Das LSG befindet sich zum überwiegenden Teil in der Landschaftseinheit Großes Bruch und Bodeniederung, nur der Abschnitt der Aue reicht bis in die Landschaftseinheit Börde-Hügelland hinein. Das Große Bruch erstreckt sich als 1-4 km breites Niederungsgebiet in Ost-West-Ausdehnung über eine Länge von etwa 40 km von Oschersleben im Osten bis zur Landesgrenze zu Niedersachsen im Westen. Nach Norden schließt sich bis Hötensleben, ebenfalls entlang der Grenze zu Niedersachsen, als schmales Band die Niederung der Aue an. Die Niederung des Großen Bruchs wird im Süden durch Fallstein und Huy und im Norden durch Elm und Hohes Holz begrenzt. Das Große Bruch ist ein langgestrecktes, zusammenhängendes Niedermoorgebiet, das überwiegend als Grünland genutzt wird. Ein weit verzweigtes Netz von Entwässerungsgräben durchzieht das Gebiet und führt das Wasser zu den Hauptvorflutern Schiffgraben, Großer Graben und Fauler Graben. Das Grabensystem weist teilweise schmale Röhrichtsäume auf und beherbergt vielfältige Wasserpflanzengesellschaften mit zahlreichen gefährdeten Arten. Pappel- und Kopfweidenreihen sowie Weidengebüsche durchziehen das Gebiet. Kleinflächig sind Pappel-, Eschen- und Weidenforste vorhanden. Das Grünland wird großflächig als Intensivweide genutzt. Etwa 100 ha sind von der "Stiftung Umwelt- und Naturschutz Großes Bruch e.V.” angepachtet, die die Flächen extensiv bewirtschaftet und dabei auch ausdauernde Rinderrassen wie Galloways, einsetzt. Insgesamt wurden 1998 zirka 1 000 ha Grünland durch verschiedene Landwirtschaftsbetriebe bewirtschaftet, davon befinden sich 560 ha im LSG, die restlichen Flächen im Naturschutzgebiet „Großes Bruch bei Wulferstedt“. Durch die großflächige Entwässerung der Moorböden kommt es zu irreversiblen Strukturveränderungen und einer starken Minderung der horizontalen und vertikalen Wasserbewegung. Der für Niedermoore prägende Einfluß des Grundwassers wird in Talbereichen durch Staunässe ersetzt. In flachen Mulden sammelt sich Niederschlagswasser, das unabhängig vom Grundwasserstand den Eindruck von überstauten Flächen erweckt. Besonders nördlich von Hessen sind weite Teile des Grünlandes in Acker umgewandelt. Die am Rande des LSG liegenden Dörfer weisen zumeist noch einen ausgesprochenen ländlichen Charakter auf. Die Bundesstraßen B 79, B 244 und B 245 sowie eine Landstraße queren das Gebiet. Nördlich von Pabstorf, entlang der Grenze zu den Landkreisen Wolfenbüttel und Helmstedt, reicht vom Großen Bruch ausgehend das Niederungsgebiet der Aue bis nach Hötensleben. Die Lage des Gebietes im grenznahen Raum und seine erheblich eingeschränkte Zugänglichkeit führten dazu, daß sich zwischen dem Bachlauf der Aue und der ehemaligen Grenzanlage ein naturnaher Bereich erhalten hat. Er ist durch einen Altbaumbestand mit teilweisem Bruchwaldcharakter und unterschiedlich breiten Feuchtwiesenstreifen gekennzeichnet. Das Niederungsgebiet bildet die Verbindung zu den Lebensräumen von Elm und Lappwald. Bis in das 12. Jahrhundert war das Große Bruch ein undurchdringlicher Sumpf, der als Sammelbecken für die von den seitlichen Höhenzügen abfließenden Niederschläge diente. Noch zu Beginn dieses Jahrhunderts waren der Hessendamm zwischen Hessen und Mattierzoll sowie der Kiebitzdamm zwischen Dedeleben und Jerxheim die einzigen Passagen durch das Gebiet. Durch das östliche Große Bruch ließ erstmals Bischof Rudolf von Köthen (1136-1193) einen Damm errichten, der südlich von Neuwegersleben begann und als Neudamm bezeichnet wurde. Dieser Damm versumpfte jedoch in der Folgezeit wieder. Die ersten Entwässerungsmaßnahmen im Randbereich des Bruches veranlaßte Bischof Dietrich von Halberstadt (1180-1193) mit Hilfe von Mönchen des Prämostratenserordens aus Holland. Im inneren Großen Bruch ordneten Herzog Heinrich der Jüngere von Braunschweig und Bischof Albrecht von Halberstadt gemeinsam die Schaffung von Entwässerungsgräben in Ost-West-Richtung (Fauler Graben, Schiffgraben) an. Der Bau der Gräben, die sowohl in die Ilse als auch in die Bode entwässerten, war 1540 beendet. Herzog Julius von Braunschweig (1568-1589) beauftragte den Niederländer Wilhelm de Raet mit der Aufgabe, den Bruchgraben schiffbar zu machen, um einen Bootsverkehr zwischen Bode und Oker zu ermöglichen, womit Elbe und Weser verbunden wären. Der Plan scheiterte vorerst, doch sein Sohn Heinrich Julius, gleichzeitig Herzog von Braunschweig und Bischof von Halberstadt, verwirklichte die Pläne seines Vaters. Er ließ den Hauptgraben verbreitern und vertiefen, so daß ein Schiffsverkehr zwischen seiner Sommerresidenz in Hessen und Gröningen an der Bode erfolgen konnte. Er veranlaßte auch den 1590 beendeten Wiederaufbau des Neudamms. In den Wirren des Dreißigjährigen Krieges verfielen die meisten Anlagen und nahezu das gesamte Bruch versumpfte wieder. Die vollständige Urbarmachung des Gebietes strebte König Friedrich II. von Preußen an. Er ging dabei von Untersuchungen des Braunschweiger Ingenieur-Kapitäns Le Fevre aus, der 1754 und 1755 im Bruch Vermessungsarbeiten durchführte und Kostenberechnungen anstellte. Während sein Plan noch am Widerstand der Domänenkammer zu Halberstadt scheiterte, erfolgte unter König Friedrich Wilhelm IV. die endgültige Entwässerung. 1840 waren die Entwässerungsarbeiten unter seiner Herrschaft abgeschlossen. Zwischen 1935 und 1939 vertiefte der Reichsarbeitsdienst den linken Beiläufer, Nebengraben, auch der Faule Graben und das Stichgrabensystem wurden ausgebaut. Nach dem II. Weltkrieg kam es mangels Pflege und Unterhaltung der wassertechnischen Anlagen zu einer raschen Wiederversumpfung großer Flächen des Bruches. Im niedersächsischen Teil des Großen Bruches begann 1955 die nahezu vollständige Umwandlung in Ackerland. Leistungsstarke Schöpfwerke pumpten große Wassermengen in den östlichen Teil des Großen Bruches, was hier zeitweilig zu einer stärkeren Vernässung führte. Besonders die Niederschläge der Jahre 1954-1956 und die Hochwasserereignisse der Jahre 1955 und 1956 verschärften die Situation noch. 1958 wurde eine Studie fertiggestellt, die das Ziel verfolgte, die Entwässerung des Großen Bruchs jederzeit gewährleisten zu können. Erstmalig wurde dabei von der Vorstellung abgewichen, das Große Bruch durch ein System von Binnengräben und Beiläufern über den Großen Graben in die Bode zu entwässern. Die Konzeption von 1958 sah den Bau von 12 Schöpfwerken vor, von denen acht Bauten im Rahmen einer umfangreichen Komplexmelioration auf dem Gebiet der DDR zwischen 1969 und 1973 zur Ausführung kamen. Das hierbei entstandene Entwässerungssystem war ausschließlich auf die Interessen der DDR-Landwirtschaftspolitik und den Schutz der Grenzsicherungsanlagen ausgerichtet. Ihr Betreiben war mit Kosten verbunden, die nicht dem entstandenen landwirtschaftlichen Nutzen nicht entsprachen. Daß großflächige Überschwemmungen des Gebietes trotz aller Umgestaltungen weiterhin möglich sind, bewies das „Jahrhundert-Hochwasser“ 1994. Die hohen Wasserstände der Bode bewirkten einen langanhaltenden Rückstau des Großen Grabens, was zu umfangreichen Überflutungen im Großen Bruch führte. Der präquartäre Untergrund des LSG gehört im Norden zur Ohrsleber Rät/Lias-Mulde. Westlich Wackersleben quert es den Heseberger Sattel - die Aufwölbung von Gesteinen des Mittleren Keuper als Ast der Oschersleben-Egelner Salzachse. Südlich von Wackersleben verläuft der Große Graben am Nordostrand der Pabstorfer Rät/Lias-Mulde. Das gesamte LSG ist von quartären Sedimente bedeckt. Im großen Bruch erreicht ihre Mächtigkeit 38 m. Präweichselzeitliche Sedimente sind in den Hanglagen nur als Erosionsreste erhalten. Im Tal der Aue und im Großen Bruch wurden durch Bohrungen fluviatile Sedimente nachgewiesen, die als elster- und saalezeitlich eingestuft wurden. Das Große Bruch ist Teil des Oscherslebener Urstromtales. Das Profil beginnt im Liegenden mit elsterkaltzeitlichem Geschiebemergel, der nur in präquartären Erosionsrinnen im Ostteil des LSG erhalten geblieben ist. Er wird von elsterkaltzeitlichen Schmelzwassersanden überlagert, deren heutige Verbreitung ebenfalls auf den Ostteil des LSG begrenzt ist. Weiträumige Verbreitung erlangen erst saalekaltzeitliche Schmelzwassersedimente. Sie sind durch schnelle Korngrößenwechsel infolge schwankender Strömungsgeschwindigkeiten und nur wenige Meter Mächtigkeit gekennzeichnet. Neben der nach Westen gerichteten Strömungsrichtung lassen sich durch Schrägschichtungsmessungen in Kiesgruben auch Zuflüsse aus Nordnordosten nachweisen. Die Sande enthalten im Raum Neuwegersleben häufig Braunkohlebröckchen durch Erosion von Tertiär der südwestlichen Randsenke der Oschersleben-Egelner Salzachse. An der Oberfläche stehen im LSG holozäne Niedermoortorfe, Kalkmulden und Wiesenkalk sowie lößbürtige Abschlämmmassen an. Die holozänen Sedimente bilden im LSG die Bodensubstrate. Weit verbreitet sind Kolluvien der umgebenden Tschernoseme aus Löß, die auf den rezenten Hangfußflächen, in den Erosionsrinnen der Täler, im Randbereich des Großen Bruches und in den Schwemmfächern der das Große Bruch speisenden Zuflüsse abgelagert wurden. Die Moorbildung setzte im Boreal oder im jüngeren Atlantikum ein. Ergebnisse von Sporen- und Pollenanalysen lassen darauf schließen, daß eine offene Wasserfläche vorhanden war. Aufgrund von kleinen Holzkohlestückchen und der Pollen von Getreide und Ackerunkräutern kann angenommen werden, daß das Gebiet zur Zeit der Moorbildung bereits besiedelt war und Ackerbau betrieben wurde. In den Abschlämmmassen sind tschernosemartige Kolluvisole, Gley-Kolluvisole und Humusgleye entwickelt. In den zentralen und feuchteren Bereichen der Niederung kommen teils kalkhaltige Anmoorgleye aus Mudden und kolluvialem Löß, lehmbedeckte Niedermoore und Erdniedermoore aus Torf und aus Torf über Mudde vor. Das Moor ist nach den hydrologischen Verhältnissen ein Verlandungs- und Überflutungsmoor mit 1,2 bis 2 m mächtiger Moorentwicklung und ökologisch eutroph. Im Großen Bruch befindet sich die Wasserscheide zwischen den Flußgebieten Elbe und Weser. Im Gelände kaum erkennbar, wird sie westlich von Veltheim durch den Steinbach ersichtlich, der sowohl in den Schiffgraben-Ost als auch den Schiffgraben-West fließen kann, wobei er im Normalfall in den Schiffgraben-Ost fließt. Die Entwässerung erfolgt nach Westen in die Ilse und nach Osten in die Bode. Wichtigster Vorfluter ist der Große Graben, der linksseitig unter anderem den Feldgraben, die Schöninger Aue und den Hornhäuser Goldbach aufnimmt, rechtsseitig münden Steinbach, Deersheimer Aue, Kalbkebach und Marienbach in den Großen Graben. Das außerordentlich geringe Längsgefälle des Bruches, das von der Steinmühle im Westen bis nach Oschersleben nur 0,225 % beträgt, bedingt immer wieder Überschwemmungen. Der Grundwasserspiegel im Gebiet ist ganzjährig flurnah. In seinem Ostteil am Rande des mitteldeutschen Trockengebietes liegend (500-550 mm Jahresniederschlag bei Oschersleben), nimmt die mittlere jährliche Niederschlagshöhe im LSG nach Westen hin auf 600-650 mm zu. Bei der Jahrestemperaturschwankung ist ein Anstieg von Westen (17,0°C) nach Osten (18,5°C) zu verzeichnen, was auf einen zunehmenden Einfluß des Kontinentalklimas zurückzuführen ist. Als potentiell natürliche Vegetation des Großen Bruches herrschen Schwarzerlen-Eschenwälder und Schwarzerlen-Bruchwälder vor. Sie ist heute nur noch andeutungsweise im Erlenbruchwald des Neuwegersleber Busches zu finden. Gegenwärtig sind über 290 Arten höherer Pflanzen im Gebiet vertreten. Darunter befinden sich auch 20 Arten der Roten Liste des Landes Sachsen-Anhalt. Besonders hervorzuheben sind dabei die vom Aussterben bedrohten Arten Quellgras und Lauch-Gamander sowie die stark gefährdeten Arten Tannenwedel und Salzbunge. Trotz intensiver landwirtschaftlicher Nutzung stellt das Gebiet auch heute noch ein Refugium für gefährdete Arten dar, wobei es eine besondere Bedeutung für den Erhalt der Arten Salzbunge, Stumpfblütige Binse, Großes Flohkraut und Gelbe Wiesenrauke hat, die hier in besonders umfangreichen Beständen vorkommen. Hauptsächlich im Ostteil des Gebietes bei Wulferstedt konzentrieren sich Vorkommen salzliebender Pflanzen. Die Gräben des Großen Bruches werden überwiegend als stark verschmutzt eingeschätzt, was darin zum Ausdruck kommt, daß mehr als ein Viertel der 96 Gräben als floristisch außerordentlich arm und strukturell nahezu wertlos eingestuft wurden. Nur wenige, meist kleinflächig vorhandene Wasserpflanzengesellschaften stehen auf der Roten Liste der Pflanzengesellschaften Ostdeutschlands wie zum Beispiel die Wasserhahnenfuß-Gesellschaft mit Beständen des Haarblättrigen Wasserhahnenfußes. In den Grünlandbereichen sind nur noch an wenigen Stellen Feuchtwiesengesellschaften vorhanden. Zu den bemerkenswertesten Brutvögeln des Großen Bruches zählt zweifellos der Große Brachvogel. Weitere typische Wiesenbrüter wie Kiebitz, Bekassine, Sumpfohreule oder Korn- und Wiesenweihe treten nur unregelmäßig und besonders in Jahren mit überdurchschnittlich hohen Wasserständen auf. Regelmäßige Brutvögel im Gebiet sind unter anderem Rohrweihe, Braunkehlchen, Schafstelze, Drosselrohrsänger und Beutelmeise. Zu erwähnen sind auch die Bruten vom Rothalstaucher und besonders das Vorkommen des Steinkauzes. Der Weißstorch ist Brutvogel am Rand von Wulferstedt und regelmäßiger Nahrungsgast im Gebiet. Die Wiesen- und Ackerflächen des Großen Bruches sind als Rastplatz für nordische Saat- und Bläßgänse von Bedeutung. 25 Libellenarten wurden im LSG nachgewiesen, so zum Beispiel große Bestände der Gebänderten Prachtlibelle sowie auch Kleines Granatauge, Kleine Königslibelle und Gebänderte Heidelibelle. Im Großen Graben wurden 11 Fischarten festgestellt, darunter Schlammpeitzger, Gründling sowie Drei- und Neunstachliger Stichling. Das vorrangige Schutzziel ist die Erhaltung des vorhandenen Dauergrünlandes insbesondere als Lebensraum für den Großen Brachvogels. Voraussetzung dafür ist die Unterbindung des weiteren Torfschwundes zur Sicherung der Moorböden. Dazu hat die Steuerung des Wasserhaushalts so zu erfolgen, daß ein weiteres Absinken der Grundwasserstände verhindert wird. Wo es möglich ist, sind die Grundwasserstände anzuheben. Ackerflächen auf potentiellen Grünlandstandorten sind wieder in Grünland zu überführen. Eine extensive Grünlandbewirtschaftung unter besonderer Beachtung der Anforderungen der Wiesenbrüter ist anzustreben. Die vorhandenen Pappelpflanzungen sind als Wald zu erhalten und langfristig in naturnahe Waldgesellschaften zu überführen. Es sind Voraussetzungen für eine landschaftsbezogene Erholung wie zum Beispiel Urlaub auf dem Bauernhof in den randlich angrenzenden Orten gegeben. Weiterhin ist eine umweltverträgliche Naturbeobachtung durch die Anlage von Aussichtspunkten in Verbindung mit Informationsmöglichkeiten denkbar. Dabei sind aber besonders sensible Teilbereiche, zum Beispiel für den Brachvogelschutz, während der Brutzeit auszusparen. Straße der Romanik, Südroute Die Südroute der Straße der Romanik quert bei Neudamm das LSG. Erste Station nördlich des Großen Bruches, außerhalb des LSG gelegen, ist Hamersleben mit der Stiftskirche St. Pankratius. Trotz seiner Abgelegenheit ist es für Liebhaber romanischer Architektur ein Geheimtip. Die dreischiffige romanische Säulenbasilika aus der ersten Hälfte des 12. Jahrhunderts, die einmal Stiftskirche des vermutlich 1107 gegründeten Augustiner-Chor-Herrenstiftes St. Pankratius war, gilt als das bedeutendste Beispiel der Hirsauer Bauschule im Harzvorland. Abweichend von diesem sonst eher nüchternen Stil, findet man an Portalen und Kapitellen plastischen Bauschmuck mit symbolhaften Darstellungen von Pflanzen und Tieren. Der Ziborienaltar im südlichen Querschiffsarm ist ebenfalls romanisch, es ist einer der ältesten Altäre dieser Art in Deutschland. Spätgotische Malereien in der Apsis des Hauptchores werden teilweise vom gewaltigen Barockaltar verdeckt, der 1687 aufgestellt wurde. Aus dieser Zeit stammen auch die Orgel, die Kanzel und das Chorgestühl. Von Hamersleben kommend kreuzt die Straße der Romanik zwischen Gunsleben und Aderstedt ein weiteres Mal das LSG und führt zur Westerburg bei Dedeleben. Die Grafen von Regenstein bauten ab 1180 dieses Lehen des Bistums Halberstadt zu einer starken Burg mit zweifachem Wassergraben aus, die heute mit den späteren Fachwerkausbauten geradezu idyllisch anmutet. Sehenswürdigkeiten am Rande des Großen Bruches In der im Kern romanischen Dorfkirche von Veltheim trifft man auf eine beachtliche Ausstattung vom Ende des 17. Jahrhunderts, darunter ein reicher Altaraufsatz von 1698. Bemerkenswert auch das Fachwerk-Pfarrhaus von 1580. In Hessen beherrscht die Schloßruine mit ihren zwei Türmen das Ortsbild. Die Entstehung des Schlosses wird um 1129 angenommen, Ende des 16. Jahrhunderts erfolgte ein Umbau. Die Dorfkirche, sie wurde 1859 umgebaut, besitzt eine beachtenswerte Innenausstattung mit Gemälden und Grabreliefs. Das Bildnis des Epitaphs ist die einzige bildhafte Darstellung von Johann Royer (1574 bis 1655), fürstlich braunschweigischer Gärtner am Schloß Hessen von 1607-1649. Hessen war ein alter braunschweigischer Amtssitz. Die fast allseitig von schützenden Hügeln umschlossene Lage des Ortes und die fruchtbaren Böden machte ihn wohl schon im ausgehenden Mittelalter zu einem bevorzugten Standort für die Gartenanlagen des Landesherren. Von dem Ende des 16. Jahrhunderts angelegten großen Lustgarten besteht heute noch ein Gutspark mit einem teils imposanten Baumbestand. In Rohrsheim zeugt noch der westliche Turm der Dorfkirche von deren romanischer Herkunft. Die Kirche selbst wurde 1753 umgebaut, sie enthält eine barocke Ausstattung. In Schlanstedt vermittelt der Hof des einfachen vierflügeligen Renaissance-Schlosses von 1616 einen sehenswerten Eindruck. Erhalten geblieben ist auch ein romanischer Rundturm. Die Dorfkirche liegt in unmittelbarer Nähe der ehemaligen Vorburg und enthält eine reiche Kanzel von 1621. Am Nordrand des LSG, in der Niederung der Aue, liegt Hötensleben. Es besitzt eine um 1500 errichtete spätgotische Dorfkirche mit prächtiger Barockausstattung vom Ende des 17. Jahrhunderts. Beachtenswert sind auch fünf auffallend große Bauernhöfe, von denen einige vermutlich Sattelhöfe waren. Südwestlich des Ortes befinden sich Reste einer früheren Wasserburg. Der Große Brachvogel Der Große Brachvogel gehört zu den Charakterarten großflächiger Wiesenlandschaften. Sein melodisch flötender Balzruf fügt sich harmonisch in das Bild der Landschaft ein und hinterläßt auch bei einem nicht ornithologisch geprägten Wanderer einen bleibenden Eindruck. Der Brachvogel, ein ursprünglicher Bewohner feuchter Hoch- oder Flachmoorbereiche, hat mit der Urbarmachung ehemaliger Sumpflandschaften, der Umwandlung von Auenwäldern zu Wiesengebieten und der anwachsenden Grünlandnutzung im Küstenbereich zunehmend feuchte, offene Grünlandgebiete mit extensiver Nutzung besiedelt. Dies führte besonders um die Jahrhundertwende zu einer deutlichen Bestandszunahme. Mit zunehmender Intensivierung der Nutzung der Grünlandgebiete durch Absenkung des Wasserstandes, Erhöhung der Anzahl der Arbeitsgänge und des Viehbesatzes wurden die Bedingungen für den Großen Brachvogel wieder schlechter, und schon seit den 1960er Jahren war in Mitteleuropa ein deutlicher Bestandsrückgang zu verzeichnen. Dieser war auch in Sachsen-Anhalt spürbar. Haben Ende der 1960er und Anfang der 1970er Jahre noch zwischen 300 und 400 Paare auf dem Gebiet des Bezirkes Magdeburg gebrütet, war der Bestand danach in rund anderthalb Jahrzehnten auf fast ein Drittel zusammengeschmolzen. Ähnlich stellt sich auch die Situation im Großen Bruch dar. Hier ging der Bestand trotz intensiver Schutzbemühungen von 15-20 Brutpaaren in den Jahren 1955 bis 1972 auf fünf Paare im Jahre 1998 zurück. Neben dem direkten Verlust von Lebensraum durch Umwandlung von Grünland in Acker oder die Anlage von Saatgrünland liegt die Ursache für den Bestandsrückgang der Art vor allem in der unzureichenden Reproduktion der Bestände. Obwohl der Große Brachvogel ein hohes Alter erreichen kann, der älteste Ringvogel wurde im Alter von 31 Jahren und 6 Monaten erlegt, und eine hohe Brutortstreue aufweist, gelingt es ihm unter den Bedingungen der heutigen Grünlandbewirtschaftung kaum noch, erfolgreich Jungvögel aufzuziehen. Mit dem altersbedingten Ausscheiden der Brutvögel können die freiwerdenden Reviere nicht mehr von den herangewachsenen Jungvögeln besetzt werden, ein Bestandsrückgang ist damit unvermeidlich. veröffentlicht in: Die Landschaftsschutzgebiete Sachsen-Anhalts © 2000, Landesamt für Umweltschutz Sachsen-Anhalt, ISSN 3-00-006057-X Die Natur- und Landschaftsschutzgebiete Sachsen-Anhalts - Ergänzungsband © 2003, Landesamt für Umweltschutz Sachsen-Anhalt, ISBN 3-00-012241-9 Letzte Aktualisierung: 30.07.2019
Seit langem ist bekannt, dass sich Böden mehr oder weniger schnell verändern. Manche dieser Veränderungen haben natürliche Ursachen. Andere wiederum sind auf Bodenbelastungen zurückzuführen, die der Mensch direkt oder indirekt verursacht. Hierzu gehören zum Beispiel die Stoffeinträge über Niederschlag und Staub (Säuren, Nährstoffe, Schwermetalle, Radionukleide, organische Schadstoffe usw.). Aber auch der Land- oder Forstwirt verändert die Böden seit eh und je durch Kultivierung und Nutzung. Die weitaus meisten dieser Prozesse laufen sehr langsam und für die menschlichen Sinne nur schwer wahrnehmbar ab. Um mögliche Veränderungen zu dokumentieren, führt das LBEG das niedersächsische Boden-Dauerbeobachtungsprogramm durch. Hierzu wurde in Kooperation mit anderen Landesdienststellen ein Netz von insgesamt 90 so genannten Boden-Dauerbeobachtungsflächen (BDF) aufgebaut. Siebzig entfallen auf ortsüblich landwirtschaftlich (BDF-L) genutzte und zwanzig auf forstlich genutzte (BDF-F) Standorte. Die Auswahl von repräsentativen BDF erfolgte anhand geowissenschaftlicher Kriterien wie Boden- und Gesteinsverhältnisse, Klima und Morphologie. Darüber hinaus berücksichtigte das LBEG typische Bodennutzungen wie Land- und Forstwirtschaft oder Naturschutzflächen sowie Belastungsfaktoren (Immissionen, nutzungsbedingte Belastungen etc.). Knapp die Hälfte der BDF (43) wurden stellvertretend für bestimmte Bodenbelastungssituationen ausgewählt, beispielsweise Siedlungsgebiete, Immissionsgebiete, Auengebiete mit belasteten Flusssedimenten sowie erosionsgefährdete Gebiete. Die übrigen 47 BDF geben die Vielfalt der niedersächsischen Böden unter ortsüblicher Bewirtschaftung wieder. Sie dienen auch als Referenz für Flächen mit spezifischer Belastung. Um Aufschluss über die Ursachen und Auswirkungen möglicher Bodenveränderungen zu erhalten, ermittelt das LBEG auf allen 70 landwirtschaftlich genutzten BDF zusätzlich auch den Stoffeintrag über Dünger und Pflanzenbehandlungsmittel sowie den Stoffaustrag mit dem abgefahrenen Erntegut. Der Landwirt protokolliert alle seine Bearbeitungsmaßnahmen. Ziel ist es, auf Basis dieser repräsentativ ausgewählten Messflächen mögliche Bodenveränderungen aufzudecken, Ursache und Auswirkungen zu bewerten und zu prognostizieren. Gelingt dies, steht den Handelnden in Politik, Verwaltung und Bodennutzung rechtzeitig eine gesicherte Datengrundlage für ihre Entscheidungsprozesse zur Verfügung. In anderen Bundesländern gibt es ähnliche Programme, deren inhaltlicher Umfang unter den durchführenden Institutionen abgestimmt ist. Innerhalb Europas ist eine entsprechende Rahmenrichtlinie in Vorbereitung.
Die Gefahrenhinweiskarte Niedersachsen 1 : 50 000 - Setzungs- und Hebungsempfindlicher Baugrund (ISHB50) ) ist aus der Geologischen Karte 1 : 50 000 (GK50) und der Ingenieurgeologischen Karte 1 : 50 000 (IGK50) abgeleitet, langjährige regionale Erfahrungen sowie bodenmechanische Analytik sind bei der Erstellung der Karte berücksichtigt. Die Karte zeigt die räumliche Verbreitung der verschiedenen setzungs- und hebungsempfindlichen Baugrundtypen bis in 2 m Tiefe. Darunter liegende Schichten lassen sich aus der GK50 und der IGK50 nicht ableiten. Hierfür kann die Bohrdatenbank des LBEG weitere Informationen und Daten liefern. Mit Hilfe von Kriterien und Regeln wird die Beschaffenheit, Zusammensetzung, Entstehung der geologischen Einheit sowie deren bodenmechanische Steifigkeit, Festigkeit und Wasserempfindlichkeit als Baugrund im Hinblick auf die Setzungs- und Hebungsempfindlichkeit bewertet. Geologische Einheiten mit ähnlichen Eigenschaften werden zusammengefasst. Gebiete mit lastabhängigen Setzungen im Erwartungsbereich von gut tragfähigem Baugrund sind entsprechend ausgewiesen. 1.) große Setzungsempfindlichkeit u.a. aufgrund hoher organischer Anteile und/oder flüssiger bis weicher Konsistenz 2.) mittlere bis große Setzungsempfindlichkeit aufgrund sehr geringer Steifigkeit (fluviatile, brackische, marine Sedimente wie z.B. Klei) 3.) geringe bis mittlere Setzungsempfindlichkeit aufgrund geringer Steifigkeit wie z.B. Lößlehm, Auelehm (marine, brackische und fluviatile Sedimente) 4.) geringe bis große Setzungsempfindlichkeit und geringe bis große Setzungsdifferenzen aufgrund wechselnder Steifigkeiten 5.) geringe bis mittlere Setzungs-/Hebungsempfindlichkeit von Ton und Tongesteinen durch Schrumpfen/Quellen (Wassergehaltsänderungen), Hebung durch Kristallisationsdruck (infolge Pyritverwitterung/Gipsbildung) 6.) hebungsempfindlich (Volumenzunahme) bei Wasserzutritt durch Umwandlung von Anhydrit in Gips 7.) senkungsempfindlich aufgrund der Löslichkeit von Gips bei Wasserzutritt 8.) übliche lastabhängige Setzungen gut tragfähiger Locker- und Festgesteine Aus den Baugrundtypen können generelle Hinweise zu Setzungen und Hebungen entnommen sowie gezielte projektbezogene Untersuchungen geplant werden. Hebungserscheinungen sind bisher nur in wenigen Fällen, meist in Folge der Quelleigenschaften von Tonen beobachtet worden. Hebung in Folge von Gipskristallwachstum im Verwitterungsbereich von Tonsteinen ist nur in Einzelfällen beobachtet worden. Die IHSB50 kann keine Baugrunduntersuchungen gemäß DIN EN 1997-2:2010-10, DIN EN 1997-2/NA:2010-12 und DIN 4020:2010-12 ersetzen.
Cadmium verdient unter den Schwermetallen besondere Beachtung, da seine Toxizität für Tiere und Menschen erheblich größer als die anderer Schwermetalle ist. Als Akkumulationsgift wird es im Körper angereichert und kann dort über Jahrzehnte verbleiben. Auf Grund seiner chemischen Verwandtschaft zum Zink kommt es fast ausschließlich mit diesem vor, insbesondere in allen zinkführenden Mineralen (u. a. Zinkblende, Galmei) und Gesteinen. Die durchschnittliche Cd-Konzentration der Gesteine der oberen kontinentalen Erdkruste (Clarkewert) beträgt 0,1 mg/kg, in Böden finden sich Gehalte in der Regel 0,50 mg/kg. Im Gegensatz zu As und anderen Schwermetallen (z. B. Cr, Ni) ist in den oberflächennah anstehenden sächsischen Hauptgesteinstypen keine geochemische Spezialisierung auf Cd nachweisbar. Die petrogeochemische Komponente liegt im Bereich des Clarkwertes um 0,1 mg/kg. In den Erzlagerstätten ist Cd vor allem an die Zinkerze der polymetallischen hydrothermalen Gänge und teilweise an die Skarnlagerstätten und stratigen-stratiformen Ausbildungen gebunden (chalkogene Komponente). Seit Beginn der Industrialisierung gelangt Cadmium über die Emissionen der Buntmetallhütten, die Verbrennung von Kohlen und Erdöl und in jüngerer Zeit über Galvanotechnik, Müllverbrennung, Düngemittel, Klärschlämme und Komposte anthropogen in die Umwelt. Während in den Oberböden Nord- und Mittelsachsens niedrige Gehalte dominieren (Cd-arme periglaziäre sandige bis lehmige Substrate; Löss), kommt es in den Verwitterungsböden über Festgesteinen zu einer relativen Anreicherung. Eine Abhängigkeit vom Tongehalt ist insofern festzustellen, dass die sandigen Substrate gegenüber lehmigen Substraten etwas niedrigere Cd-Gehalte aufweisen. Auf Acker- und Grünlandstandorten sind im Vergleich zu den Waldstandorten im Oberboden höhere Cd-Gehalte anzutreffen, da infolge der sehr niedrigen pH-Werte unter Forst eine Cd-Mobilisierung und Verlagerung in größere Bodentiefen stattfindet. Besonders hohe Cd-Belastungen befinden sich im Freiberger Raum, die durch die geogene Cd-Anreicherung bei der Bildung buntmetallführender Erzgänge aber vor allem anthropogen durch die Verhüttung von Zinkerzen verursacht werden. Die höchsten Gehalte sind in den Oberböden in unmittelbarer Nähe der Hüttenstandorte sowie in geringeren Konzentrationen östlich davon (in Hauptwindrichtung) festzustellen. Andere Lagerstättengebiete mit Zinkverzungen im Westerzgebirge und in der Erzgebirgsnordrandzone weisen nur schwach erhöhte Gehalte auf. Eine besondere Stellung bei der Belastung mit Cadmium nehmen die Auenböden der Freiberger und der Vereinigten Mulde ein. Durch die Abtragung von Böden mit geogen verursachten Anreicherungen im Einzugsgebiet und den enormen anthropogenen Zusatzbelastungen durch die Erzaufbereitung und die Hüttenindustrie, kommt es bei Ablagerung der Flusssedimente und Schwebanteile in den Überflutungsbereichen zu hohen Cd-Anreicherungen. In den Auenböden der Elbe und Zwickauer Mulde treten dagegen deutlich niedrigere Gehalte auf. Die geogenen und anthropogenen Prozesse führen im Freiberger Raum und in den Auenböden der Freiberger und Vereinigten Mulde zu flächenhaften Überschreitungen der Prüf- und Maßnahmenwerte der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) für Cadmium.
Arsen ist ein zu den Halbmetallen zählendes, ubiquitäres und toxisch wirkendes Element. Es kommt in der Natur weit verbreitet in verschiedenen Mineralisationen als Arsensulfid bzw. -oxid und als Kupfer-, Nickel- und Eisenarsenat vor. Der durchschnittliche As-Gehalt der Gesteine der oberen kontinentalen Erdkruste (Clarkewert) beträgt 2 mg/kg. In der Fachliteratur werden As-Gehalte 20 mg/kg als Normalgehalte beschrieben, wobei die mittleren Gehalte etwa 5 mg/kg betragen. Unter den toxisch wirkenden Elementen kommt dem Arsen auf Grund seiner großflächigen Verbreitung erhöhter Gehalte in sächsischen Böden eine besondere Bedeutung zu. Die Ursachen sind zweifellos in der geochemisch-metallogenetischen Spezialisierung der Fichtelgebirgisch Erzgebirgischen Antiklinalzone zu suchen. Der flächenbezogene mittlere As-Gehalt der Hauptgesteinstypen (petrogeochemische Komponente) beträgt ca. 13 mg/kg. Eine besondere Bedeutung erlangt im Erzgebirge die chalkogene Komponente. Neben der Elementanreicherung in der Vererzung selbst, die Gegenstand des Bergbaus war, kam es darüber hinaus zu einer großflächigen Beeinflussung der Nebengesteine bzw. deren Verwitterungsprodukte (primäre und sekundäre geochemische Aureole). Bei der anthropogenen Beeinflussung der natürlichen Böden sind vor allem die Erzaufbereitungsanlagen und die Emissionen der Buntmetallhütten zu nennen. Während in den Oberböden Nord- und in Teilen Mittelsachsens niedrige Gehalte dominieren (As-arme periglaziäre sandige bis lehmige Substrate; Löss), kommt es in den Verwitterungsböden über Festgesteinen infolge der höheren petrogenen As-Komponente zu einer relativen Anreicherung. Bedeutende regionale Anomalien befinden sich vor allem im Freiberger Raum (Osterzgebirge), dem bedeutendsten Standort des Bergbaus und der Verhüttung polymetallischer Erze, sowie im Westerzgebirge (Raum Aue - Ehrenfriedersdorf). Die große Extensität und Intensität der Verbreitung von As-Mineralen in den polymetallischen-, Zinn-Wolfram- und Bi-Co-Ni-Ag-U-Erzformationen sowie ihre Verhüttung führten zu großflächigen geogenen und anthropogenen Anreicherungen. Getrennt werden beide Bereiche durch die Nordwest-Südost streichende Flöha-Zone, einem Bereich, in dem kaum Erzmineralisationen auftreten und somit die chalkogene Komponente nur selten entwickelt ist. Großflächig erhöhte As-Gehalte in Böden der Vorerzgebirgssenke (Zwickau - Chemnitz) sind auf die geochemisch spezialisierten Rotliegendsedimente (u. a. Abtragungsprodukte des Erzgebirges) zurückzuführen. Besonders hohe As-Gehalte sind in den Auenböden der Freiberger Mulde, Zschopau, Zwickauer Mulde und der Vereinigten Mulde verbreitet. Durch den geologischen Prozess der Abtragung von Böden aus den erzgebirgischen Lagerstättengebieten sowie anthropogenen Einträgen durch die Erzaufbereitung und Hüttenindustrie, kommt es bei Ablagerung der Flusssedimente und Schwebanteile in den Überflutungsbereichen zu einer ständigen As-Anreicherung in den Auenböden. Infolge der beschrieben geogenen und anthropogenen Prozesse werden im Erzgebirge und in den Auenböden des Muldensystems die Prüf- und Maßnahmenwerte der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) für Arsen z. T. flächenhaft überschritten.
Cadmium verdient unter den Schwermetallen besondere Beachtung, da seine Toxizität für Tiere und Menschen erheblich größer als die anderer Schwermetalle ist. Als Akkumulationsgift wird es im Körper angereichert und kann dort über Jahrzehnte verbleiben. Auf Grund seiner chemischen Verwandtschaft zum Zink kommt es fast ausschließlich mit diesem vor, insbesondere in allen zinkführenden Mineralen (u. a. Zinkblende, Galmei) und Gesteinen. Die durchschnittliche Cd-Konzentration der Gesteine der oberen kontinentalen Erdkruste (Clarkewert) beträgt 0,1 mg/kg, in Böden finden sich Gehalte in der Regel 0,50 mg/kg. Im Gegensatz zu As und anderen Schwermetallen (z. B. Cr, Ni) ist in den oberflächennah anstehenden sächsischen Hauptgesteinstypen keine geochemische Spezialisierung auf Cd nachweisbar. Die petrogeochemische Komponente liegt im Bereich des Clarkwertes um 0,1 mg/kg. In den Erzlagerstätten ist Cd vor allem an die Zinkerze der polymetallischen hydrothermalen Gänge und teilweise an die Skarnlagerstätten und stratigen-stratiformen Ausbildungen gebunden (chalkogene Komponente). Seit Beginn der Industrialisierung gelangt Cadmium über die Emissionen der Buntmetallhütten, die Verbrennung von Kohlen und Erdöl und in jüngerer Zeit über Galvanotechnik, Müllverbrennung, Düngemittel, Klärschlämme und Komposte anthropogen in die Umwelt. Während in den Oberböden Nord- und Mittelsachsens niedrige Gehalte dominieren (Cd-arme periglaziäre sandige bis lehmige Substrate; Löss), kommt es in den Verwitterungsböden über Festgesteinen zu einer relativen Anreicherung. Eine Abhängigkeit vom Tongehalt ist insofern festzustellen, dass die sandigen Substrate gegenüber lehmigen Substraten etwas niedrigere Cd-Gehalte aufweisen. Auf Acker- und Grünlandstandorten sind im Vergleich zu den Waldstandorten im Oberboden höhere Cd-Gehalte anzutreffen, da infolge der sehr niedrigen pH-Werte unter Forst eine Cd-Mobilisierung und Verlagerung in größere Bodentiefen stattfindet. Besonders hohe Cd-Belastungen befinden sich im Freiberger Raum, die durch die geogene Cd-Anreicherung bei der Bildung buntmetallführender Erzgänge aber vor allem anthropogen durch die Verhüttung von Zinkerzen verursacht werden. Die höchsten Gehalte sind in den Oberböden in unmittelbarer Nähe der Hüttenstandorte sowie in geringeren Konzentrationen östlich davon (in Hauptwindrichtung) festzustellen. Andere Lagerstättengebiete mit Zinkverzungen im Westerzgebirge und in der Erzgebirgsnordrandzone weisen nur schwach erhöhte Gehalte auf. Eine besondere Stellung bei der Belastung mit Cadmium nehmen die Auenböden der Freiberger und der Vereinigten Mulde ein. Durch die Abtragung von Böden mit geogen verursachten Anreicherungen im Einzugsgebiet und den enormen anthropogenen Zusatzbelastungen durch die Erzaufbereitung und die Hüttenindustrie, kommt es bei Ablagerung der Flusssedimente und Schwebanteile in den Überflutungsbereichen zu hohen Cd-Anreicherungen. In den Auenböden der Elbe und Zwickauer Mulde treten dagegen deutlich niedrigere Gehalte auf. Die geogenen und anthropogenen Prozesse führen im Freiberger Raum und in den Auenböden der Freiberger und Vereinigten Mulde zu flächenhaften Überschreitungen der Prüf- und Maßnahmenwerte der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) für Cadmium.
Arsen ist ein zu den Halbmetallen zählendes, ubiquitäres und toxisch wirkendes Element. Es kommt in der Natur weit verbreitet in verschiedenen Mineralisationen als Arsensulfid bzw. -oxid und als Kupfer-, Nickel- und Eisenarsenat vor. Der durchschnittliche As-Gehalt der Gesteine der oberen kontinentalen Erdkruste (Clarkewert) beträgt 2 mg/kg. In der Fachliteratur werden As-Gehalte 20 mg/kg als Normalgehalte beschrieben, wobei die mittleren Gehalte etwa 5 mg/kg betragen. Unter den toxisch wirkenden Elementen kommt dem Arsen auf Grund seiner großflächigen Verbreitung erhöhter Gehalte in sächsischen Böden eine besondere Bedeutung zu. Die Ursachen sind zweifellos in der geochemisch-metallogenetischen Spezialisierung der Fichtelgebirgisch Erzgebirgischen Antiklinalzone zu suchen. Der flächenbezogene mittlere As-Gehalt der Hauptgesteinstypen (petrogeochemische Komponente) beträgt ca. 13 mg/kg. Eine besondere Bedeutung erlangt im Erzgebirge die chalkogene Komponente. Neben der Elementanreicherung in der Vererzung selbst, die Gegenstand des Bergbaus war, kam es darüber hinaus zu einer großflächigen Beeinflussung der Nebengesteine bzw. deren Verwitterungsprodukte (primäre und sekundäre geochemische Aureole). Bei der anthropogenen Beeinflussung der natürlichen Böden sind vor allem die Erzaufbereitungsanlagen und die Emissionen der Buntmetallhütten zu nennen. Während in den Oberböden Nord- und in Teilen Mittelsachsens niedrige Gehalte dominieren (As-arme periglaziäre sandige bis lehmige Substrate; Löss), kommt es in den Verwitterungsböden über Festgesteinen infolge der höheren petrogenen As-Komponente zu einer relativen Anreicherung. Bedeutende regionale Anomalien befinden sich vor allem im Freiberger Raum (Osterzgebirge), dem bedeutendsten Standort des Bergbaus und der Verhüttung polymetallischer Erze, sowie im Westerzgebirge (Raum Aue - Ehrenfriedersdorf). Die große Extensität und Intensität der Verbreitung von As-Mineralen in den polymetallischen-, Zinn-Wolfram- und Bi-Co-Ni-Ag-U-Erzformationen sowie ihre Verhüttung führten zu großflächigen geogenen und anthropogenen Anreicherungen. Getrennt werden beide Bereiche durch die Nordwest-Südost streichende Flöha-Zone, einem Bereich, in dem kaum Erzmineralisationen auftreten und somit die chalkogene Komponente nur selten entwickelt ist. Großflächig erhöhte As-Gehalte in Böden der Vorerzgebirgssenke (Zwickau - Chemnitz) sind auf die geochemisch spezialisierten Rotliegendsedimente (u. a. Abtragungsprodukte des Erzgebirges) zurückzuführen. Besonders hohe As-Gehalte sind in den Auenböden der Freiberger Mulde, Zschopau, Zwickauer Mulde und der Vereinigten Mulde verbreitet. Durch den geologischen Prozess der Abtragung von Böden aus den erzgebirgischen Lagerstättengebieten sowie anthropogenen Einträgen durch die Erzaufbereitung und Hüttenindustrie, kommt es bei Ablagerung der Flusssedimente und Schwebanteile in den Überflutungsbereichen zu einer ständigen As-Anreicherung in den Auenböden. Infolge der beschrieben geogenen und anthropogenen Prozesse werden im Erzgebirge und in den Auenböden des Muldensystems die Prüf- und Maßnahmenwerte der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) für Arsen z. T. flächenhaft überschritten.
Cadmium verdient unter den Schwermetallen besondere Beachtung, da seine Toxizität für Tiere und Menschen erheblich größer als die anderer Schwermetalle ist. Als Akkumulationsgift wird es im Körper angereichert und kann dort über Jahrzehnte verbleiben. Auf Grund seiner chemischen Verwandtschaft zum Zink kommt es fast ausschließlich mit diesem vor, insbesondere in allen zinkführenden Mineralen (u. a. Zinkblende, Galmei) und Gesteinen. Die durchschnittliche Cd-Konzentration der Gesteine der oberen kontinentalen Erdkruste (Clarkewert) beträgt 0,1 mg/kg, in Böden finden sich Gehalte in der Regel 0,50 mg/kg. Im Gegensatz zu As und anderen Schwermetallen (z. B. Cr, Ni) ist in den oberflächennah anstehenden sächsischen Hauptgesteinstypen keine geochemische Spezialisierung auf Cd nachweisbar. Die petrogeochemische Komponente liegt im Bereich des Clarkwertes um 0,1 mg/kg. In den Erzlagerstätten ist Cd vor allem an die Zinkerze der polymetallischen hydrothermalen Gänge und teilweise an die Skarnlagerstätten und stratigen-stratiformen Ausbildungen gebunden (chalkogene Komponente). Seit Beginn der Industrialisierung gelangt Cadmium über die Emissionen der Buntmetallhütten, die Verbrennung von Kohlen und Erdöl und in jüngerer Zeit über Galvanotechnik, Müllverbrennung, Düngemittel, Klärschlämme und Komposte anthropogen in die Umwelt. Während in den Oberböden Nord- und Mittelsachsens niedrige Gehalte dominieren (Cd-arme periglaziäre sandige bis lehmige Substrate; Löss), kommt es in den Verwitterungsböden über Festgesteinen zu einer relativen Anreicherung. Eine Abhängigkeit vom Tongehalt ist insofern festzustellen, dass die sandigen Substrate gegenüber lehmigen Substraten etwas niedrigere Cd-Gehalte aufweisen. Auf Acker- und Grünlandstandorten sind im Vergleich zu den Waldstandorten im Oberboden höhere Cd-Gehalte anzutreffen, da infolge der sehr niedrigen pH-Werte unter Forst eine Cd-Mobilisierung und Verlagerung in größere Bodentiefen stattfindet. Besonders hohe Cd-Belastungen befinden sich im Freiberger Raum, die durch die geogene Cd-Anreicherung bei der Bildung buntmetallführender Erzgänge aber vor allem anthropogen durch die Verhüttung von Zinkerzen verursacht werden. Die höchsten Gehalte sind in den Oberböden in unmittelbarer Nähe der Hüttenstandorte sowie in geringeren Konzentrationen östlich davon (in Hauptwindrichtung) festzustellen. Andere Lagerstättengebiete mit Zinkverzungen im Westerzgebirge und in der Erzgebirgsnordrandzone weisen nur schwach erhöhte Gehalte auf. Eine besondere Stellung bei der Belastung mit Cadmium nehmen die Auenböden der Freiberger und der Vereinigten Mulde ein. Durch die Abtragung von Böden mit geogen verursachten Anreicherungen im Einzugsgebiet und den enormen anthropogenen Zusatzbelastungen durch die Erzaufbereitung und die Hüttenindustrie, kommt es bei Ablagerung der Flusssedimente und Schwebanteile in den Überflutungsbereichen zu hohen Cd-Anreicherungen. In den Auenböden der Elbe und Zwickauer Mulde treten dagegen deutlich niedrigere Gehalte auf. Die geogenen und anthropogenen Prozesse führen im Freiberger Raum und in den Auenböden der Freiberger und Vereinigten Mulde zu flächenhaften Überschreitungen der Prüf- und Maßnahmenwerte der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) für Cadmium.
Arsen ist ein zu den Halbmetallen zählendes, ubiquitäres und toxisch wirkendes Element. Es kommt in der Natur weit verbreitet in verschiedenen Mineralisationen als Arsensulfid bzw. -oxid und als Kupfer-, Nickel- und Eisenarsenat vor. Der durchschnittliche As-Gehalt der Gesteine der oberen kontinentalen Erdkruste (Clarkewert) beträgt 2 mg/kg. In der Fachliteratur werden As-Gehalte 20 mg/kg als Normalgehalte beschrieben, wobei die mittleren Gehalte etwa 5 mg/kg betragen. Unter den toxisch wirkenden Elementen kommt dem Arsen auf Grund seiner großflächigen Verbreitung erhöhter Gehalte in sächsischen Böden eine besondere Bedeutung zu. Die Ursachen sind zweifellos in der geochemisch-metallogenetischen Spezialisierung der Fichtelgebirgisch Erzgebirgischen Antiklinalzone zu suchen. Der flächenbezogene mittlere As-Gehalt der Hauptgesteinstypen (petrogeochemische Komponente) beträgt ca. 13 mg/kg. Eine besondere Bedeutung erlangt im Erzgebirge die chalkogene Komponente. Neben der Elementanreicherung in der Vererzung selbst, die Gegenstand des Bergbaus war, kam es darüber hinaus zu einer großflächigen Beeinflussung der Nebengesteine bzw. deren Verwitterungsprodukte (primäre und sekundäre geochemische Aureole). Bei der anthropogenen Beeinflussung der natürlichen Böden sind vor allem die Erzaufbereitungsanlagen und die Emissionen der Buntmetallhütten zu nennen. Während in den Oberböden Nord- und in Teilen Mittelsachsens niedrige Gehalte dominieren (As-arme periglaziäre sandige bis lehmige Substrate; Löss), kommt es in den Verwitterungsböden über Festgesteinen infolge der höheren petrogenen As-Komponente zu einer relativen Anreicherung. Bedeutende regionale Anomalien befinden sich vor allem im Freiberger Raum (Osterzgebirge), dem bedeutendsten Standort des Bergbaus und der Verhüttung polymetallischer Erze, sowie im Westerzgebirge (Raum Aue - Ehrenfriedersdorf). Die große Extensität und Intensität der Verbreitung von As-Mineralen in den polymetallischen-, Zinn-Wolfram- und Bi-Co-Ni-Ag-U-Erzformationen sowie ihre Verhüttung führten zu großflächigen geogenen und anthropogenen Anreicherungen. Getrennt werden beide Bereiche durch die Nordwest-Südost streichende Flöha-Zone, einem Bereich, in dem kaum Erzmineralisationen auftreten und somit die chalkogene Komponente nur selten entwickelt ist. Großflächig erhöhte As-Gehalte in Böden der Vorerzgebirgssenke (Zwickau - Chemnitz) sind auf die geochemisch spezialisierten Rotliegendsedimente (u. a. Abtragungsprodukte des Erzgebirges) zurückzuführen. Besonders hohe As-Gehalte sind in den Auenböden der Freiberger Mulde, Zschopau, Zwickauer Mulde und der Vereinigten Mulde verbreitet. Durch den geologischen Prozess der Abtragung von Böden aus den erzgebirgischen Lagerstättengebieten sowie anthropogenen Einträgen durch die Erzaufbereitung und Hüttenindustrie, kommt es bei Ablagerung der Flusssedimente und Schwebanteile in den Überflutungsbereichen zu einer ständigen As-Anreicherung in den Auenböden. Infolge der beschrieben geogenen und anthropogenen Prozesse werden im Erzgebirge und in den Auenböden des Muldensystems die Prüf- und Maßnahmenwerte der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) für Arsen z. T. flächenhaft überschritten.
Veranlassung Bei der ökotoxikologischen Untersuchung von Wasser- und Sedimentproben kann oftmals nur ein Anteil der beobachteten Effekte durch bekannte Schadstoffe erklärt werden. Gleichzeitig zeigen chemische Non-Target-Analysen, dass aquatische Lebensgemeinschaften einer Vielzahl unbekannter oder unzureichend charakterisierter Stoffe ausgesetzt sind. Für eine Priorisierung und Identifizierung von Stoffen werden deshalb dringend innovative Ansätze zur Kopplung moderner chemischer und ökotoxikologischer Verfahren benötigt. Im Projekt SOURCE werden Wasser- und Sedimentproben entlang der Elbe chemisch und ökotoxikologisch charakterisiert und die Ergebnisse mithilfe wirkungsorientierter Analytik und der Modellierung molekularer und adverser Effekte integriert. Unter Berücksichtigung von Kombinationseffekten, die bei Umweltmischungen unweigerlich zu erwarten sind, wird somit eine Möglichkeit zur Identifizierung und Priorisierung von Schadstoffen und ihren Quellen geschaffen. Ziele - Bestandsaufnahme von Stoff- und Wirkungsprofilen von Sedimenten und Wasserproben entlang der Elbe - Kombination von chemisch analytischen Verfahren, Modellierung toxischer Effekte und effektbasierten Biotests - Entwicklung und Anwendung von Verfahren zur Identifizierung toxischer Stoffe und ihrer Eintragsquellen in Bundeswasserstraßen Woher kommen die Schadstoffe in unseren Flüssen? Um dieser Frage nachzugehen, werden im Projekt SOURCE Methoden der chemischen Target- und Non-Target-Analytik, bioanalytische Testverfahren und Modellierungsansätze kombiniert. Die Zahl der industriell hergestellten Chemikalien hat sich in den letzten 20 Jahren mehr als verdreifacht und liegt heute bei über 350.000 Substanzen. Gewässer werden in Europa routinemäßig jedoch nur auf wenige ausgewählte Stoffe untersucht. Dadurch bleiben Identität und Wirkung vieler Stoffe, die unsere Gewässer gefährden können, unerkannt. Vor dem Hintergrund der aktuellen Aktivitäten, z.B. zum Sedimentmanagement an der Elbe, ist es für die Entwicklung nachhaltiger Maßnahmen notwendig, die für Schadwirkungen verantwortlichen Stoffe zu identifizieren. Nur auf dieser Basis können Vorschläge zur zielgerichteten Minimierung der Einträge erarbeitet werden.
| Origin | Count |
|---|---|
| Bund | 339 |
| Land | 65 |
| Wissenschaft | 1 |
| Type | Count |
|---|---|
| Förderprogramm | 296 |
| Text | 23 |
| Umweltprüfung | 1 |
| unbekannt | 53 |
| License | Count |
|---|---|
| geschlossen | 62 |
| offen | 311 |
| Language | Count |
|---|---|
| Deutsch | 352 |
| Englisch | 63 |
| Resource type | Count |
|---|---|
| Archiv | 19 |
| Bild | 3 |
| Dokument | 51 |
| Keine | 208 |
| Unbekannt | 1 |
| Webdienst | 9 |
| Webseite | 145 |
| Topic | Count |
|---|---|
| Boden | 373 |
| Lebewesen und Lebensräume | 338 |
| Luft | 285 |
| Mensch und Umwelt | 373 |
| Wasser | 350 |
| Weitere | 371 |