API src

Found 258 results.

Sonderforschungsbereich Transregio 129 (SFB TRR): Oxyflame - Entwicklung von Methoden und Modellen zur Beschreibung der Reaktion fester Brennstoffe in einer Oxyfuel-Atmosphäre, Sonderforschungsbereich Transregio 129 (SFB TRR): Oxyflame - Entwicklung von Methoden und Modellen zur Beschreibung der Reaktion fester Brennstoffe in einer Oxyfuel-Atmosphäre

Das Projekt "Sonderforschungsbereich Transregio 129 (SFB TRR): Oxyflame - Entwicklung von Methoden und Modellen zur Beschreibung der Reaktion fester Brennstoffe in einer Oxyfuel-Atmosphäre, Sonderforschungsbereich Transregio 129 (SFB TRR): Oxyflame - Entwicklung von Methoden und Modellen zur Beschreibung der Reaktion fester Brennstoffe in einer Oxyfuel-Atmosphäre" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: RWTH Aachen University, Lehrstuhl für Wärme- und Stoffübertragung.Zur nachhaltigen Sicherung der Energie- und Stromversorgung wird zukünftig neben Kernenergie und regenerativer Energiebereitstellung weiterhin der Rückgriff auf fossile Brennstoffe, wie Kohle, Öl und Erdgas, unverzichtbar bleiben. Bei konventionellen Kraftwerkstechnologien werden jedoch Treibhausgase freigesetzt, während gleichzeitig deren Reduzierung weltweit hohe Priorität hat. Zur Lösung dieses Zielkonflikts werden 'Carbon Capture and Storage' (CCS)-Methoden diskutiert, wobei die Oxyfuel-Verbrennung eine der vielversprechendsten Technologien zur CO2-Abscheidung darstellt. Bei diesem Verfahren wird der Brennstoff anstelle von Luft mit einem Gemisch aus Sauerstoff und rezirkuliertem Rauchgas verbrannt, um so ein hoch CO2-haltiges Abgas zu erzeugen, das nach weiteren sekundären Reinigungsschritten abgetrennt werden kann. Der Ersatz des Stickstoffanteils der Luft durch CO2 und H2O führt zu einem völlig neuen Verbrennungsverhalten, das auch zu Instabilitäten sowie zum örtlichen Verlöschen der Flamme führen kann. Die korrekte Beschreibung dieses Verbrennungsverhaltens erfordert entsprechende physikalisch und chemisch motivierte Modelle für diese spezielle Gasatmosphäre. Deshalb sollen bis zum Projektende des Sonderforschungsbereichs/Transregio die folgenden Erkenntnisse, Daten und Modelle zur Verfügung stehen: (1) Belastbare Modelle durch grundlegendes Verständnis der beteiligten Prozesse und deren Abhängigkeit von den jeweiligen Einflussparametern, von der Mikroskala bis hin zur skalenübergreifenden Interaktion, (2) Basisdaten zur Vorhersage der Wärmeübertragung von der Flamme an die Wände und Einbauten in Kraftwerkskesseln mit Oxyfuel-Atmosphäre, (3) Verlässliche Berechnungsgrundlagen für die Entwicklung und Auslegung von Brennern und Feuerräumen für Oxyfuel-Kraftwerke mit Feststoffverbrennung. Im Sonderforschungsbereich/Transregio arbeiten Wissenschaftlerinnen und Wissenschaftler der RWTH Aachen, Ruhr-Universität Bochum und TU Darmstadt zusammen.

Schadstoffminimierung bei Verbrennungsvorgaengen

Das Projekt "Schadstoffminimierung bei Verbrennungsvorgaengen" wird/wurde ausgeführt durch: Universität Münster, Institut für Numerische und Instrumentelle Mathematik.In Kraftwerken und Muellverbrennungsanlagen ist es wichtig, Temperaturen und Schadstoffemissionen schon am Entstehungsort in der Flamme zu bestimmen. Im Projekt wurde ein System entwickelt, das das von der Flamme ausgestrahlte Licht auf vielen Messstrecken spektrographisch aufnimmt, hieraus Temperaturen und Schadstoffemissionsgrad bestimmt und anschliessend tomographisch auswertet. Die so gewonnenen Erkenntnisse werden zur Betriebssteuerung eingesetzt.

Forschergruppe (FOR) 2401: Optimierungsbasierte Multiskalenregelung motorischer Niedertemperatur-Brennverfahren, Teilprojekt: Chemische Grundlagen für die Modellentwicklung zur Motorenregelung

Das Projekt "Forschergruppe (FOR) 2401: Optimierungsbasierte Multiskalenregelung motorischer Niedertemperatur-Brennverfahren, Teilprojekt: Chemische Grundlagen für die Modellentwicklung zur Motorenregelung" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bielefeld, Arbeitsgruppe Physikalische Chemie I.Das Teilprojekt stellt die chemischen Grundlagen für die Forschergruppe bereit. Es widmet sich der Analyse von Speziesprofilen, die für die Entwicklung und kritische Validierung der reaktionskinetischen Modelle für die motorischen Teilprojekte benötigt werden und die dann in die Regelung einfließen. Diese Analysen sollen vornehmlich unter Niedertemperaturbedingungen an den Surrogatbrennstoffen iso-Oktan (für die GCAI-Verbrennung in TP3) und n-Heptan (für die PCCI-Verbrennung in TP4) in einem Strömungsreaktor erfolgen. Mehrere Teilaspekte stehen im Fokus der reaktionskinetischen Untersuchungen. Für die GCAI-Bedingungen steht die Veränderung der Zündwilligkeit unter Wasserzusatz im Vordergrund. Die Effekte variabler Addition von Wasser zu iso-Oktan sollen für ein Parameterfeld bei unterschiedlichen Bedingungen untersucht werden, um die Grundlagen des Wasserzusatzes auf die Reaktionskinetik im Niedertemperaturbereich zu verstehen und in die Modellbildung zu übertragen. Die geplanten Untersuchungen stellen weitgehend Neuland dar. Zur Unterstützung sollen einige Analysen hierzu auch unter den stabilen Bedingungen vorgemischter ebener Niederdruckflammen stattfinden. Für die Modellbildung im Bereich der PCCI-Verbrennung sind detaillierte Untersuchungen der Bildung von Rußvorläuferspezies im Bereich bis zu etwa vier aromatischen Ringen insbesondere unter Niedertemperaturbedingungen geplant. Während die Reaktionen zur Bildung des ersten aromatischen Ringes als sehr gut verstanden gelten können, weist das grundlegende Verständnis der Bildungskinetik in der molekularen Vorläuferphase bis zu etwa 3-4 aromatischen Ringen noch sehr große Lücken auf. Dieser Phase, an die sich die erste Partikelnukleation zum Beispiel über Dimerisierung der mehrkernigen Aromaten anschließt, kommt innerhalb der Reaktionsketten vom Brennstoffmolekül zum Rußkeim eine große Bedeutung zu. Das entsprechende fundamentale Wissen ist für die Modellentwicklung in TP4 von entscheidender Bedeutung. Die Arbeiten sollen daher auch durch die Untersuchung besonders brennstoffreicher Zonen in einer nicht vorgemischten Flamme unterstützt werden. Für beide motorische Verfahren ist es zudem interessant, die Einflüsse der Zumischung von Abgaskomponenten auf die Reaktionskinetik zu verstehen. Anknüpfend an die Untersuchungen zur Wasserbeimischung sind hierzu einige grundlegende Analysen geplant. Zur Erfassung der Spezies als Funktion der Reaktionsbedingungen sollen an allen Versuchsträgern verschiedene Varianten massenspektrometrischer Verfahren eingesetzt werden, mit denen in der Arbeitsgruppe große Erfahrung vorliegt. Als unterstützende Techniken werden Gaschromatographie sowie Laserverfahren zur Temperaturbestimmung eingesetzt.

Sonderforschungsbereich Transregio 129 (SFB TRR): Oxyflame - Entwicklung von Methoden und Modellen zur Beschreibung der Reaktion fester Brennstoffe in einer Oxyfuel-Atmosphäre, Teilprojekt A05: Kinetische Untersuchungen zum Einfluss der katalytischen Eigenschaften mineralischer Bestandteile von Kohleasche auf die Oxyfuel-Verbrennung

Das Projekt "Sonderforschungsbereich Transregio 129 (SFB TRR): Oxyflame - Entwicklung von Methoden und Modellen zur Beschreibung der Reaktion fester Brennstoffe in einer Oxyfuel-Atmosphäre, Teilprojekt A05: Kinetische Untersuchungen zum Einfluss der katalytischen Eigenschaften mineralischer Bestandteile von Kohleasche auf die Oxyfuel-Verbrennung" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Ruhr-Universität Bochum, Fakultät für Chemie, Lehrstuhl für Technische Chemie.In Teilprojekt A5 soll geklärt werden, ob die mineralischen Bestandteile, wie Na, K, Mg, Ca, Al oder Fe, der Kohle katalytisch aktiv sind und somit Einfluss auf den Oxyfuel-Verbrennungsprozess nehmen. Neben dem Verbrennungsprozess in O2 werden die beschleunigte Einstellung des Boudouard-Gleichgewichts und die Kohlevergasung mit H2O berücksichtigt, die durch Volumenvergrößerung erheblichen Einfluss auf das Strömungsfeld in Flammen nehmen können. Es sollen reale Kohlen aber insbesondere auch synthetische Modellkohlenstoffe untersucht werden, was eine schrittweise Steigerung der Komplexität der untersuchten Systeme erlaubt.

Sonderforschungsbereich Transregio 129 (SFB TRR): Oxyflame - Entwicklung von Methoden und Modellen zur Beschreibung der Reaktion fester Brennstoffe in einer Oxyfuel-Atmosphäre, B01: Theoretische und experimentelle Untersuchung der Entgasung und Oxidation von Kohlepartikeln in einem Gegenstrombrenner unter Oxyfuel-Bedingungen

Das Projekt "Sonderforschungsbereich Transregio 129 (SFB TRR): Oxyflame - Entwicklung von Methoden und Modellen zur Beschreibung der Reaktion fester Brennstoffe in einer Oxyfuel-Atmosphäre, B01: Theoretische und experimentelle Untersuchung der Entgasung und Oxidation von Kohlepartikeln in einem Gegenstrombrenner unter Oxyfuel-Bedingungen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Rheinisch-Westfälische Technische Hochschule Aachen University, Institut für Technische Verbrennung.Laminare Oxyfuel-Flammen werden in einer Gegenstromanordnung untersucht. Als Brennstoffe werden unter anderem gasförmige Entgasungssurrogate und Kohlestaub verwendet. Hier wird besonders die Gasphasenchemie betrachtet, aber auch deren Beeinflussung durch die Entgasung und den Koksabbrand. Das Teilprojekt trägt dazu bei, die Interaktion von Strömung und Verbrennung von gasförmigen und festen Brennstoffen unter Oxyfuel-Bedingungen grundlegend zu verstehen und Modelle hierfür zu entwickeln. Der hier zu entwickelnde reaktionskinetische Gasphasen-Mechanismus dient als Grundlage für großskalige numerische Simulationen.

Kohlenwasserstoff-Emissionen bei der ottomotorischen Verbrennung

Das Projekt "Kohlenwasserstoff-Emissionen bei der ottomotorischen Verbrennung" wird/wurde gefördert durch: Arbeitsgemeinschaft Industrieller Forschungsvereinigungen 'Otto-von-Guericke' e.V.. Es wird/wurde ausgeführt durch: Universität Karlsruhe, Engler-Bunte-Institut, Bereich Feuerungstechnik.Bei der motorischen Verbrennung entstehen Schadstoffe insbesondere durch unvollstaendige Verbrennung der Ausgangskohlenwasserstoffe und durch Nebenreaktionen. Die Schadstofferzeugung steht in unmittelbarem Zusammenhang mit dem Ablauf des Verbrennungsprozesses im Zylinderraum. Gegenstand des Vorhabens 'HC-Emission' ist die mathematische Erfassung der instationaeren turbulenten Stroemung im Motorraum. Zunaechst wird das Stroemungsfeld ohne ueberlagerte chemische Reaktion behandelt. In der zweiten Bearbeitungsphase wird ein vereinfachtes Reaktionsmodell eingearbeitet. Bis jetzt wurden das Stroemungsfeld fuer verschiedene Parameter (z.B. Drehzahl, Ventileinstroembedingungen) berechnet und dabei die Turbulenzstaerke und Turbulenzintensitaetsverteilung waehrend des Arbeitstaktes untersucht. Hieraus lassen sich bereits Schluesse auf Parameterbereiche der Motorauslegung ziehen, die fuer einen vollstaendigen Reaktionsablauf gueltig sind. Endgueltige Aussagen zum Reaktionsablauf und zu der Frage der HC-Emission sind erst nach dem Einbau des Reaktionsmodells moeglich.

Sonderforschungsbereich Transregio 129 (SFB TRR): Oxyflame - Entwicklung von Methoden und Modellen zur Beschreibung der Reaktion fester Brennstoffe in einer Oxyfuel-Atmosphäre, Special research area Transregio 129 (SFB TRR): Oxyflame - Development of Methods and Models to Describe Solid Fuel Reactions within an Oxy-Fuel Atmosphere; Sub project C03: Spectral modeling of thermal radiation in oxy-fuel pulverized coal flames

Das Projekt "Sonderforschungsbereich Transregio 129 (SFB TRR): Oxyflame - Entwicklung von Methoden und Modellen zur Beschreibung der Reaktion fester Brennstoffe in einer Oxyfuel-Atmosphäre, Special research area Transregio 129 (SFB TRR): Oxyflame - Development of Methods and Models to Describe Solid Fuel Reactions within an Oxy-Fuel Atmosphere; Sub project C03: Spectral modeling of thermal radiation in oxy-fuel pulverized coal flames" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität Darmstadt, Fachgebiet Energiesysteme und Energietechnik.In Teilprojekt C3 sollen geeignete Modelle zur Berechnung der Wärmestrahlung von dreiatomigen Gasen in Oxyfuel-Flammen entwickelt werden. Ausgewählte vereinfachte spektrale Modelle sollen zunächst auf eine gemeinsame spektrale Datenbasis gebracht und dann anhand der Berechnung von Testfällen, die unter anderem Oxyfuel-Feuerungen repräsentieren, mit einem detaillierten Modell verglichen, evaluiert und weiterentwickelt werden. Hierbei soll ein Optimum hinsichtlich Genauigkeit und Recheneffizienz gefunden werden.

Sonderforschungsbereich Transregio 129 (SFB TRR): Oxyflame - Entwicklung von Methoden und Modellen zur Beschreibung der Reaktion fester Brennstoffe in einer Oxyfuel-Atmosphäre, Teilprojekt C01: Experimentelle Untersuchung der Kohlestaubverbrennung zur Validierung numerischer Simulationen

Das Projekt "Sonderforschungsbereich Transregio 129 (SFB TRR): Oxyflame - Entwicklung von Methoden und Modellen zur Beschreibung der Reaktion fester Brennstoffe in einer Oxyfuel-Atmosphäre, Teilprojekt C01: Experimentelle Untersuchung der Kohlestaubverbrennung zur Validierung numerischer Simulationen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität Darmstadt, Fachgebiet Reaktive Strömungen und Messtechnik.Zur Validierung numerischer Simulationen werden Oxyfuel-Kohlestaubflammen mit unterschiedlichen Messtechniken detailliert hinsichtlich Strömungsfeld, Temperaturen, Gaszusammensetzung und Reaktionszonen untersucht. Dazu werden zunächst die Randbedingungen dieser Flammen definiert. Die bisher nicht an der Versuchsanlage eingesetzten Messtechniken werden an diese angepasst. Weiterhin wird zur genauen Bestimmung der Partikeltemperatur ein bestehendes Zwei-Farben-Pyrometer weiterentwickelt und eingesetzt. Zusätzlich wird ein Experiment zur Bestimmung der Gasstrahlung in Oxyfuel-Feststoffverbrennung konzipiert.

Bestimmung von Charakteristiken langsamer bis schneller H2-CO-Verbrennung und Ableitung von Risikokriterien (KEK)

Das Projekt "Bestimmung von Charakteristiken langsamer bis schneller H2-CO-Verbrennung und Ableitung von Risikokriterien (KEK)" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Technische Universität München, TUM School of Engineering and Design, Lehrstuhl für Sustainable Future Mobility.

WASSERSTOFF: Industriegasbrennerentwicklung für Erdgas-Wasserstoff-Gemische, Teilprojekt A

Das Projekt "WASSERSTOFF: Industriegasbrennerentwicklung für Erdgas-Wasserstoff-Gemische, Teilprojekt A" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Rheinisch-Westfälische Technische Hochschule Aachen University, Lehrstuhl für Digital Additive Production.

1 2 3 4 524 25 26