Das Projekt "Heissentfluorierung von reduzierenden Gasen mit Absorbern auf Kalkbasis" wird/wurde ausgeführt durch: Technische Universität Clausthal, Institut für Allgemeine Metallurgie.In der Industrie, z.B. bei der Muellvergasung oder bei GuD-Kraftwerken, entsteht unter anderem Fluorwasserstoff (HF). Da HF extrem umweltschaedlich und giftig ist, muss es aus dem Gas entfernt werden. Im Gegensatz zu den konventionellen Nassgasreinigungen kann das Gas trocken bei moeglichst hohen Temperaturen gereinigt werden. Energieverluste infolge des Abkuehlens und Wiederaufheizens koennen vermieden und so der Wirkungsgrad um einige Prozentpunkte erhoeht werden. Zudem entfaellt die Aufbereitung der anfallenden Abwaesser bei der Nassgasreinigung. Die Entwicklung derartiger Verfahren ist Gegenstand dieses Projektes.
Das Projekt "MoNoPoLi - Moderne Bindersysteme - Nachhaltige Polymere für Lithium-Batterien" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Technische Universität Braunschweig, Institut für Füge- und Schweißtechnik.
Das Projekt "Grundlagenuntersuchungen zum thermochemischen Abbau von PFAS in Labor- und Technikumsanlagen zur Ermittlung optimaler Verbrennungsbedingungen bei der thermischen Behandlung von PFAS-haltigen Abfallstoffen" wird/wurde gefördert durch: Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (BMUV) , Umweltbundesamt (UBA). Es wird/wurde ausgeführt durch: Bundesanstalt für Materialforschung und -prüfung (BAM), Abteilung 1 Analytische Chemie; Referenzmaterialien, Fachbereich 1.7 - Lebensmittelanalytik.PFAS (Per- bzw. polyfluorierte Alkylsubstanzen) sind gekennzeichnet durch eine hohe Bindungsaffinität von Kohlenstoff- und Fluoratomen und Persistenz, weshalb sie in der Umwelt zumeist nicht oder nicht vollständig abgebaut werden können. Aufgrund ihrer vielfältigen Anwendungsbereiche können PFAS auch in verschiedenen Abfallströmen vorkommen. Detaillierte Kenntnisse zu den thermo-chemischen Abläufen wie PFAS in thermischen Abfallbehandlungsanlagen zerstört und sich ggf. zu Fluorwasserstoff umwandeln lassen, liegen mangels verfügbarer Forschungsergebnisse bisher nicht zuverlässig vor. Im Rahmen des Vorhabens sollen daher Grundlagenuntersuchungen zum thermochemischen Abbau von PFAS-haltigen Abfällen bei Verbrennungseinrichtungen im Labor- und Technikumsmaßstab durchgeführt werden, deren Versuchsbedingungen sich an den Vorgaben der 17. BImSchV zur Mindesttemperatur bzw. zur Mindestverweilzeit in konventionellen Abfallverbrennungsanlagen orientieren. In diesem Zusammenhang sind Messkonzepte zu entwickeln, die die Zerstörungseffizienz über PFAS-Summenparameter bzw. Einzelparameter sicher bewerten lassen und sich zudem auf den Einsatz an großtechnischen Anlagen übertragen lassen. Darüber hinaus werden weitere Erkenntnisse zum thermo-chemischen Abbau persistenter organischer Verbindungen ermittelt, die auch insgesamt Einfluss auf die Entsorgung von POP-haltigen Abfällen haben werden.
Das Projekt "Heterogen katalysierte Zerlegung von Freonen in Kohlendioxid, Chlorwasserstoff und Fluorwasserstoff bei tiefen Temperaturen" wird/wurde gefördert durch: Adelmann AG. Es wird/wurde ausgeführt durch: Universität Berlin (Humboldt-Univ.), Mathematisch-Naturwissenschaftliche Fakultät I, Institut für Chemie, Fachinstitut für Anorganische und Allgemeine Chemie.Die umweltgerechte Entsorgung von Freonen aus der Kuehlschrankrueckgewinnung erfolgt ggw nach einem sehr aufwendigen Verfahren und sieht am Ende die Konfektionierung der zurueckgewonnenen Freone, deren Versand sowie die abschliessende Zersetzung bei ca 1500 Grad Celsius vor. Nach dem hier angestrebten Verfahren kann die Zerlegung in Gegenwart eines geeigneten Katalysators hydrolytisch in Halogenwasserstoffe und Kohlendioxid schon bei ca 450 Grad Celsius 'vor Ort' in einer kleinen mobilen Anlage erfolgen. Dadurch werden aufwendige Aufbereitungsschritte beim Kuehlschrankrezykler und der Versand ueberfluessig. Eine kleintechnische Anlage laeuft sehr stabil, so dass die Ueberfuehrung in den technischen Massstab unmittelbar bevorsteht.
Das Projekt "Hochaufloesende interferometrische Fourier Transform Spektroskopie atmosphaerischer Gase" wird/wurde ausgeführt durch: Eidgenössische Technische Hochschule Zürich, Laboratorium für Physikalische Chemie (LPC).Es werden neue spektroskopische Verfahren entwickelt und auf atmosphaerische Gase (z. B. CO, NO, CO2, HF, CH4, CHX3, CHF2Cl und andere Freone) angewendet. Mit Hilfe unserer Analysen sind genaue Simulationen der atmosphaerischen Absorption dieser Gase im Infrarotbereich moeglich. Moegliche Anwendungen unserer Ergebnisse finden sich im Bereich Umweltanalytik durch Spektroskopie, Strahlungstransport in der Atmosphaere, etc.
Änderung des Betriebs des HKW Tiefstack (Anlage zur Erzeugung von Strom, Dampf, Warmwasser, Prozesswärme oder erhitztem Abgas durch den Einsatz von Brenn-stoffen in einer Verbrennungseinrichtung einschließlich zugehöriger Dampfkessel mit einer Feuerungswärmeleistung von 50 MW oder mehr) durch Anpassung der Emissionsgrenzwerte von Fluorwasserstoff und Chlorwasserstoff
Die ae group gerstungen gmbh, Am Kreuzweg 1, 99834 Gerstungen stellte beim Thüringer Landesamt für Umwelt, Bergbau und Naturschutz (TLUBN) den Antrag nach § 16 BImSchG zur wesentlichen Änderung und zum Betrieb der geänderten Anlage zum Schmelzen, zum Legieren oder zur Raffination von Nichteisenmetallen i. V. m. einer Gießerei für Nichteisen-metalle - Anlage der Nr. 3.4.1 und Nr. 3.8.1 des Anhangs zur Verordnung über genehmi-gungsbedürftige Anlagen (4. BImSchV) am Standort im Wartburgkreis, 99834 Gerstungen, Am Kreuzweg 1, Gemarkung Untersuhl. Das geplante Vorhaben besteht aus: • der Errichtung und dem Betrieb eines neuen Schmelzofens 'BE 1205' (max. Schmelz-leistung 3 t/h Aluminium, max. Warmhaltekapazität 6 t/h Aluminium, Anzahl Schmelz-brenner 3 x 600 kW, Warmhaltebrenner 2 x 450 kW, Energieträger Erdgas, Brenner-leistung 240 m³/h inkl. Errichtung der Emissionsquelle Q 2.3) als Ersatz für den be-stehenden, Schmelzofen 'BE 1201' (max. Schmelzleistung 2,5 t/h Aluminium, max. Warmhaltekapazität 6 t/h Aluminium, Schmelzbrenner 2 x 750 kW, Warmhaltebrenner 2 x 630 kW, Energieträger Erdgas, Brennerleistung 246 m³/h) inkl. Rückbau von Schmelzofen 'BE 1201', • Reduzierung der Massenkonzentration an Fluorwasserstoff der bestehenden Schmelzanlagen (Q 1, Q 2.1, Q 2.2) von 3 mg/m³ auf jeweils 2 mg/m³, • Reduzierung der Massenkonzentration an NOx der Genehmigung der bestehenden Schmelzanlagen (Q 1, Q 2.1, Q 2.2) von 0,35 g/m³ auf jeweils 0,26 g/m³, • Erhöhung der Schmelzleistung der Gesamtanlage von 98 t/d um 19 t/d auf 117 t/d, • Erhöhung der Gießleistung der Gesamtanlage von 98 t/d um 19 t/d auf 117 t/d.
R744 ist in der Kältetechnik der Fachbegriff für das natürliche Kältemittel Kohlendioxid. R steht für Refrigerant (deutsch: Kältemittel). Das fluorierte Kältemittel R1234yf wird in immer höheren Konzentrationen in der Atmosphäre nachgewiesen. Es entweicht vor allem aus Pkw-Klimaanlagen und zunehmend auch aus stationärer Kälte-Klima-Technik. Die extrem wasserlösliche, algengiftige und schwer abbaubare Trifluoressigsäure – ein Abbauprodukt von R1234yf – gelangt über Niederschläge in Gewässer. Das UBA rät zum Umstieg auf Alternativen. Seit dem 1. Januar 2017 dürfen neue Klimaanlagen von Pkw und leichten Nutzfahrzeugen nur noch mit Kältemitteln mit einem kleinen Treibhauspotenzial (unter 150) befüllt werden. Als Ersatzkältemittel wird seit 2011 vor allem der brennbare fluorierte Stoff R1234yf verwendet. Bisher entwickelten erst zwei Pkw-Hersteller Klimaanlagen mit dem natürlichen Kältemittel Kohlendioxid für ausgewählte Pkw-Modelle. Bereits im Jahr 2012 hatte die Schweizer Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa) in 3.580 m Höhe am Jungfraujoch R1234yf in der Luft nachgewiesen. Im Jahr 2015 berichtete die Empa über ihre Ergebnisse der kontinuierlichen atmosphärischen Messungen von drei neu eingeführten halogenierten Stoffen: R1234yf, R1234ze(E) und 1233zd(E). Diese Stoffe werden vor allem als Ersatz für klimaschädliche Kältemittel und zur Kunststoffschäumung eingesetzt. Die aktuellen Auswertungen der Empa-Messungen bis Ende 2018 zeigen nun, dass die neuen Stoffe immer öfter und in höheren Konzentrationen in der Atmosphäre nachweisbar sind. Für R1234yf wird eine atmosphärische Lebensdauer von etwa 2 Wochen angenommen. In der Atmosphäre bildet sich aus dem Kältemittel vor allem Trifluoressigsäure (TFA). Eine Studie unter Beteiligung der Empa aus dem Jahr 2012 schätzt die zukünftig zu erwartenden TFA-Emissionen auf bis zu 19.000 Tonnen pro Jahr, die in die Umwelt gelangen, wenn alle Pkw in Europa mit R1234yf-Anlagen ausgerüstet sind. Eine aktuelle Studie im Auftrag des Umweltbundesamtes untersuchte heutige und zukünftige Emissionsmengen von fluorierten Gasen und das Vorkommen von TFA im Niederschlag. Die Ergebnisse zeigen, dass die TFA-Einträge in die Umwelt bereits angestiegen sind mit den neuen, kurzlebigen fluorierten Kältemitteln weiter steigen werden. Die extrem wasserlösliche und algengiftige Säure wird mit den Niederschlägen in die Gewässer eingetragen, sie gilt als persistent, das heißt schwer abbaubar. Mit den üblichen Reinigungsmethoden ist TFA aus dem Wasser nicht entfernbar. Die zuständigen Behörden der Bundesländer befassen sich seit einiger Zeit intensiver mit diesem Stoff, der auch aus anderen Quellen wie Industrie und Landwirtschaft in die Umwelt eingetragen wird. Aus Vorsorgegründen sollte der TFA-Eintrag in die Gewässer aus allen Quellen minimiert werden. Daher rät das Umweltbundesamt, auf fluorierte Kältemittel wie R1234yf zukünftig zu verzichten und stattdessen auf umweltverträglichere Stoffe und Verfahren zu setzen. Für viele Anwendungen gibt es Alternativen mit natürlichen Kältemitteln wie Kohlendioxid, Kohlenwasserstoffen, Ammoniak oder Wasser. Für Pkw-Klimaanlagen bietet sich zum Beispiel das Kältemittel Kohlendioxid an. Es ist nicht brennbar. Im Gegensatz zu R1234yf, das im Brandfall und an heißen Oberflächen giftige Stoffe wie Fluorwasserstoff und Carbonylfluorid bilden kann – ein Sicherheitsrisiko für Insassen und Rettungskräfte.
Das Projekt "Sicherheit elektrochemischer Energiespeicher in der Second-Life Anwendung, Teilvorhaben: Aufbau eines Großversuchsstandes sowie Realisierung von Brandversuchen" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Bundesanstalt für Materialforschung und -prüfung.
Dieser Bericht beschreibt den Ist-Zustand und die Entwicklung der Verwendung und der Emissionen halogenierter Kälte- und Treibmittel in Deutschland und in der EU. Der Fokus liegt auf teilfluorierten Fluorkohlenwasserstoffen (HFKW) und ungesättigten halogenierten Kohlenwasserstoffen mit kleinem Treibhauspotential (u-HFKW und u-HFCKW) sowie deren atmosphärischen Abbauprodukten. Neben Fluorwasserstoff wurde insbesondere Trifluoressigsäure (TFA) bzw. Trifluoracetat als persistentes Abbauprodukt einiger halogenierter Kälte- und Treibmittel identifiziert. Der Bedarf, die Emissionen und die Menge der Abbauprodukte von halogenierten Kälte- und Treibmitteln wurden bis zum Jahr 2050 in einem Szenario mit maximaler zukünftiger Verwendung und Emission ungesättigter halogenierter Stoffe modelliert. Die Projektionen zeigen, dass zukünftig insbesondere die Emissionen des Kältemittels u-HFKW-1234yf aus der mobilen und stationären Klimatisierung einen hohen zusätzlichen Anteil zu den TFA- bzw. Trifluoracetat-Mengen in der Atmosphäre beitragen werden. Um den atmosphärischen Eintrag von Trifluoracetat über den Niederschlag zu quantifizieren, wurde erstmalig ein zweijähriges deutschlandweites Messprogramm von Februar 2018 bis März 2020 durchgeführt. Im Vergleich zu früheren Messungen im Rahmen anderer Projekte ergaben sich deutlich erhöhte Konzentrationen von Trifluoracetat im Regenwasser. Basierend auf den Projektionen und den Ergebnissen des Messprogramms konnte der zu erwartende maximale Eintrag von TFA bzw. Trifluoracetat aus dem atmosphärischen Abbau halogenierter Kälte- und Treibmittel in Deutschland und der EU abgeschätzt werden. Die Verwendung von halogenierten Ersatzstoffen mit kleinem Treibhauspotential ist angesichts der Persistenz von TFA bzw. Trifluoracetat in der Umwelt als problematisch anzusehen. TFA bzw. Trifluoracetat-Einträge in Grund- und Trinkwasser können nur mit erheblichem Aufwand wieder entfernt werden. Daher sollten fluorierte Kälte- und Treibmittel durch nachhaltigere Lösungen mit halogenfreien Stoffen ersetzt werden. Quelle: Forschungsbericht
Origin | Count |
---|---|
Bund | 120 |
Land | 4 |
Type | Count |
---|---|
Chemische Verbindung | 9 |
Förderprogramm | 72 |
Text | 37 |
Umweltprüfung | 2 |
unbekannt | 4 |
License | Count |
---|---|
geschlossen | 22 |
offen | 72 |
unbekannt | 30 |
Language | Count |
---|---|
Deutsch | 119 |
Englisch | 7 |
Resource type | Count |
---|---|
Archiv | 30 |
Datei | 30 |
Dokument | 36 |
Keine | 81 |
Webseite | 8 |
Topic | Count |
---|---|
Boden | 109 |
Lebewesen & Lebensräume | 108 |
Luft | 109 |
Mensch & Umwelt | 124 |
Wasser | 107 |
Weitere | 111 |