Die kleinste abgegrenzte hydrologische Betrachtungsebene der EG-Wasserrahmenrichtlinie (WRRL) ist der Wasserkörper (WK).Küstenwasserkörper wurden für die Bewertungen nach WRRL von der Küstenlinie bis zur 1 SM-Linie und darüber hinaus für die chemische Bewertung bis zur Hoheitsgrenze ausgewiesen.Übergangsgewässer gemäß WRRL sind die Oberflächenwasserkörper in der Nähe von Flussmündungen, die aufgrund ihrer Nähe zu den Küstengewässern einen gewissen Salzgehalt aufweisen, aber im wesentlichen von Süßwasserströmungen beeinflusst werden.Neben den Niedersächsischen Gewässern sind auchdieansonsten von Niedersachsen berührten Gewässer und Wasserkörper mit abgebildet. Die Wasserkörpercharakterisierung und Bewertung ist mit Ergebnissen der Bewertung des ökologischen Gesamtzustandes/-potentials und des chemischen Gesamtzustandes zur Erstellung von Themenkarten als Attributierung integriert..
Die FFH-Richtlinie verpflichtet die europäischen Mitgliedsstaaten zur Errichtung eines kohärenten Netzes von Natura 2000-Schutzgebieten, sogenannten „Besonderen Schutzgebieten“, zum Schutz wildlebender Tier- und Pflanzenarten. Der Artikel 6 Abs. 2 der FFH-Richtlinie bestimmt ein Verschlechterungsverbot für die Lebensraumtypen nach Anhang I und der Arten nach Anhang II der FFH-Richtlinie bzw. der Vogelarten nach Anhang I und Art. 4.2 der Vogelschutz-Richtlinie, für die die Gebiete ausgewiesen worden sind. Unter der Zielstellung, dieser Verpflichtung nachzukommen, werden Managementpläne (MMP) erstellt. Managementpläne sind flächenkonkrete Planungsinstrumente, die eigens für das jeweilige NATURA 2000-Gebiet erstellt werden. Als Grundlage der Managementplanung dient die Erfassung und Bewertung der spezifischen Schutzgüter, ihres Erhaltungszustandes sowie bestehender Beeinträchtigungen und Gefährdungen im jeweiligen Schutzgebiet. Daraus abgeleitet erfolgt die Entwicklung von fachlich begründeten Maßnahmevorschlägen zur Sicherung und Wiederherstellung des günstigen Erhaltungszustandes dieser Arten und/oder Lebensraumtypen, die für die Gebiete gemeldet wurden. Die Erstellung der MMP wird gefördert aus Mitteln der Europäischen Union 1 oder über den Europäischen Landwirtschaftsfonds 1 für die Entwicklung des ländlichen Raums ( ELER 1 ) sowie des Landes Sachsen-Anhalt. 1 Quelle: Europäische Kommission FFH- bzw. SPA-Gebiet EU-Nr. Landes-Nr. A Alter Stolberg und Heimkehle im Südharz (Teilbereich Heimkehle) DE 4431 302 FFH0100LSA B Beeke-Dumme-Niederung DE 3132 302 FFH0288LSA Blonsberg nördlich Halle DE 4437 301 FFH0117LSA Bodetal und Laubwälder des Harzrandes bei Thale und dazugehöriger Ausschnitt des EU SPA Nordöstlicher Unterharz (DE 4232 401/SPA0019LSA) DE 4231 303 FFH0161LSA Borntal, Feuchtgebiet und Heide bei Allstedt (incl. Erweiterungsflächen) DE 4634 301 FFH0135LSA Brambach südwestlich Dessau DE 4238 301 FFH0126LSA Brummtal bei Quenstedt DE 4334 303 FFH0189LSA Buchenwälder um Stolberg DE 4431 301 F97/S30LSA Burgesroth und Laubwälder bei Ballenstedt und dazugehöriger Ausschnitt des EU SPA Nordöstlicher Unterharz (DE 4232 401/SPA0019LSA) DE 4233 302 FFH0177LSA C Colbitzer Lindenwald und Ausschnitt des EU SPA "Vogelschutzgebiet Colbitz-Letzlinger Heide" (DE 3635 401/SPA0012LSA) DE 3635 302 FFH0029LSA Colbitz-Letzlinger Heide und Ausschnitt des EU SPA "Vogelschutzgebiet Colbitz-Letzlinger Heide" (DE 3635 401/SPA0012LSA) DE 3535 301 FFH0235LSA D Dessau-Wörlitzer Elbauen und dem dazugehörigen Ausschnitt des EU SPA Mittlere Elbe einschließlich Steckby-Lödderitzer Forst (DE 4139 401/SPA0001LSA) DE 4140 304 FFH0067LSA Diebziger Busch und Wulfener Bruchwiesen DE 4137 304 FFH0163LSA Dissaugraben bei Wetzendorf DE 4735 305 FFH0261LSA Dölauer Heide und Lindbusch bei Halle DE 4437 308 FFH0122LSA Dommitzscher Grenzgraben DE 4342 306 FFH0259LSA E Elbaue bei Bertingen und den dazugehörigen Ausschnitt des EU SPA Elbaue Jerichow (DE 3437 401/SPA0011LSA) DE 3637 301 FFH0037LSA Elbaue Jerichow Kurzbericht zur Zusammenfassung der Geodaten der Managementpläne, betrachtete FFH-Gebiete: Elbaue bei Bertingen, Elbaue südlich Rogätz mit Ohremündung, Elbaue Werben und Alte Elbe Kannenberg, Elbe zwischen Derben und Schönhausen, Elbaue zwischen Sandau und Schönhausen DE 3437 401 SPA0011LSA Elbaue südlich Rogätz mit Ohremündung und den dazugehörigen Ausschnitt des EU SPA Elbaue Jerichow (DE 3437 401/SPA0011LSA) DE 3736 301 FFH0038LSA Elbaue Werben und Alte Elbe Kannenberg und den dazugehörigen Ausschnitt des EU SPA Elbaue Jerichow (DE 3437 401/SPA0011LSA) DE 3138 301 FFH0009LSA Elbaue zwischen Derben und Schönhausen und dazugehöriger Ausschnitt des EU SPA Elbaue Jerichow (DE 3437 401/SPA0011LSA) DE 3437 302 FFH0157LSA Elbaue zwischen Griebo und Prettin und Untere Schwarze Elster (DE 4143 301/FFH0071LSA) einschließlich dem EU SPA-Gebiet Mündungsgebiet der Schwarzen Elster (DE 4142 401/SPA0016LSA) DE 4142 301 FFH0073LSA Elbaue zwischen Sandau und Schönhausen und dazugehöriger Ausschnitt des EU SPA Elbaue Jerichow (DE 3437 401/SPA0011LSA) DE 3238 302 FFH0012LSA Elster-Luppe-Aue DE 4638 302 FFH0143LSA Engelwurzwiese östlich Bad Dürrenberg DE 4738 301 FFH0198LSA Erlen-Eschen-Wald bei Gutenberg nördlich Halle Bachelorarbeit, Hochschule Anhalt (FH) Jahr der Fertigstellung: 2011 DE 4437 306 FFH0119LSA F Fallsteingebiet nördlich Osterwieck DE 3930 301 F45/S27LSA Fasanengarten Iden DE 3237 301 FFH0238LSA Fiener Bruch DE 3639 301 FFH0158LSA Finne-Nordrand südwestlich Wohlmirstedt DE 4734 301 FFH0138LSA Fliethbach-System zwischen Dübener Heide und Elbe DE 4241 301 FFH0131LSA G Gegensteine und Schierberge bei Ballenstedt DE 4233 301 FFH0093LSA Geiselniederung westlich Merseburg DE 4637 301 FFH0144LSA Gewässersystem der Helmeniederung (Teilbereich außerhalb des EU SPA 0004 Helmestausee Berga-Kelbra) 2002 DE 4533 301 FFH0134LSA Gewässersystem der Helmeniederung (innerhalb des EU SPA 0004 Helmestausee Berga-Kelbra) 2012, Fortschreibung 2019 DE 4533 301 FFH0134LSA Glücksburger Heide DE 4143 401 F68/S22LSA Göttersitz und Schenkenholz nördlich Bad Kösen DE 4836 303 FFH0152LSA Grieboer Bach östlich Coswig DE 4041 301 FFH0065LSA H Haingrund und Organistenwiese bei Stolberg DE 4431 306 FFH0249LSA Hakel einschließlich Hakel südlich Kroppenstedt (DE 4134 301/FFH0052LSA) DE 4134 401 SPA0005LSA Hakel südlich Kroppenstedt DE 4134 301 FFH0052LSA Halbberge bei Mertendorf DE 4837 302 FFH0188LSA Harslebener Berge und Steinholz nordwestlich Quedlinburg DE 4132 301 FFH0084LSA Hartauniederung zwischen Lüdelsen und Ahlum DE 3331 301 FFH0187LSA Heide südlich Burg DE 3737 301 FFH0049LSA Helmestausee Berga-Kelbra (Anteil Sachsen-Anhalt) und Gewässersystem der Helmeniederung - DE 4533 301/FFH0134LSA - (innerhalb EU SPA 0004) 2012, Fortschreibung 2019 DE 4531 401 SPA0004LSA Himmelreich bei Bad Kösen DE 4836 306 FFH0193LSA Hirschrodaer Graben DE 4836 302 FFH0150LSA Hoppelberg bei Langenstein DE 4132 302 FFH0083LSA Huy nördlich Halberstadt DE 4031 301 F47/S28LSA I J Jävenitzer Moor DE 3434 301 FFH0027LSA Jeetze südlich Beetzendorf DE 3332 302 FFH0005LSA Jeetze zwischen Beetzendorf und Salzwedel DE 3232 302 FFH0219LSA K Kalkflachmoor im Helsunger Bruch DE 4232 303 FFH0087LSA Kamernscher See und Trübengraben DE 3238 303 FFH0014LSA Kellerberge nordöstlich Gardelegen DE 3434 302 FFH0080LSA Kleingewässer westlich Werlberge DE 3536 304 FFH0280LSA Klödener Riß DE 4243 301 FFH0072LSA Küchenholzgraben bei Zahna DE 4142 302 FFH0251LSA Kuhberg bei Gröst DE 4737 302 FFH0262LSA Kuhschellenstandort bei Recklingen DE 3233 302 FFH0260LSA L Landgraben-Dumme-Niederung nördlich Salzwedel Teilgebiet Offenland nördlich Hoyersburg Grünes Band Deutschland DE 3132 301 FFH0001LSA Laubwaldgebiet zwischen Wernigerode und Blankenburg und Vogelschutzgebiet zwischen Wernigerode und Blankenburg (DE 4231 401/SPA0029LSA) DE 4231 301 FFH0078LSA Lausiger Teiche und Ausreißer-Teich östlich Bad Schmiedeberg DE 4342 302 FFH0132LSA M Mahlpfuhler Fenn DE 3536 301 F35/S26LSA Marienberg bei Freyburg DE 4736 306 FFH0197LSA Müchelholz, Müchelner Kalktäler und Hirschgrund bei Branderoda DE 4736 303 FFH0145LSA Münchenberg bei Stecklenberg DE 4232 304 FFH0092LSA Mündungsgebiet der Schwarzen Elster und FFH-Gebiete Elbaue zwischen Griebo und Prettin (DE 4142 301/FFH0073LSA), Untere Schwarze Elster (DE 4143 301/FFH0071LSA) DE 4142 401 SPA0016LSA N Neue Göhle und Trockenrasen nördlich Freyburg DE 4736 302 FFH0149LSA Nordöstlicher Unterharz DE 4232 401 SPA0019LSA O Obere Nuthe-Läufe DE 3939 301 FFH0059LSA Ohreaue einschließlich angrenzender Flächen des Grünen Bandes DE 3331 302 FFH0275LSA Ölbergstollen bei Wangen DE 4735 304 FFH0228LSA Olbitzbach-Niederung nordöstlich Roßlau DE 4039 302 FFH0063LSA Ostrand der Hohen Schrecke DE 4734 303 FFH0256LSA P Pfeifengraswiese bei Günthersdorf DE 4639 303 FFH0283LSA Porphyrkuppen Burgstetten bei Niemberg DE 4438 302 FFH0182LSA Porphyrkuppen westlich Landsberg DE 4438 301 FFH0181LSA Porphyrkuppenlandschaft nordwestlich Halle DE 4437 302 FFH0118LSA Q R Ringelsdorfer-, Gloine- und Dreibachsystem im Vorfläming DE 3738 301 FFH0055LSA Röhrichte und Salzwiesen am Süßen See DE 3536 301 FFH0113LSA S Saale-, Elster-, Luppe-Aue zwischen Merseburg und Halle DE 4537 301 FFH0141LSA Saaledurchbruch bei Rothenburg DE 4336 306 FFH0114LSA Saale-Elster-Aue südlich Halle DE 4638 401 SPA0021LSA Salzatal bei Langenbogen DE 4536 304 FFH0124LSA Salziger See nördlich Röblingen am See DE 4536 302 FFH0165LSA Salziger See und Salzatal sowie Salzatal bei Langenbogen (DE 4536 304/FFH0124LSA) und Salziger See nördlich Röblingen am See (DE 4536 302/FFH0165LSA) DE 4536 401 SPA0020LSA Salzstelle bei Hecklingen DE 4135 301 FFH0102LSA Salzstelle Wormsdorf DE 3833 301 FFH0202LSA Schafberg und Nüssenberg bei Zscheiplitz DE 4736 305 FFH0148LSA Schafhufe westlich Günthersdorf DE 4638 303 FFH0281LSA Schießplatz Bindfelde östlich Stendal DE 3337 301 FFH0032LSA Schlauch Burgkemnitz DE 4340 304 FFH0285LSA Schloßberg und Burgholz bei Freyburg DE 4736 307 FFH0243LSA Selketal und Bergwiesen bei Stiege und dazugehöriger Ausschnitt des EU SPA Nördöstlicher Unterharz (DE 4232 401/SPA0019LSA) DE 4332 302 FFH0096LSA Spaltenmoor östlich Friedrichbrunn und dazugehöriger Ausschnitt des EU SPA Nordöstlicher Unterharz (DE 4232 401/SPA0019LSA) DE 4332 301 FFH0162LSA Steingraben bei Städten DE 4836 305 FFH0192LSA Stendaler Rohrwiesen DE 3437 303 FFH0232LSA Stendaler Stadtforst DE 3337 302 FFH0233LSA Sülzetal bei Sülldorf DE 3935 301 FFH0051LSA T Tangelnscher Bach und Bruchwälder DE 3332 301 FFH0004LSA Tanger-Mittel- und Unterlauf DE 3536 302 FFH0034LSA Thyra im Südharz DE 4431 304 FFH0121LSA Tote Täler südwestlich Freyburg DE 4836 301 FFH0151LSA Trockenhänge bei Steigra DE 4735 306 FFH0273LSA Trockenhänge im Wippertal bei Sandersleben DE 4235 302 FFH0258LSA Trockenrasenflächen bei Karsdorf und Glockenseck DE 4736 301 FFH0147LSA Trockenrasenhänge nördlich des Süßen Sees DE 4436 301 FFH0112LSA U Untere Muldeaue und den dazugehörigen Ausschnitt des EU SPA Mittlere Elbe einschließlich Steckby-Lödderitzer Forst (DE 4139 401/SPA0001LSA) DE 4239 302 FFH0129LSA Untere Schwarze Elster und Elbaue zwischen Griebo und Prettin (DE 4142 301/FFH0073LSA) einschließlich dem EU SPA-Gebiet Mündungsgebiet der Schwarzen Elster (DE 4142 401/SPA0016LSA) DE 4143 301 FFH0071LSA V Vogelschutzgebiete Colbitz-Letzlinger Heide DE 3635 401 SPA0012LSA Vogelschutzgebiet Fiener Bruch einschließlich FFH-Gebiet Fiener Bruch (DE 3639 301/FFH0158LSA) DE 3639 401 SPA0013LSA Vogelschutzgebiet zwischen Wernigerode und Blankenburg DE 4231 401 SPA0029LSA W Weinberggrund bei Hecklingen DE 4135 302 FFH0241LSA Weiße Elster nordöstlich Zeitz DE 4839 301 FFH0155LSA Wiesengebiet westlich Schladebach DE 4638 304 FFH0284LSA Woltersdorfer Heide nördlich Wittenberg-Lutherstadt DE 4042 301 FFH0066LSA Wulfener Bruch und Teichgebiete Osternienburg und Diebziger Busch und Wulfener Bruchwiesen (DE 4137 304/FFH0163LSA) DE 4137 401 SPA0015LSA X Y Z Zeitzer Forst DE 5038 301 F156/S31LSA Ziegelrodaer Buntsandsteinplateau DE 4634 302 FFH0136LSA Ziegenberg, Augstberg und Horstberg bei Benzingerode DE 4131 301 FFH0079LSA Letzte Aktualisierung: 08.05.2025
Zur Halbzeit eines BAW-Forschungsprojektes zum 'Aufbau von integrierten Modellsystemen zur Analyse der langfristigen Morphodynamik in der Deutschen Bucht' werden erste Ergebnisse sichtbar. Transportprozesse im Wandel der Zeitläufe: Wie werden sich die Watten und Vorländer der deutschen Nordseeküste anpassen, sollte in Folge des Klimawandels der Meeresspiegel steigen? Eine Antwort auf diese Frage ist nicht nur für die Sicherheit der Seedeiche bedeutsam, sondern auch für die Zufahrten zu den Seehäfen. Einerseits beeinflusst das Flachwasser im Ästuarbereich maßgebend das Tide- und Sedimentregime in den Tideflüssen und hat somit Auswirkungen auf die zukünftige Unterhaltung der Seehafenzufahrten. Zum anderen hat sich gezeigt, dass in einer Betrachtung über Jahrzehnte hinweg die kleinräumigen Transportprozesse in der Deutschen Bucht und in den Außenbereichen der Ästuare auch durch die Transportprozesse, die in der gesamten Nordsee stattfinden, mitgeprägt werden. Die Dimension dieser weiträumigen Transportprozesse in der Nordsee wird in der Satellitenaufnahme der oberflächennahen Ausbreitung der Schwebstofffahnen aus den Ästuarmündungen deutlich (Bild 1). Allerdings entzieht sich dieses Phänomen noch weitgehend der fachwissenschaftlichen Betrachtung, denn über die tatsächlichen Transportprozesse in der Nordsee, zumal in der Deutschen Bucht, ist wenig bekannt: Es fehlen zum Beispiel grundlegende, flächendeckende Informationen über das anstehende Material an der Gewässersohle, über den Bodenaufbau oder über die relevanten Kräfte, die den Transport antreiben, wie Wind und Seegang. Und schließlich fehlen die geeigneten Werkzeuge, um die komplexen Transportprozesse berechnen zu können. BAW hat Federführung bei Forschungsprojekt: Im Rahmen eines im Wettbewerb ausgeschriebenen Forschungsschwerpunktes des Kuratoriums für Forschung im Küsteningenieurwesen (KFKI) konnte sich die BAW mit einem Forschungsantrag zum Thema 'Aufbau von integrierten Modellsystemen zur Analyse der langfristigen Morphodynamik in der deutschen Bucht (AUFMOD)' durchsetzen. An dem Projekt unter Federführung der BAW beteiligen sich weitere neun Kooperationspartner. Gestartet Ende 2009, läuft die Förderung zunächst bis 2012 (siehe: www.kfki.de/prj-aufmod/de).
Die Flusssysteme Amazonas und Rio Pará tragen das größte Volumen an Süßwasser in den Ozean ein und bilden eine wichtige Schnittstelle für den Eintrag von Spurenmetallen und gelösten organischen Stoffen (DOM) vom Land in den Ozean. Neben der Bedeutung des Amazonas für den globalen Spurenmetallhaushalt des Ozeans hat sein Mikronährstoff-Eintrag auch einen großen Einfluss auf die biologische Produktivität der Küsten- und Schelfregion und darüber hinaus. Das Hauptziel des vorgeschlagenen Projekts ist es, die Rolle der chemischen Speziation und der physiko-chemischen Größenfraktionierung von Spurenmetallen im Mischungskontinuum dieser Flüsse zum Atlantik zu verstehen. Wir werden die Wechselwirkungen von Spurenmetallen mit DOM und Kolloiden in der Wassersäule und den Oberflächensedimenten der Amazonas- und Pará-Mündung und der damit verbundenen Mischungsfahne sowie des Mangrovengürtels mit Grundwassereintrag südöstlich des Rio Pará untersuchen. Basierend auf Proben, die während der Forschungsfahrt M147 in der Hochwasserperiode 2018 genommen wurden, und vorläufigen Daten, die in unserem Labor erzeugt wurden, werden wir Veränderungen der Spurenmetallverteilungen und -speziationen in der Amazonas-Region entlang der Salzgradienten untersuchen. Um zu beurteilen, was die chemische und physikalische Speziation und den Transport von Spurenmetallen im Ästuar und in der Abflussfahne kontrolliert, werden wir uns auf drei verschiedene Prozesse konzentrieren: • Größenfraktionierung, Sorption und Entfernung von Spurenmetallen: Sorption von Spurenmetallen an Flusspartikeln und Ausfällung durch Koagulation von Kolloiden und Größenfraktionierung; wie verändert sich die Assoziation von Spurenmetallen mit verschiedenen löslichen, kolloidalen und partikulären Fraktionen entlang des Salzgehaltsgradienten?• Lösungskomplexierung: Bildung von löslichen metall-organischen Komplexen; wie verstärkt dieser Prozess den Metalltransport durch Konkurrenz mit Sorption an Kolloiden und Ausfällung? • Akkumulation von Spurenmetallen in Sedimenten: wie wirken die Sedimente als Senke und Quelle von Spurenmetallen, und können Oberflächensediment und Porenwasser zu den Spurenmetallflüssen in der Region beitragen? Zusätzlich zu den voltammetrischen und ICP-MS-Analysen der M147-Proben werden wir eine systematische Untersuchung des Mischungsverhaltens verschiedener Elementgruppen (konservativ, partikel-reaktiv und organisch-komplexiert) durchführen, indem wir Labor-Mischungsexperimente mit Meer- und Flusswasser-Endgliedern durchführen, die während der anstehenden Fahrt M174 im Amazonasgebiet genommen werden. Damit erwarten wir, ein ganzheitliches Bild der komplexen Prozesse der Spurenmetall-Biogeochemie und der Elementflüsse in diesem größten Mündungssystem der Welt zu erhalten. Dieses Wissen wird auch wichtig sein, um mögliche Auswirkungen in diesem Gebiet aufgrund der anhaltenden anthropogenen Einflüsse in dieser Region und der sich ändernden klimatischen Bedingungen vorherzusehen.
Ziel des Vorhabens ist die Rekonstruktion der jungquartären Klima- und Landschaftsentwicklung des Werchojansker Gebirges und seines westlichen Vorlandes (NO-Sibirien). Im Vordergrund stehen folgende Fragen: (a) Wann war das Maximum der spätpleistozänen Vergletscherung? (b) Herrschte im Interstadial der letzten Kaltzeit (40-30 ka) ein warm-feuchtes Klima, welches möglicherweise die Zhiganskvergletscherung begünstigte? (c) War die mittelpleistozäne Samarov-Vergletscherung tatsächlich schwächer als das Maximum während des Spätpleistozäns? (d) Was war die Ursache für den Süßwasserzustrom aus Lena und Jana in die Laptevsee am Ende des Pleistozäns (Bölling/Alleröd)? Das Projekt wird von einem deutsch-russischen Team interdisziplinär (Paläoklimaforschung, Quartärgeologie, Geomorphologie, Geokryologie, Bodengeographie und Paläopedologie) durchgeführt. Ausgehend von der rezenten Vergletscherung im westlichen Werchojansker Gebirge werden die geomorphologischen, geokryologischen und bodengeographisch-paläopedologischen Befunde entlang ausgewählter Transsekte bis zu den Terrassen der Flüsse Lena und Aldan hin erfasst. Mit Hilfe absoluter und relativer Methoden wird die Chronologie der Gletschervorstöße und Klimaschwankungen erfasst. In der Synthese werden diese Befunde mit denen benachbarter Regionen verglichen.
Estuaries and coasts are characterized by ecological dynamics that bridge the boundary between habitats, such as fresh and marine water bodies or the open sea and the land. Because of this, these ecosystems harbor ecosystem functions that shaped human history. At the same time, they display distinct dynamics on large and small temporal and spatial scales, impeding their study. Within the framework of the OTC-Genomics project, we compiled a data set describing the community composition as well as abiotic state of an estuary and the coastal region close to it with unprecedented spatio-temporal resolution. We sampled fifteen locations in a weekly to twice weekly rhythm for a year across the Warnow river estuary and the Baltic Sea coast. From those samples, we measured temperature, salinity, and the concentrations of Chlorophyll a, phosphate, nitrate, and nitrite.
Das Ziel dieses Projekts besteht in der Analyse der Strömungsmuster über subaquatischen Bodenformen in Tidegebieten mit Hilfe hochauflösender numerischer Modelle. In Flüssen, nahe der Küsten und in größeren Tiefen sind Bodenformen weit verbreitet und reflektieren Strömung und Sedimenttransportwege, während sie gleichzeitig einen starken Effekt auf die Strömung ausüben. Diese Effekte sind darüber hinaus von hoher sozio-ökonomischer Bedeutung, z.B. hinsichtlich der Schiffbarkeit von Flussmündungen und der Sicherheit von Offshore-Konstruktionen. Bedingt durch Hydrodynamik und dem Vorkommen sandiger Sedimente sind flache Tidegebiete durch die Entwicklung großer Felder komplexer Bodenformen gekennzeichnet. Strömungsmuster über diesen Bodenformen unterscheiden sich grundsätzlich von Strömungen über gleichmäßigen, idealisiert zweidimensionalen (2D) Bodenformen, die in Strömungskanälen und numerischen Modellen bisher betrachtet werden. Natürlichen Bodenformen sind dagegen intrinsisch dreidimensional (3D) mit komplexen Profilen, gekennzeichnet durch geschwungene Dünenrücken, Kolke, Bifurkationen, Diskontinuitäten und niedrige Leewinkel. In Küstengebieten sorgt die tidebedingte Strömungsumkehr für zusätzliche Komplexität in der Interaktion zwischen Bodenformen und Hydrodynamik. Die entsprechenden Strömungsmuster sind weitgehend unbekannt, insbesondere der Einfluss der Dreidimensionalität der Bodenformen auf die Gezeitenströmung, auch bedingt durch die Schwierigkeit, Strömungsgeschwindigkeiten und Turbulenz synoptisch mit ausreichender räumlicher und zeitlicher Auflösung zu messen. Im Rahmen der hier beschriebenen Studie wird ein dreidimensionales Transportmodell mit dem Modellsystem Delft3D erstellt, um Strömungen in natürlichen Bodenformfeldern mit entsprechend charakteristischer Morphologie zu simulieren. Dazu soll ein bestehendes und zur Simulierung von 2D Bodenformen genutztes Modell erweitert und zur Analyse der Strömungen über 3D Bodenformen verwendet werden. Mit diesem neuen Modell wird zum ersten Mal ermöglicht, Strömungsmuster und Turbulenz über natürlichen Bodenformfeldern unter realistischen Bedingungen, insbesondere unter Berücksichtigung der Umkehr der Gezeitenströmung, zu modellieren und den Einfluss einzelner morphologischer Elemente sowie deren Interaktion herauszuarbeiten. Diese Ergebnisse dienen schließlich der Optimierung und Parametrisierung kleinskaliger Teilprozesse in großmaßstäblichen hydro- und morphodynamischen Modellsystemen.
Origin | Count |
---|---|
Bund | 192 |
Europa | 10 |
Land | 59 |
Schutzgebiete | 1 |
Wissenschaft | 20 |
Type | Count |
---|---|
Ereignis | 2 |
Förderprogramm | 165 |
Messwerte | 2 |
Strukturierter Datensatz | 5 |
Taxon | 1 |
Text | 47 |
unbekannt | 34 |
License | Count |
---|---|
geschlossen | 56 |
offen | 179 |
unbekannt | 19 |
Language | Count |
---|---|
Deutsch | 226 |
Englisch | 46 |
Resource type | Count |
---|---|
Archiv | 5 |
Bild | 7 |
Datei | 5 |
Dokument | 18 |
Keine | 127 |
Unbekannt | 3 |
Webdienst | 7 |
Webseite | 106 |
Topic | Count |
---|---|
Boden | 188 |
Lebewesen & Lebensräume | 226 |
Luft | 141 |
Mensch & Umwelt | 251 |
Wasser | 254 |
Weitere | 252 |