodSchG bewertet und zwar nach Punkt 1.c) als Abbau-, Ausgleichs- und Aufbaumedium für stoffliche Einwirkungen auf Grund der Filter-, Puffer- und Stoffumwandlungseigenschaften, insbesondere auch zum Schutz des Grundwassers. Das hierfür gewählte Kriterium ist das mechanische und physiko-chemische Filtervermögen des Bodens mit dem Kennwert Gesamtfilterwirkung. Die Karten liegen für die folgenden Maßstabsebenen vor: - 1 : 1.000 - 10.000 für hochaufgelöste oder parzellenscharfe Planung, - 1 : 10.001 - 35.000 für Planungen auf Gemeindeebene, - 1 : 35.001 - 100.000 für Planungen in größeren Regionen, - 1 : 100.001 - 350.000 für landesweit differenzierte Planung, - 1 : 350.001 - 1000.000 für landesweite bis bundesweite Planung.

Bremische Evangelische Kirche (BEK) - Einrichtungen Bremen

Die Webanwendung Bremische Evangelische Kirche (BEK) zeigt die Standorte von Einrichtungen, Kitas, Kleiderkammern und Kirchengemeinden sowie das Gebiet der Landeskirche in Bremen. Benutzer haben die Möglichkeit, über Filter anhand von Kriterien wie Art der Einrichtung, Kirchengemeinde oder Einrichtung, Adresse und Namen zu suchen. Durch Klicken auf ein bestimmtes Objekt in der Karte erhält man in dem sich öffnenden Popup-Fenster weitere Angaben zu den einzelnen Einrichtungen. Mit der Routing-Funktion lässt sich eine Routingplanung mit verschiedenen Verkehrsmittel erstellen und die Erreichbarkeit berechnen. Die Übersicht der Standorte wurde von der Bremischen Evangelischen Kirche (BEK) der Freien Hansestadt Bremen in Zusammenarbeit mit dem Landesamt GeoInformation Bremen aufgebaut. Die Anwendung selbst, basiert auf dem Open Source Webkarten-Client ‚Masterportal‘. Die Einbindung der Anwendung in eine eigene Webseite ist über einen IFrame möglich.

Emissionsverhalten von Linienbussen - Teil 3. Dieselantrieb mit werkseitigem Bluetec ® -System mit Partikelfilter und Hochdruck-AGR mit CRT ® -System im Vergleich

Eine der möglichen Maßnahmen in Luftreinhalteplänen zur Verbesserung der Immissionsbelastungen in hoch belasteten Innenstädten ist eine vorzeitige Umrüstung der Busflotten auf verschärfte Abgasnormen. Im Auftrag des LANUV NRW wurde ein Projekt durchgeführt, welches die Umrüstung zweier Busse bei der Rheinbahn in Düsseldorf mit einer Abgasnachbehandlung auf Basis einer Niederdruck-Abgasrückführung zum Thema hatte ( LANUV-Fachbericht 14 ). Um die Kenntnisse um ein weiteres Nachrüstsystem zu erweitern und um die besondere Situation bei der Hagener Straßenbahn, die ihre Busse mit Biodiesel betreibt, zu berücksichtigen, wurde ein weiteres Projekt in Hagen veranlasst. Hier wurde die Nachrüstung eines Gelenkbusses mit einem Abgasnachbehandlungssystem auf Basis eines SCR-Systems (Selectiv Catalytic Reduction) kombiniert mit einen CRT Partikelfilter (Continously Regenerating Trap) untersucht. Um speziell die Bedingungen des Busbetriebes in Hagen darzustellen, war ein Ziel die Entwicklung eines Fahrzyklus (»Hagener Zyklus«), der für eine Stadt mit den topographischen und verkehrstechnischen Bedingungen, die man in Hagen vorfindet, repräsentativ ist, um die Möglichkeit zu eröffnen, vergleichende Untersuchungen auf einem Motorprüfstand durchzuführen.

Bodenbewertung - Nitratauswaschungsgefährdung/Bodenwasseraustausch (NAG), landesweit bewertet

Der Bodenwasseraustausch ist ein Kennwert zur Bewertung des Bodens als Filter für nicht sorbierbare Stoffe und kennzeichnet das Verlagerungsrisiko für nicht oder kaum sorbierbare Stoffe wie Nitrat (Nitratauswaschungsgefährdung). Die Nährstoffe verbleiben fast vollständig in gelöster Form im Bodenwasser und werden bei Versickerung mit diesem verlagert (Bodenwasseraustausch). Das Verlagerungsrisiko ist hoch bei Böden mit geringem Wasserrückhaltevermögen, bei hohen Niederschlägen und bei geringer Evapotranspiration. Das Verlagerungsrisiko ist umso höher, je höher der Bodenwasseraustausch ist, weil das ausgetauschte Bodenwasser mit den darin gelösten Nitraten versickert. Mit dem Bodenwasseraustausch wird eine natürliche Bodenfunktionen nach § 2 Abs. 2 BBodSchG bewertet und zwar nach Punkt 1.c) als Abbau-, Ausgleichs- und Aufbaumedium für stoffliche Einwirkungen auf Grund der Filter-, Puffer- und Stoffumwandlungseigenschaften, insbesondere auch zum Schutz des Grundwassers. Das hierfür gewählte Kriterium ist das Rückhaltevermögen des Bodens für nicht sorbierbare Stoffe mit dem Kennwert Bodenwasseraustausch. Die Karten liegen für die folgenden Maßstabsebenen vor: - 1 : 1.000 - 10.000 für hochaufgelöste oder parzellenscharfe Planung, - 1 : 10.001 - 35.000 für Planungen auf Gemeindeebene, - 1 : 35.001 - 100.000 für Planungen in größeren Regionen, - 1 : 100.001 - 350.000 für landesweit differenzierte Planung, - 1 : 350.001 - 1000.000 für landesweite bis bundesweite Planung. In dieser Darstellung wird der Bodenwasseraustausch landesweit einheitlich klassifiziert. Unter dem Titel "Bodenbewertung - Nitratauswaschungsgefährdung/Bodenwasseraustausch (NAG), regionalspezifisch bewertet" gibt es noch eine naturraumbezogene Klassifikation des Bodenwasseraustausches, die den Bodenwasseraustausch regional differenzierter darstellt.

Bodenbewertung - Nitratauswaschungsgefährdung/Bodenwasseraustausch (NAG), regionalspezifisch bewertet

Der Bodenwasseraustausch ist ein Kennwert zur Bewertung des Bodens als Filter für nicht sorbierbare Stoffe und kennzeichnet das Verlagerungsrisiko für nicht oder kaum sorbierbare Stoffe wie Nitrat (Nitratauswaschungsgefährdung). Die Nährstoffe verbleiben fast vollständig in gelöster Form im Bodenwasser und werden bei Versickerung mit diesem verlagert (Bodenwasseraustausch). Das Verlagerungsrisiko ist hoch bei Böden mit geringem Wasserrückhaltevermögen, bei hohen Niederschlägen und bei geringer Evapotranspiration. Das Verlagerungsrisiko ist umso höher, je höher der Bodenwasseraustausch ist, weil das ausgetauschte Bodenwasser mit den darin gelösten Nitraten versickert. Mit dem Bodenwasseraustausch wird eine natürliche Bodenfunktionen nach § 2 Abs. 2 BBodSchG bewertet und zwar nach Punkt 1.c) als Abbau-, Ausgleichs- und Aufbaumedium für stoffliche Einwirkungen auf Grund der Filter-, Puffer- und Stoffumwandlungseigenschaften, insbesondere auch zum Schutz des Grundwassers. Das hierfür gewählte Kriterium ist das Rückhaltevermögen des Bodens für nicht sorbierbare Stoffe mit dem Kennwert Bodenwasseraustausch. Die Karten liegen für die folgenden Maßstabsebenen vor: - 1 : 1.000 - 10.000 für hochaufgelöste oder parzellenscharfe Planung, - 1 : 10.001 - 35.000 für Planungen auf Gemeindeebene, - 1 : 35.001 - 100.000 für Planungen in größeren Regionen, - 1 : 100.001 - 350.000 für landesweit differenzierte Planung, - 1 : 350.001 - 1000.000 für landesweite bis bundesweite Planung. In dieser Darstellung wird der Bodenwasseraustausch regionalspezifisch klassifiziert. Unter dem Titel "Bodenbewertung - Nitratauswaschungsgefährdung/Bodenwasseraustausch (NAG), landesweit bewertet" gibt es noch eine Klassifikation des Bodenwasseraustausches, die den Bodenwasseraustausch über die Naturraumgrenzen hinweg landesweit einheitlich darstellt.

Traffic Lights Data Hamburg

LSA-Prozessdaten Der Datensatz umfasst momentan die LSA-Prozessdaten für rund die Hälfte aller am Verkehrsrechnernetz angeschlossenen Knoten in Hamburg und enthält aktuelle Signalausprägungen in Echtzeit. Zusätzlich werden Daten zu Detektoren wie Fahrrad-, Fußgänger- und Kfz- Anforderungen sowie Busmeldungen übertragen. Folgende Punkte sollten bei der Nutzung der Daten berücksichtigt werden: Durch Wartungsarbeiten kann es vereinzelt zu kurzen Ausfällen bei der Signalübertragung für mehrere Straßenzüge kommen. In wenigen Fällen gib es außerdem fehlerhafte Zeitstempel aus den LSA-Steuergeräten (phenomenonTime), die für unplausible Werte bei der Latenz verantwortlich sind. Für ein besseres Verständnis der Daten, ist im Bereich Verweise und Downloads ein Benutzerhandbuch (Usage Guide) verlinkt. Weitere Informationen zum Echtzeitdienst: Der OGC SensorThings API konforme Echtzeitdatendienst enthält Datenströme und Positionen von Fahrspurbeziehungen an Kreuzungen mit Lichtsignalanlagen für Fahrradfahrer, Fußgänger sowie Kraftfahrzeuge im Hamburger Stadtgebiet. Wenn an der Lichtsignalanlage bereitgestellt, werden folgende Datenströme als JSON-Objekte ausgeliefert: Primärsignale, Sekundärsignale, Hilfssignale, Akustiksignale, KFZ-Signalanforderungen, Fahrradfahrersignalanforderungen, Fußgängersignalanforderungen, Akustiksignalanforderung, ÖPNV-Voranmeldung, ÖPNV-Anmeldung, ÖPNV-Abmeldung, Signalprogramm und Wellensekunde. In der OGC SensorThings API sind die Informationen zu den Fahrspurbeziehungen in der Entität Thing hinterlegt. Für die oben aufgelisteten Datenströme, die an einem konkreten Thing verfügbar sind, wird ein Eintrag in der Entität Datastreams erstellt, der das entsprechende Thing referenziert. Alle Zeitangaben sind in der koordinierten Weltzeit (UTC) angegeben. In der Entität Datastreams gibt es im JSON-Objekt unter dem "key" "properties" weitere "key-value-Paare". In Anlehnung an die Service- und Layerstruktur im GIS haben wir Service und Layer als zusätzliche "key-value-Paare" unter dem JSON-Objekt properties eingeführt. Hier ein Beispiel: { "properties": { "serviceName": "HH_STA_traffic_lights", "layerName": "primay_signal", "key":"value" } } Alle möglichen values für “layerName”: * primay_signal (Primärsignal), * secondäary_signal (Sekundärsignal), * auxiliary_signal (Hilfssignal), * acoustic_signal (Akustiksignal), * detector_car (KFZ-Signalanforderung), * detector_cyclist (Fahrradfahrersignalanforderung), * detector_pedestrian (Fußgängersignalanforderung), * detector_acoustic_traffic_request (Akustiksignalanforderung), * bus_pre-request_point (ÖPNV-Voranmeldung), * bus_request_point (ÖPNV-Anmeldung), * bus_checkout (ÖPNV-Abmeldung), * signal_program (Nummer des Signalprogramms), * cycle_second (Wellensekunde) Mit Hilfe dieser "key-value-Paare" können dann Filter für die REST-Anfrage definiert werden, bspw. https://tld.iot.hamburg.de/v1.1/Datastreams?$filter=properties/serviceName eq 'HH_STA_traffic_lights' and properties/layerName eq 'primary_signal' Die Echtzeitdaten kann man auch über einen MQTT-Broker erhalten. Die dafür notwendigen IDs können über eine REST-Anfrage bezogen werden und dann für das Abonnement auf einen Datastream verwendet werden: MQTT-Broker: tld.iot.hamburg.de Topic: v1.1/Datastreams({id})/Observations Ferner können über folgenden Link die MAP-Dateien (xml und kml) sowie die OCIT-C-Dateien (Versorgungsdatei im Format xml) aller bereits veröffentlichter Knoten abgerufen werden: https://daten-hamburg.de/tlf_public/

1 2 3 4 5165 166 167