With the introduction of mobile mapping technologies, geomonitoring has become increasingly efficient and automated. The integration of Simultaneous Localization and Mapping (SLAM) and robotics has effectively addressed the challenges posed by many mapping or monitoring technologies, such as GNSS and unmanned aerial vehicles, which fail to work in underground environments. However, the complexity of underground environments, the high cost of research in this area, and the limited availability of experimental sites have hindered the progress of relevant research in the field of SLAM-based underground geomonitoring. In response, we present SubSurfaceGeoRobo, a dataset specifically focused on underground environments with unique characteristics of subsurface settings, such as extremely narrow passages, high humidity, standing water, reflective surfaces, uneven illumination, dusty conditions, complex geometry, and texture less areas. This aims to provide researchers with a free platform to develop, test, and train their methods, ultimately promoting the advancement of SLAM, navigation, and SLAM-based geomonitoring in underground environments. SubSurfaceGeoRobo was collected in September 2024 in the Freiberg silver mine in Germany using an unmanned ground vehicle equipped with a multi-sensor system, including radars, 3D LiDAR, depth and RGB cameras, IMU, and 2D laser scanners. Data from all sensors are stored as bag files, allowing researchers to replay the collected data and export it into the desired format according to their needs. To ensure the accuracy and usability of the dataset, as well as the effective fusion of sensors, all sensors have been jointly calibrated. The calibration methods and results are included as part of this dataset. Finally, a 3D point cloud ground truth with an accuracy of less than 2 mm, captured using a RIEGL scanner, is provided as a reference standard.
Das Erstellen eines möglichst kompletten Ökologischen Profils einer Population ist von entscheidender Bedeutung in Naturschutz und Landschaftsplanung. Die Zauneidechse (Lacerta agilis LINNAEUS, 1758) ist weit verbreitet in Eurasien und bevorzugt offene bis halboffene Lebensräume. Hierzu gehören auch Habitate, die in der unmittelbaren Nähe von Menschen liegen wie Straßenränder, Bahntrassen oder Steinbrüche. Die Art ist daher oftmals Opfer von Störung, Zerstörung oder Fragmentierung ihrer Lebensräume durch menschliche Aktivitäten und daher oftmals das Ziel von Ausgleichsmaßnahmen. Diese sind am effektivsten, wenn sie auf die Ökologie der betroffenen Population abgestimmt sind. Ziel dieses Projektes ist daher das Erstellen einer möglichst effizienten Methode zur Ermittlung der Ökologie von Kleintieren am Beispiel einer Zauneidechsen-Population in der Dellbrücker Heide in Köln. Hierzu werden klassische Sichtungs basierte Begehungen mit Radio-Teleme-trie zur Aktionsraumbestimmung und hoch-auflösende Drohnenaufnahmen zur Habitatbestimmung verbunden, um ein möglichst vollständiges ökologisches Profil zu erhalten. Das Profil beinhaltet: Aktivität der Tiere in Bezug auf Wetter und Temperatur, Aktionsraumdichte und Habitatpräferenzen. Zusätzlich ist geplant, in Zusammenarbeit mit der Deutschen Bahn die Möglichkeit zu untersuchen, Eidechsenbestände direkt per Drohne aufzunehmen. Das Projekt beinhaltet bisher eine laufende Doktorarbeit (Vic Clement) sowie zwei abgeschlossene Master-Arbeiten zu Wetter abhängiger Aktivität (Julia Platzen-Edanakaparampil) und Habitatpräferenz (Rieke Schluckebier). Derzeit geplant sind ebenfalls zwei weitere Masterarbeiten zur Habitatpräferenz und zum Einfluss einer Drohne auf das Fluchtverhalten der Tiere (Lisa Schmitz und Tobias Demand).
<p>Naturbasierte Lösungen unterstützen sowohl den Klimaschutz als auch die Klimaanpassung. Digitale Technologien können Kommunen helfen, entsprechende Maßnahmen gezielter zu planen, umzusetzen und zu überwachen. Ein Forschungsprojekt im Auftrag des BMUKN hat zentrale Herausforderungen und Potenziale untersucht und praxisnahe Lösungsansätze erarbeitet.</p><p>Extreme Hitze, <a href="https://www.umweltbundesamt.de/service/glossar/s?tag=Starkregen#alphabar">Starkregen</a> und Überschwemmungen: Die Auswirkungen der Klimakrise sind in Städten und Gemeinden bereits deutlich spürbar (<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a> 2024). Naturbasierte Lösungen bieten hier einen doppelten Nutzen: Einerseits tragen sie dazu bei, Treibhausgase zu mindern und <a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Biodiversitt#alphabar">Biodiversität</a> zu schützen, andererseits spielen sie eine zentrale Rolle für die Klimaanpassung, etwa durch Minderung von Überflutungsrisiken und Abkühlung. In Städten und Kommunen umfassen sie vier zentrale Themenfelder:</p><p>Gerade auf kommunaler Ebene besteht ein großes Potenzial, naturbasierte Maßnahmen umzusetzen (s. auch<a href="https://www.umweltbundesamt.de/themen/klima-energie/klimafolgen-anpassung/anpassung-an-den-klimawandel/anpassung-auf-kommunaler-ebene/naturbasierte-klimaanpassung-in-kommunen#typen-naturbasierter-losungen-fur-die-stadtische-klimaanpassung">Themenseiten des Umweltbundesamtes zur naturbasierten Klimaanpassung in Kommunen</a>). Digitale Technologien können dabei helfen, diese Maßnahmen gezielter zu planen, effizienter umzusetzen, wirkungsvoller zu überwachen und zum Teil auch autonom zu betreuen. Doch werden diese Chancen oft noch zu wenig genutzt.</p><p>Aus diesem Grund initiierte das Bundesumweltministerium (BMUKN) das Forschungsprojekt „<a href="https://www.ioew.de/projekt/digitale_technologien_fuer_natuerlichen_klimaschutz_in_kommunen_dinakom">Digitale Technologien für den natürlichen Klimaschutz in Kommunen (DiNaKom)</a>“. Dessen Ziel war es, die Potenziale digitaler Technologien für die Planung und Umsetzung naturnaher Klimaschutzmaßnahmen auf kommunaler Ebene systematisch zu analysieren, die Herausforderungen zu erheben und Lösungen zu entwickeln (Johnson et al. 2025). Das Institut für ökologische Wirtschaftsforschung GmbH und Net Positive Cities GmbH haben hierfür zahlreiche Interviews geführt und Workshops veranstaltet.</p><p><strong>Digitale Werkzeuge in der Praxis – Fallbeispiele aus Kommunen</strong></p><p>Ob Biotopvernetzung, smarte Bewässerung oder klimafreundliche Stadtplanung – digitale Technologien eröffnen vielfältige Möglichkeiten, um naturbasierte Maßnahmen in Kommunen gezielter und effizienter umzusetzen. Von künstlicher Intelligenz (KI) und digitalen Zwillingen bis hin zu 3D-Stadtklimamodellen – die digitalen Werkzeuge sind vielfältig. Aus den analysierten Potenzialen der DiNaKom-Studie lassen sich konkrete Anwendungsbeispiele erkennen, wie diese Potenziale bereits heute in der Praxis genutzt werden.</p><p><strong>Biotope</strong>bieten sowohl ökologisch – durch die Förderung der Biodiversität und der Temperaturregulation – als auch gesellschaftlich – durch Gesundheitsförderung und Erholung – einen großen Mehrwert. Ihre Integration in die Landschafts- und Stadtplanung ist daher ein zentraler Baustein für nachhaltiges und klimaresilientes Handeln. Ein digitales Beispiel für die Vernetzung von Biotopen ist die Software Marxan. Sie wird international in der systematischen Naturschutzplanung eingesetzt. Konkret unterstützt sie Fachplan*innen dabei,<strong>optimale Flächenkombinationen für Biotopverbünde</strong>zu identifizieren, und betrachtet dabei sowohl ökologische Kriterien als auch wirtschaftliche Faktoren. In Bayern wird das Tool vom<a href="https://www.lfu.bayern.de/natur/bayaz/biotopverbund/konzept_aufbau/index.htm">Bayerischen Artenschutzzentrum</a>genutzt, um Biodiversitätsberater*innen eine datenbasierte Planungsgrundlage zur Verfügung zu stellen.</p><p>Auch bei der<strong>urbanen Grünflächenpflege</strong>leisten digitale Anwendungen einen wichtigen Beitrag. Umweltüberwachungssysteme können etwa Hinweise zum Wasserbedarf und Gesundheitszustand von Bäumen geben. Für letzteren Anwendungsfall können Sensoren, Drohnen oder „LiDAR tree maps“, also 3D-Punktwolken und Satellitendaten, genutzt werden. So kann die Anwendung<a href="https://www.geodesy.tu-darmstadt.de/fernerkundung/forschung_fub/forschungsthemen_fub/forsens.de.jsp">ForSens</a>, die in einem Verbundprojekt der Karuna Technology UG und der TU Darmstadt entwickelt wird, mithilfe von Sentinel-2-Satellitendaten Vitalitätsverluste bei Stadtbäumen mit bis zu 16 Monaten im Voraus identifizieren. So können Grünflächenämter gezielt handeln und Pflegeeinsätze besser planen. Auch verhindert diese vorausschauende Analyse Sicherheitsrisiken, die durch Baumsturz entstehen.</p><p>Stadtbäume spielen eine sehr relevante Rolle bei der Kühlung von Städten. Gleichzeitig leiden Sie unter der zunehmenden Hitze und Trockenheit. Aus diesem Grund beschäftige sich das Berliner Projekt<a href="https://www.qtrees.ai/en/">Q-Trees</a>mit dem<strong>Wasserbedarf</strong>von Bäumen. Die daraus entstandenen Anwendungen informieren über die Vitalität und den Wasserbedarf der Stadtbäume. Auf diese Weise soll für den Baumerhalt sensibilisiert werden. Die im Projekt entstandene Open-Source-App für Bürger*innen und das Expert*innen-Dashboard enthalten eine auf MapTiler und OpenStreetMap basierende Karte. Sie ist mit dem städtischen Baumkataster verknüpft, das 800.000 Bäume mit Angaben zu Art, Alter, Größe, Kronendurchmesser und Stammumfang enthält. Angereichert wird die Karte mit Umgebungsparametern und Echtzeitdaten wie Wetterdaten und Feuchtigkeitssensoren, die mit einigen Bäumen verbunden sind. Ein KI-basiertes Vorhersagemodell nutzt diese Daten und kann damit die aktuelle Saugspannung aller sich im unmittelbaren Umfeld befindlichen Straßenbäume berechnen und für 14 Tage vorhersagen – also auch für Bäume, die ohne Sensor ausgestattet sind.</p><p>Gebäude sind wesentliche Wärmespeicher und fördern damit die Bildung von Hitzeinseln in urbanen Räumen.<strong>Gebäude- und Dachbegrünung</strong>können dem entgegenwirken. Dachkatasterdaten können identifizieren, wo eine Dachbegrünung realisierbar ist. Darauf aufbauend können Building Information Models (BIM) helfen, die Begrünung mit einem geringen Ressourcenaufwand zu planen und gleichzeitig sicherzustellen, dass die Statik des Gebäudes mit der Begrünung kompatibel ist. Die Digitalisierung kann auch die Pflege der Dach- und Fassadenflächen erleichtern, indem die Bewässerung autonom erfolgt, also auf der Grundlage von Echtzeitdaten wie <a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Wetter#alphabar">Wetter</a>- und Feuchtigkeitsdaten ähnlich dem QTree-Projekt. Auch können Kamera-Systeme die Biodiversität an den Flächen beobachten und so den biologischen Mehrwert der Pflanzungen überprüfen.</p><p>Besonders im<strong>Wassersektor</strong>zeigen sich vielfältige Möglichkeiten, wie digitale Technologien naturbasierte Lösungen stärken können; einige Beispiele beleuchten Real Perdomo et al. (2025) genauer. Beispielhaft für ganzheitliche Anwendungen sind die Lösungen der Firma RX-Watertec. Das gleichnamige System erfasst Echtzeit-Füllstandinformationen aus Zisternen, Baumsensorik und Wetterdaten. Damit evaluiert es live, ob Bäume autonom bewässert werden sollten oder aufgrund eines vorausgesagten Regens keine Beregnung nötig ist sowie ob die Zisternen wegen einer Starkregenvorhersage geleert werden sollen, um Schäden zu reduzieren. Die Digitalisierung der Regenwasserbewirtschaftung ermöglicht es auch, Wartungen bedarfsgerecht und somit ressourcenschonender und kostengünstiger durchzuführen.</p><p><strong>Hürden in der Umsetzung</strong></p><p>Für die erfolgreiche Planung und Umsetzung von naturbasierten Maßnahmen spielt eine Vielzahl von Akteuren eine entscheidende Rolle, darunter kommunale Grünflächenämter, Infrastrukturbetreiber und Stadtwerke. Mit diesen und weiteren kommunalen Akteuren sowie Technologieanbietern hat das Projektteam über qualitative Interviews Herausforderungen bei der Einführung digitaler Technologien für naturbasierte Lösungen erhoben.</p><p>Die Interviews liefern vertiefte Einblicke in strukturelle, organisatorische und technische Herausforderungen. So fällt auf, dass es in Kommunen häufig an personellen Ressourcen fehlt. Der Fachkräftemangel erschwert die Personalsuche und somit die mittelfristige Abhilfe. Auch fehlt das Wissen zu geeigneten digitalen Werkzeugen und zu deren Anwendungsmöglichkeiten. Ein zentrales Hemmnis sind langwierige und aufwändige Vergabeprozesse, insbesondere bei innovationsorientierten Vorhaben. Fachabteilungen wünschen sich oft agile Umsetzungspartner wie Start-ups, doch die hohe Risikoaversion in Vergabestellen und der hohe Aufwand bei größeren Vergabesummen bremsen Tempo und Innovationsbereitschaft erheblich.</p><p>Darüber hinaus zeigt sich in der Praxis, dass strukturelle Hürden die Umsetzung naturbasierter Lösungen erschweren. Dazu zählen unklare Zuständigkeiten und fehlende Koordinationsstrukturen zwischen Verwaltungsbereichen wie Tiefbau-, Umwelt- und Grünflächenämtern. Naturbasierte Maßnahmen greifen häufig in bestehende Zuständigkeitslogiken ein – insbesondere, wenn sie mehrere Sektoren gleichzeitig betreffen. So kann beispielsweise die dezentrale Versickerung von Regenwasser und dessen Nutzung zur Bewässerung von Stadtgrün zu Unklarheiten führen: Abwasserbetriebe sind traditionell auf die Ableitung von Regenwasser ausgerichtet und betrachten Bewässerungsfragen nicht als ihren Zuständigkeitsbereich. Gleichzeitig ist auf kommunaler Ebene oft nicht geregelt, wer die Planung, Finanzierung und Unterhaltung solcher fachübergreifenden Lösungen übernehmen soll. Dies verdeutlicht, dass nicht nur technische, sondern auch institutionelle Anpassungen notwendig sind, um naturbasierte Lösungen in der Breite zu verankern.</p><p>Der zur Überwindung dieser Herausforderungen nötige Kulturwandel schreitet nach dem Eindruck der Interviewpartner*innen nur sehr langsam voran. Die zögerliche Digitalisierung und das weiterhin fehlende systemische – und somit fachabteilungsübergreifende – Denken wurde als eine der größten Hemmschwellen identifiziert. Diesbezüglich schafft das Forschungsprojekt „<a href="https://www.ufz.de/bluegreencitycoaching/index.php?de=52207">Blue Green City Coaching (BGCC)</a>“ Abhilfe: Eine Coaching-Toolbox bietet Stadtakteuren Instrumente und praxisnahe Hilfestellungen, um lokalspezifische Herausforderungen zu überwinden und ins Handeln zu kommen.</p><p><strong>Ausblick: Lösungswege zur Gestaltung der digitalen Zukunft</strong></p><p>Auf Basis von weiterführenden Interviews wurden Handlungsempfehlungen und Unterstützungsangebote entwickelt. Notwendig sind:</p><p><strong>Fazit</strong></p><p>Digitale Technologien können einen entscheidenden Beitrag dazu leisten, Städte und Gemeinden mithilfe naturbasierter Lösungen klimaresilient und zukunftsfähig zu machen – vorausgesetzt, sie werden zielgerichtet, kooperativ und vorausschauend eingesetzt. Die vom Bundesumweltministerium geförderte Studie zeigt, wie dies gelingen kann.</p><p><strong></strong></p><p><em>Autor*innen: Dr. Maria Real Perdomo (Net Positive Cities), Dr. Daniel Johnson und Dr. Alexandra Dehnhardt (Institut für ökologische Wirtschaftsforschung, IÖW)</em></p><p><em>Den vollständigen Bericht des Projekts finden Sie<a href="https://www.ioew.de/fileadmin/user_upload/DOKUMENTE/Publikationen/Schriftenreihe/IOEW_SR_230_DiNaKom.pdf">hier</a>.</em></p><p><em>Dieser Artikel wurde als Schwerpunktartikel im Newsletter Klimafolgen und Anpassung Nr. 97 veröffentlicht.<a href="https://www.umweltbundesamt.de/service/newsletter">Hier</a>können Sie den Newsletter abonnieren.</em></p><p></p><p><strong>Quellen:</strong></p><p>Johnson, D., Schmelzle, F., Real Perdomo, M., Bergset, L., Rösch, E., & Rohde, F. (2025). Digitale Technologien für natürlichen <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimaschutz#alphabar">Klimaschutz</a> in Kommunen – Lösungen um Austausch, Koordination und Management zu verbessern. In: Schriftenreihe des IÖW 230/25, ISBN 978-3-940920-36-2.<a href="http://www.ioew.de/fileadmin/user_upload/DOKUMENTE/Publikationen/Schriftenreihe/IOEW_SR_230_DiNaKom.pdf">www.ioew.de/fileadmin/user_upload/DOKUMENTE/Publikationen/Schriftenreihe/IOEW_SR_230_DiNaKom.pdf</a></p><p>Real Perdomo, M., Johnson, D. & Dehnhardt, A. (2025). Technologien für den natürlichen Klimaschutz im Wassersektor. In: wwt Wasserwirtschaft Wassertechnik, Ausgabe 5/2025, S. 23–27. DOI: 10.51202/1438-5716-2025-5-023</p><p>Umweltbundesamt (<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>) (2024). Kommunalbefragung Klimaanpassung 2023. Climate Change 34/2024.<a href="https://www.umweltbundesamt.de/sites/default/files/medien/11850/publikationen/34_2024_cc_kommunalbefragung.pdf">https://www.umweltbundesamt.de/sites/default/files/medien/11850/publikationen/34_2024_cc_kommunalbefragung.pdf</a></p>
In der <b> Fernerkundung - Luftbilder</b> werden aus großer Höhe Bilder von der Erdoberfläche aufgenommen, die anschließend aufbereitet und als hochwertige Geodaten bereitgestellt werden. <br> Diese Aufnahmen unterstützen bei der Dokumentation von Veränderungen, der städtischen Planung und der Überwachung von Umweltentwicklungen. Sie können sowohl als Datengrundlage für KI-Trainingsdaten als auch zur direkten Betrachtung der urbanen Landschaft genutzt werden. <br><br>Unser Ziel ist es, diese bedeutsamen Daten nicht nur Fachleuten, sondern auch der Öffentlichkeit zugänglich zu machen – leicht verständlich und nutzerfreundlich. <br><br><i>"Wie hat sich Hamburg entwickelt?" -- "Wie sah das Grundstück früher aus?" -- "Wo blüht es im Sommer?"</i> <br> <b>→ Ein Blick in die Daten lohnt sich.</b><br><br> <u><i>Hinweis:</i></u> So vielfältig die Anwendungsbereiche sind, so vielfältig sind auch unsere Datensätze. Je nach Aufnahmesystem – ob <b>Drohne</b>, <b>Flugzeug</b> oder <b>Satellit</b> variieren die Bilder in ihrer Qualität und Detailtiefe. Diese Unterschiede zeigen sich etwa in der Bildauflösung (GSD), den Farbdarstellungen (spektrale Auflösung) und/oder der Aktualität der Daten (zeitliche Auflösung). Nähere Informationen sind aus den Metadaten der Datensätze zu entnehmen.<br>
Gesamtziel des Vorhabens ist die Entwicklung eines drohnenbasierten Sensorsystems für die Inspektion von Windkraftanlagen. Hierbei sollen insbesondere schwer zugängliche und kritische Stellen wie beispielsweise Rotorblätter in bislang unerreichter Genauigkeit digitalisiert und vermessen werden. Die Sensorik besteht aus Laserscannern, Kameras, Thermokameras und IMUs zum Einsatz, um ein möglichst umfassendes, multimodales Modell der Anlage zu erhalten. Durch den Einsatz von Drohnen kann die Inspektion im Vergleich zu aktuellen Methoden schnell, effizient und sicher durchgeführt werden. Die Idee des Teilprojektes ist, luftgestütztes Laserscanning so zu miniaturisieren und Drohnen, d.h. kleine UAVs, mit entsprechender Laserscan-Sensorik auszustatten, so dass die Inspektions-aufgabe kostengünstig gelöst werden kann. Dazu sollen die UAVs die erstellten 3D-Karten auch selbst nutzen. Es müssen die Verfahren und Algorithmen so angepasst werden, dass die Ergebnisse, d.h. die 3D-Karten in Echtzeit vorliegen. Das Vorhandensein einer detailreichen 3D-Karte mit Zusatzinformationen (Fotos, Thermografie, Interpretationen) bietet die Möglichkeit in kurzer Zeit, WKAs zu inspizieren und den Zustand zu dokumentieren. Die wissenschaftlichen Ziele des Vorhabens beinhalten zum einen die Lösung des Problems der simultanen Lokalisierung und Kartierung (SLAM, vgl. Abschnitt 2) eines UAVs. Ist SLAM gelöst, muss die 3D-Punktwolke in ein 3D-Modell umgewandelt, was durch Anwendung von neuronalen KI-Methoden gelingen soll. Eine weitere wissenschaftliche Herausforderung ist die Datennachverarbeitung und Datenanalyse. Hier sollen neue Methoden zur Änderungsdetektion umgesetzt werden. Auf technischer Seite ist ein Ziel des Projektes eine effiziente Lösung des Kalibrierproblems zu finden.
Der Ausbau der Windenergie im Binnenland ist entscheidend, um die Herausforderungen der Energiewende zu bewältigen. Die Windgeschwindigkeiten sind im Vergleich zu Standorten auf See geringer und die Anströmung komplexer. Das Forschungsvorhaben WINDbreaks soll dabei helfen die Volllaststunden der Windenergieanlagen im komplexen Terrain zu erhöhen. Hierfür sind messtechnische und numerische Untersuchungen an Windenergieanlagen (WEA) und an Baumreihen, die als Windschutzstreifen (WSS) dienen, geplant. Die Überströmung der WSS führt zu einer Beschleunigung der Windgeschwindigkeit und diese geht pro-portional zur dritten Potenz in den Leistungsertrag von WEA ein. Ein zusätzlich positiver Nebeneffekt ist das flachere Geschwindigkeitsprofil in Höhe der Rotorblätter, welches eine gleichmäßigere Verteilung der angreifenden Kräfte zur Folge hat. Im Teilprojekt erfolgen die Entwicklung der Drohnen-Windmesstechnik und deren umfangreicher Einsatz zur Generierung von Messdaten für die CFD-Analysen des Projektpartners Hochschule Ansbach (HSA). Der assoziierte Projektpartner N-ERGIE stellt die Messorte zur Verfügung. Es wird eine synchrone Steuerung von einer optimierten Windmess-Drohne und einer neu aufgebauten Windmess-Drohne entwickelt und für Messflüge eingesetzt. Zur markanten Verlängerung der Flugzeiten der Drohnen erfolgt die Entwicklung einer drahtgestützten Energieversorgung der Drohnen. Das mit zwei Referenz-Bodenstationen ergänzte Messsystem wird an WEA und WSS bei verschiedensten lokalen und meteorologischen Randbedingungen eingesetzt.
Deutschland möchte mit der Fortführung der Forschung an einer Methode zur möglichst automatisierten Erkennung von Müll an arktischen Küsten weiterhin die Arktischen Staaten dabei unterstützen, ein arktisweit einheitliches (oder zumindest vergleichbares) Verfahren zu etablieren, das es ermöglicht, den Umweltzustand arktischer Küstenabschnitte hinsichtlich des Vorhandenseins von Müll jetzt und in Zukunft zu erfassen und zu bewerten. Ziel des Projektes ist es, eine Methode zu entwickeln, mittels derer Küsten- und Stranduntersuchungen in der Arktis per Drohne durchgeführt werden können. Bei der Erarbeitung der entsprechenden Methodik liegt der Fokus auf der Ermittlung arktisspezifischer Parameter und der automatisierten Auswertung gewonnener Daten. Die Konzeption soll zunächst an geeigneten Teststränden oder Gebieten in Deutschland erfolgen und dann in der Arktis validiert werden. Des Weiteren sind Konzepte zu erarbeiten, wie beispielsweise arktische Gemeinden, lokale Forschungseinrichtungen oder auch andere Stakeholder wie etwa Reiseunternehmen, die im Arktisraum agieren, die Methode anwenden können. Im Zuge der automatisierten Auswertung soll eine KI entwickelt und trainiert werden, mit der die generelle Detektion von Kunststoffmüll an Küsten und Stränden in der Arktis möglich ist und ggf. auch eine automatisierte Kategorisierung der Müllteile erfolgen kann.
Origin | Count |
---|---|
Bund | 254 |
Kommune | 32 |
Land | 118 |
Wissenschaft | 62 |
Type | Count |
---|---|
Daten und Messstellen | 48 |
Förderprogramm | 192 |
Sammlung | 1 |
Text | 76 |
Umweltprüfung | 5 |
unbekannt | 95 |
License | Count |
---|---|
geschlossen | 106 |
offen | 303 |
unbekannt | 8 |
Language | Count |
---|---|
Deutsch | 343 |
Englisch | 121 |
Resource type | Count |
---|---|
Archiv | 16 |
Bild | 7 |
Datei | 41 |
Dokument | 34 |
Keine | 205 |
Unbekannt | 2 |
Webdienst | 27 |
Webseite | 124 |
Topic | Count |
---|---|
Boden | 199 |
Lebewesen und Lebensräume | 263 |
Luft | 417 |
Mensch und Umwelt | 417 |
Wasser | 164 |
Weitere | 374 |