API src

Found 257 results.

Related terms

openSenseMap: Sensor Box HE Lange Nacht der Wissenschaften 2025 senseBox5

Das ist eine senseBox der Humboldt Explorers. Weitere Informationen unter: www.Humboldt-Explorers.de

freie Liegenschaftskarte SL - Flurgrenzen

Basisdienst Amtliches Liegenschaftskatasterinformationsystem (ALKIS) des Saarlandes mit Flurstuecksgeometrien und Gebaeudeumringen (massstabsbeschraenkt):Basisdienst Amtliches Liegenschaftskatasterinformationsystem (ALKIS) des Saarlandes mit Flurstuecksgeometrien und Gebaeudeumringen (massstabsbeschraenkt)

freie Liegenschaftskarte SL - Flurbeschriftung

Basisdienst Amtliches Liegenschaftskatasterinformationsystem (ALKIS) des Saarlandes mit Flurstuecksgeometrien und Gebaeudeumringen (massstabsbeschraenkt):Basisdienst Amtliches Liegenschaftskatasterinformationsystem (ALKIS) des Saarlandes mit Flurstuecksgeometrien und Gebaeudeumringen (massstabsbeschraenkt)

Herkunft und Verhalten des Fluors im Boden

Analyse von Altholz

"Analyse von Altholz auf Verunreinigungen/Holzschutzmittel aus ausgewählten sächsischen Feuerungs- und Altholzaufbereitungsanlagen": Im Rahmen des Projektes wurden aus 22 Feuerungs- bzw. Altholzaufbereitungsanlagen 151 Holzproben auf folgende Parameter analysiert: Anorganische Wirkstoffe: Bor, Arsen, Fluor ges., Chrom ges., Kupfer, Quecksilber, Cadmium, Blei Organische Wirkstoffe: PCP, PAK (speziell Bezo(a)pyren), Lindan, EOX Aus chemikalienrechtlicher Sicht wurden die Analyseergebnisse zur Überprüfung der Einhaltung der Verbotsvorschriften herangezogen, d.h. es wurde überprüft, ob der Ausnahmetatbestand einer ordnungsgemäßen Abfallentsorgung erfüllt ist.

Ertüchtigung der deutschen PV-Industrie zur effektiven Umsetzung der Ökodesign-Verordnung und des Energielabels der EU

Bislang ist die Kaufentscheidung bei Solarmodulen überwiegend preisgetrieben. Bewertungskriterien wie die Recyclingfähigkeit, die CO2-Emission bei der Herstellung oder die Vermeidung umweltbedenklicher Stoffe spielen eine untergeordnete Rolle bei der Kaufentscheidung. Aus diesem Grund wird auf EU-Ebene eine Ökodesign-Verordnung mit einem dazugehörigen Energielabel für Solarmodule vorbereitet, die 2023 in Kraft treten soll. Der Kunde soll Informationen zur Nachhaltigkeit des Solarmodules erhalten. Darüber hinaus sollen Solarmodule vom Markt ferngehalten werden, die gewisse Grenzwerte überschreiten. Ziel des Forschungsvorhabens ist es, nachhaltige Solarmodule, Herstellungs- und Recyclingverfahren zu entwickeln und im Produktionsmaßstab zu demonstrieren, die die geplante EU-Verordnung zum Ökodesgin und Energielabel überdurchschnittlich erfüllen. Insbesondere werden die folgenden Nachhaltigkeitsmerkmale entwickelt: (1) Recyclebarkeit und Einsatz von Sekundärrohstoffen, (2) geringer Material- und Energieverbrauch bei der Modulherstellung, (3) Vermeidung umweltbedenklichen Stoffe, (4) Reparierbarkeit des Solarmoduls, (5) Erhöhung des Jahresenergieertrages und der Modulzuverlässigkeit (Degradationsrate, Lebensdauer, Ausfall). Die Material- und Solarmodulentwicklungen werden ganzheitlich mit einer Lebenszyklusanalyse bewertet. Als Ziel gilt es, einen CO2-Fußabdruck von unter 20 g CO2eg/kWh zu erreichen und Konzepte aufzuzeigen, die den Bedarf an Blei, Antimon und Fluor im Modul bei gleichbleibenden Kosten eliminieren, das Recycling als Sekundärrohstoff ermöglichen, die Reparatur der Bypass-Dioden erlauben und eine geringe Degradation und eine hohe Lebensdauer aufweisen.

Grundbelastung von Phytoindikatoren durch Fluor-Immissionen und Beurteilung des Ausmasses von Immissionsschaeden an Kulturpflanzen im Einflussbereich einer Aluminium-Elektrolyse

Aufgrund von umfangreichen Messungen, die zeitlich und von den Kulturen her variiert waren und sind, wird die Gefaehrdung landwirtschaftlicher Kulturen durch Fluor-Immissionen ermittelt. Es sollen ueber Jahre hinaus die Einfluesse des Emittenden im Nah- und Fernbereich erforscht werden. Ziel des Gutachtens ist zugleich, den Landwirten eine objektiv darstellbare Entschaedigungsleistung anzubieten.

Biogeochemie der wichtigsten Elemente im Atlantischen und Pazifischen Ozeane

Die vorgeschlagene Arbeit zielt darauf ab, das Ozeanographen-Toolkit zur Quantifizierung der Skelettniederschlagsraten in Meeresumgebungen zu verbessern und Veränderungen in der Ökosystemstruktur und -funktion über sehr große räumliche Skalen zu bewerten. Dies basiert auf der Analyse von Veränderungen in der Meerwasserchemie, die durch die Aufnahme von wichtigen Elementen durch verschiedene Meeresorganismen während des Biomineralisierungsprozesses hervorgerufen werden, und der Freisetzung dieser Elemente bei der Auflösung von Skeletten. Der Ansatz nutzt die unterschiedlichen Tendenzen verschiedener Skelettbildungsorganismen, um kleinere Bestandteile in ihre Skelette aufzunehmen. Die Analyse der Konzentrationen der Hauptelemente Kalzium, Strontium, Lithium und Fluor erfolgt entlang von vier langen Ozeantransekten im Atlantik und im Pazifischen Ozean, die auf die Konzentrationen und Isotopenverhältnisse einer großen Anzahl von Spurenelementen, Nährstoffen, Karbonatsystemparametern und Hydrographie analysiert wurden oder werden. Das Vorhandensein der Spurenelementdaten neben den Hauptelementdaten ermöglicht die Quantifizierung der wichtigsten Elementeinräge und den Austrag durch Grenzquellen und Senken (wie Flüsse, hydrothermale, Staub und Sedimente), wodurch Korrekturen der Major-Elementdaten zur Berücksichtigung von Flüssen aus dem Ökosystem ermöglicht werden. Dieses Wissen wird zur Beurteilung des Zustands der marinen Ökosysteme genutzt und kann als Grundlage für Veränderungen dienen, die bei zukünftigen Bewertungen beobachtet werden. Die Anwendung dieses Instruments auf wiederholte räumliche oder zeitliche Untersuchungen wird eine groß angelegte Bewertung des Fortschritts der Auswirkungen der Versauerung der Ozeane auf die Häufigkeit von Kalkbildungsorganismen ermöglichen.

Stoffliche Wiederverwertung von Elektrolyt-Leitsalzen und -Lösungsmitteln, Teilvorhaben: Recycling und Rückgewinnung des Elektrolytsalzes LiPF6 sowie dessen Zersetzungsprodukte

Das Projektvorhaben SWELL befasst sich mit der Entwicklung und Evaluierung effizienter Verfahren zur Steigerung der Recyclingeffizienz von Lithium-Ionen-Batterien. Im Fokus des Projektes stehen die Elektrolyte, bestehend aus Lithiumsalzen, Lösungsmitteln und Elektrolytadditiven. Bereits etablierte Recyclingprozesse fokussieren sich überwiegend auf die Rückgewinnung der in LIBs befindlichen Metalle, wohingegen die nichtmetallischen Komponenten zum großen Teil nicht wieder dem Verwertungskreislauf zugeführt werden. Die Elektrolyte gehen in bisherigen Prozessen größtenteils in Form von thermischer Verwertung oder Downcycling verloren. Die Elektrolytkomponenten weisen einen signifikanten Materialwert auf und enthalten zudem kritische, umweltrelevante Ressourcen, wie Lithium, Fluor und Phosphor. Ihre Rückgewinnung und effiziente Aufarbeitung mit dem Ziel einer (direkten) Wiederverwendung in LIBs, ist daher von großem Interesse und kann zur signifikanten Steigerung der Nachhaltigkeit der Batteriezellfertigung führen. Gesamtziel des Projektes ist es Verfahren zu entwickeln, in denen Elektrolytbestandteile selektiv extrahiert, getrennt und anschließend aufgearbeitet werden, um diese in den Stoffkreislauf zu reintegrieren. Hauptaugenmerk liegt hierbei auf den Elektrolytlösungsmitteln (Carbonate, wie DMC, EMC EC) und dem Lithiumsalz LiPF6 sowie dessen Zersetzungsprodukte.

Stoffliche Wiederverwertung von Elektrolyt-Leitsalzen und -Lösungsmitteln, Teilvorhaben: Qualitätsanalytik und Nachhaltigkeitsanalyse der Elektrolytaufbereitung

Das Projektvorhaben SWELL befasst sich mit der Entwicklung und Evaluierung effizienter Verfahren zur Steigerung der Recyclingeffizienz von Lithium-Ionen-Batterien. Im Fokus des Projektes stehen die Elektrolyte, bestehend aus Lithiumsalzen, Lösungsmitteln und Elektrolytadditiven. Bereits etablierte Recyclingprozesse fokussieren sich überwiegend auf die Rückgewinnung der in LIBs befindlichen Metalle, wohingegen die nichtmetallischen Komponenten zum großen Teil nicht wieder dem Verwertungskreislauf zugeführt werden. Die Elektrolyte gehen in bisherigen Prozessen größtenteils in Form von thermischer Verwertung oder Downcycling verloren. Die Elektrolytkomponenten weisen einen signifikanten Materialwert auf und enthalten zudem kritische, umweltrelevante Ressourcen, wie Lithium, Fluor und Phosphor. Ihre Rückgewinnung und effiziente Aufarbeitung mit dem Ziel einer (direkten) Wiederverwendung in LIBs, ist daher von großem Interesse und kann zur signifikanten Steigerung der Nachhaltigkeit der Batteriezellfertigung führen. Gesamtziel des Projektes ist es Verfahren zu entwickeln, in denen Elektrolytbestandteile selektiv extrahiert, getrennt und anschließend aufgearbeitet werden, um diese in den Stoffkreislauf zu reintegrieren. Hauptaugenmerk liegt hierbei auf den Elektrolytlösungsmitteln (Carbonate, wie DMC, EMC EC) und dem Lithiumsalz LiPF6 sowie dessen Zersetzungsprodukte.

1 2 3 4 524 25 26