API src

Found 1778 results.

Related terms

PGS: POLSTRACC / GWLCYCLE and SALSA: Teilnahme der universitären Partner an einer koordinierten Arktis Mission mit HALO

Ziel diesen Antrags ist die Teilnahme der universitären Partner an den Messungen der Kampagne PGS (POLSTRACC/ GWLCYCLE/ SALSA), die im Winter 2015/2016 durchgeführt werden sollen. An der geplanten HALO Kampagne sind die Universitäten Frankfurt, Mainz, Heidelberg und Wuppertal beteiligt. Die Universität Mainz ist kein voller Partner dieses Antrages, da es kein Projekt der Universität Mainz (AG Prof. Peter Hoor) in der letzten Phase des Schwerpunktprogramms gab. Der finanzielle Teil der geplanten Aktivitäten der Universität Mainz soll daher über die Universität Frankfurt abgewickelt werden. Der wissenschaftliche Beitrag der Universität Mainz ist allerdings in einer ähnlichen Weise dargestellt wie für die anderen universitären Partner. Das Ziel von PGS ist es, Beobachtungen einer großen Zahl verschieden langlebiger Tracer zur Verfügung zu stellen, um chemische und dynamische Fragestellungen in der UTLS zu untersuchen (POLSTRACC und SALSA) und die Bildung und Propagation von Schwerwellen in der Atmosphäre zu untersuchen. (GWLCYCLE). Die Universitäten Frankfurt und Wuppertal schlagen vor hierfür GC Messungen von verschieden langlebigen Spurengasen und von CO2 (Wuppertal) durchzuführen. Die Universität Mainz schlägt den Betrieb eines Laser Spektrometers für schnelle Messungen von N2O, CH4 und CO vor und die Universität Heidelberg plant Messungen reaktiver Chlor und Bromverbindungen mit Hilfe der DOAS Technik. Die wissenschaftlichen Studien, die mit den gewonnen Daten durchgeführt werden sollen, werden im Antrag umrissen. Es sind Studien zu Herkunft und Transport von Luftmassen in der UTLS, zu Transportzeitskalen und zum chemischen Partitionierung. Es sei an dieser Stelle darauf hingewiesen, dass diese wissenschaftlichen Arbeiten zwar hier umrissen werden, die Studien selbst aber aufgrund der begrenzten Personalförderung und der kurzen Laufzeit nicht Teil dieses Antrags sind. Ziel dieses Antrags ist es, die Vorbereitung und Integration der Messgeräte zu ermöglichen, die Messungen durchzuführen und die Daten für die Datenbank auszuwerten. Wir beantragen daher hier den universitären Anteil an den Missionskosten (incl. Zertifizierung der Gesamtnutzlast und der Flugkosten), die Personalmittel, Reisekosten und Verbrauchskosten für die Durchführung der Messungen.

Fünf Lektionen zu Citizen Science – Einblicke in den Methodenkatalog des Forschungsnetzwerks agroforst-monitoring

Citizen Science (CS; dt. Bürgerwissenschaft) ermöglicht die partizipative Forschung durch Laien, was zu einer breiteren Datenerhebung, einer Vielfalt von Methoden und einem besseren Verständnis ökologischer Prozesse führen kann. Das Autorenteam stellt wesentliche Ergebnisse zur Theorie der CS aus der einschlägigen Literatur vor. Auf Grundlage von Erfahrungen in der Projektleitung des CS-Forschungsnetzwerks agroforst-monitoring und der Kenntnis des wissenschaftlichen Diskurses über CS berichtet das Autorenteam über fünf Jahre angewandter Forschung und Netzwerkentwicklung sowie über den Austausch mit Befürworterinnen und Befürwortern sowie Kritikerinnen und Kritikern der CS. Vor dem Hintergrund eines vermeintlichen Trilemmas zwischen „Partizipation“, „Skalierbarkeit“ und „Datenqualität“ stellt der vorliegende Beitrag den Methodenkatalog von agroforst-monitoring vor, um aus der CS-Praxis zu berichten und Stellung zu den Vor- und Nachteilen der CS zu beziehen. Entlang der partizipativen Entwicklung des Methodenkatalogs konnten fünf Lektionen für die Arbeit in CS-Projekten abgeleitet werden, die sich auf verschiedene Schritte des Forschungsprozesses beziehen. Die Entwicklung von Forschungsfragen erfolgte in Zusammenarbeit mit interessierten Personen aus der Praxis und Agroforstplanung sowie mit Bürgerinnen und Bürgern. Zugleich erforderte die Methodenentwicklung kontinuierliche Anpassungen, um eine Standardisierung zu gewährleisten und Fehler zu reduzieren. Als wesentliche Voraussetzung für den Erfolg eines CS-Projekts wurde die Bedeutung intensiver Schulungen und fortwährenden Austausches zwischen Citizen Scientists und fachwissenschaftlicher Begleitung herausgearbeitet. Dieser Dialog kann sich auch methodisch widerspiegeln, um CS-Daten zu validieren oder deren Aussagekraft durch weitere Forschung zu erhöhen. Die Herausforderungen und Chancen neben den bekannten transformativen Potenzialen von CS werden anhand konkreter Beispiele aus dem Projekt diskutiert und zur Orientierung für weitere Forschung aufbereitet.

Nachhaltige Sicherung der Mangrove im Stadtgebiet von Durban

Im Stadtgebiet von Durban (Suedafrika) gibt es noch Mangrovenbestaende, die stark gefaehrdet sind. In Zusammenarbeit mit der Universitaet Durban-Westville, Botany Department, untersuchen wir diese Mangrovenbestaende mit dem Ziel der nachhaltigen Sicherung dieser Bestaende. Die Arbeiten werden in Abstimmung mit der Nationalparkverwaltung vor Ort durchgefuehrt.

Entwicklung eines Verfahrens zur Berechnung von Binnenschiffsemissionen

In einer Forschungskooperation mit dem Institut für Schiffstechnik, Meerestechnik und Transportsysteme der Universität Duisburg-Essen wird eine Software (BinEm) entwickelt, die mithilfe der Messung von Luftschadstoffen auf Binnenschiffen unter realen Betriebsbedingungen kalibriert und validiert werden soll. Aufgabenstellung und Ziel Die Schifffahrt soll nach Vorgaben der EU bis zum Jahr 2050 klimaneutral werden. Zur zwischenzeitlichen Reduktion der Treibhausgas- und Schadstoffemissionen werden verschiedene Technologien (z. B. Abgasreinigung) eingesetzt. Um den Einfluss von neuen Technologien auf die Schiffsemissionen abschätzen zu können, sind realistische Angaben zu den emittierten Schadstoffen durch die Binnenschifffahrt notwendig. Die bisher veröffentlichten Emissionsdaten, die der Binnenschifffahrt zugerechnet werden, basieren auf Modellen mit vielen Annahmen, die die Betriebsparameter im realen Einsatz sehr vereinfacht abschätzen. Aus diesem Grund wurde im Rahmen eines gemeinsamen Forschungsvorhabens der BAW und der Universität DuisburgEssen ein Verfahren zur Berechnung der Binnenschiffsemissionen entwickelt. Bedeutung für die Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV) Mit der im Rahmen der Forschungskooperation mit dem Institut für Schiffstechnik, Meerestechnik und Transportsysteme (ISMT) entwickelten Software können Emissionen der Binnenschifffahrt für beliebige Regionen und Schiffsflotten modelliert werden. Damit steht der BAW eine Methode zur Verfügung, die es ermöglicht, den Anteil der Binnenschifffahrt an den Luftschadstoffen abzubilden und den Erfolg von Emissionsminderungsmaßnahmen zu bewerten. Auf Basis dieser Ergebnisse können Entscheidungsträger im BMDV und in der GDWS erfolgversprechende Maßnahmen zur Minderung von Binnenschiffsemissionen gezielt ableiten, geltende Vorschriften anpassen oder neue erlassen. Untersuchungsmethoden Das entwickelte Verfahren besteht aus mehreren Modulen. Zunächst wird der Schiffswiderstand in Abhängigkeit von der Geschwindigkeit über Grund und der Strömung berechnet (Noß und Kossmann 2021). In dem aktuellen Verfahren wird nun auch der zusätzliche Widerstand bei Kurvendrift berücksichtigt. Hierfür greift das Programm auf einen äquivalenten Geradeauswiderstand zurück und addiert in Abhängigkeit des Driftwinkels einen in einer Datenbank hinterlegten Beiwert für den zusätzlichen Widerstand durch Schräganströmung. Anschließend werden der Gütegrad der Propulsion und die Propellerdrehleistung ermittelt. Mithilfe charakteristischer Propellerfreifahrtdiagramme und Motorenkennfelder sowie leistungsbezogener Faktoren werden final der Kraftstoffverbrauch und die Schiffsemissionen berechnet (Noß und Kossmann 2022). Die Spannweite an Schiffs- und Motorenparametern ist sehr groß. Basierend auf Simulations- und Modellversuchsergebnissen charakteristischer Schiffe (Noß und Kossmann 2021, 2022; Kossmann und Wierczoch 2022) wurden einzelne Widerstandsbeiwerte und der Gütegrad der Propulsion in Abhängigkeit von Schiffsgeschwindigkeit und Wassertiefenverhältnis zu Abladetiefenverhältnis berechnet. Der für die Propulsion verwendete Propeller ähnelt in seiner Geometrie einem charakteristischen Binnenschiffs-Düsen-Propeller. In Abhängigkeit von der berechneten Propulsions- bzw. Bremsleistung, der Schiffsgröße und der Anzahl der Propeller wählt das Verfahren einen passenden Motor in einer Datenbank aus. Diese beinhaltet für schnelllaufende Dieselmotoren mit Leistungen zwischen 400 und 1200 kW Daten zur Motorleistung, Drehzahl und zum spezifischen Kraftstoffverbrauch. Der gewählte Ansatz ist für den Großteil der Flotte sowie Betriebspunkte während einer typischen Streckenfahrt anwendbar. Situationen wie Ausweichmanöver, Ausweichmanöver, Schleusenfahrten oder An- und Ablegemanöver lassen sich mit diesem Ansatz jedoch nicht abbilden.

Digitalisierte Wärmespeicher für die Energiewende

In dem Projekt DARING soll die Energieeffizienz von Wärmespeichern (z.B. Puffer- und Trinkwasserspeicher) im Bereich der Gebäudeenergieversorgung signifikant gesteigert werden. Dafür wird eine innovative Sensortechnologie (Sensorhaut) für die großflächige Erfassung des Temperaturprofils an den Speichern optimiert. Mit den generierten Daten lässt sich der exakte Beladungszustand bestimmen und die Energiezufuhr gezielter steuern. Durch eine bessere Steuerung von Wärmepumpensystemen kann eine Effizienzsteigerung um bis zu 10% erreicht werden. Für Solarthermie-Anlagen im Gebäudebereich sowie Fernwärme-Hausstationen werden äquivalente Werte prognostiziert. Bei der vorgelagerten Gebäudeversorgung über Wärmenetze besteht bei einer Integration in das übergeordnete Lastmanagement das Potenzial, vom kontinuierlichen in den Pulsbetrieb überzugehen, womit Trinkwasserspeicher gezielt beladen werden können. Die Technologie der Sensorhaut basiert auf druckbarer organischer Dünnschicht-Elektronik und erlaubt die zuverlässige Messung verschiedener Parameter (z.B. Temperatur) über große Flächen hinweg in Echtzeit. Durch den speziellen Herstellungsprozess (Flüssigprozessierung) sind die Sensorfolien in Form und Funktion nahezu beliebig konfigurierbar. Dabei entsteht nur ein minimaler Material- und Energieverbrauch, woraus sich im Vergleich zu herkömmlicher Sensorik Kostenvorteile sowie eine bessere CO2 Bilanz ergeben. DARING ist als Verbundprojekt konzipiert, in dem Experten aus Forschung und Praxis zusammenarbeiten. Dadurch wird gewährleistet, so nah an den realen Gegebenheiten und Bedürfnissen zu entwickeln wie möglich. Neben dem Institut für Angewandte Physik der TU Dresden sind die Professur für Gebäudeenergietechnik und Wärmeversorgung, die Firma Viessmann Climate Solutions SE sowie die Cupasol GmbH als direkte Projektpartner an der Umsetzung und Erprobung beteiligt. Darüber hinaus ist die Vonovia SE als Drittmittelgeber Teil des Konsortiums.

Digitalisierte Wärmespeicher für die Energiewende, Teilvorhaben: Optimierung Sensorhaut zur großflächigen Temperaturerfassung an Wärmespeichern

In dem Projekt DARING soll die Energieeffizienz von Wärmespeichern (z.B. Puffer- und Trinkwasserspeicher) im Bereich der Gebäudeenergieversorgung signifikant gesteigert werden. Dafür wird eine innovative Sensortechnologie (Sensorhaut) für die großflächige Erfassung des Temperaturprofils an den Speichern optimiert. Mit den generierten Daten lässt sich der exakte Beladungszustand bestimmen und die Energiezufuhr gezielter steuern. Durch eine bessere Steuerung von Wärmepumpensystemen kann eine Effizienzsteigerung um bis zu 10% erreicht werden. Für Solarthermie-Anlagen im Gebäudebereich sowie Fernwärme-Hausstationen werden äquivalente Werte prognostiziert. Bei der vorgelagerten Gebäudeversorgung über Wärmenetze besteht bei einer Integration in das übergeordnete Lastmanagement das Potenzial, vom kontinuierlichen in den Pulsbetrieb überzugehen, womit Trinkwasserspeicher gezielt beladen werden können. Die Technologie der Sensorhaut basiert auf druckbarer organischer Dünnschicht-Elektronik und erlaubt die zuverlässige Messung verschiedener Parameter (z.B. Temperatur) über große Flächen hinweg in Echtzeit. Durch den speziellen Herstellungsprozess (Flüssigprozessierung) sind die Sensorfolien in Form und Funktion nahezu beliebig konfigurierbar. Dabei entsteht nur ein minimaler Material- und Energieverbrauch, woraus sich im Vergleich zu herkömmlicher Sensorik Kostenvorteile sowie eine bessere CO2 Bilanz ergeben. DARING ist als Verbundprojekt konzipiert, in dem Experten aus Forschung und Praxis zusammenarbeiten. Dadurch wird gewährleistet, so nah an den realen Gegebenheiten und Bedürfnissen zu entwickeln wie möglich. Neben dem Institut für Angewandte Physik der TU Dresden sind die Professur für Gebäudeenergietechnik und Wärmeversorgung, die Firma Viessmann Climate Solutions SE sowie die Cupasol GmbH als direkte Projektpartner an der Umsetzung und Erprobung beteiligt. Darüber hinaus ist die Vonovia SE als Drittmittelgeber Teil des Konsortiums.

Nachhaltige Schaltanlagen für das Mittelspannungsnetz, Teilvorhaben: Nachhaltigere Schaltanlagen

Mit steigendem Anteil der erneuerbaren Energien und durch die Zunahme der Elektromobilität wird das Mittelspannungsnetz in Deutschland zunehmend belastet und muss dementsprechend ausgebaut werden. In diesem Kontext spielen Schaltanlagen als zentrales Element für die Energieverteilung und den Netzschutz eine entscheidende Rolle. Aufgrund der hohen Anforderungen an Zuverlässigkeit und mit einer Lebensdauer von mehr als 30 Jahren kann die Auslegung und das Design dieser Komponenten bisher als konservativ und vor allem Funktionsgetrieben angesehen werden; Aspekte der Nachhaltigkeit spielen abgesehen vom Ersatz von SF6 als Isoliergas bisher keine relevante Rolle. Ziel des Projects GreEner Tech ist es, Schaltanlagen im Mittelspannungsnetz grundlegend neu zu denken und nachhaltig zu gestalten. Dazu sollen unter anderem bessere und nachhaltigere Materialien gefunden, Konstruktionen verbessert und der Einsatz von Rohstoffen verringert werden. Insbesondere soll im Projekt ein neuer integrierter Ansatz gewählt werden, der das Design und die Materialauswahl mit wissenschaftlichen Methoden der Nachhaltigkeitsforschung verknüpft und den gesamten kooperativen Wissens- und Datengewinn in einer gemeinsamen digitalen Optimierungsplattform bündelt. So kann in Zusammenarbeit zwischen Industrie, Forschung und Netzbetreibern eine bessere Infrastruktur für das deutsche Mittelspannungsnetz entwickelt werden.

Nachhaltige Schaltanlagen für das Mittelspannungsnetz, Teilvorhaben: Elektrische Verluste

Mit steigendem Anteil der erneuerbaren Energien und durch die Zunahme der Elektromobilität wird das Mittelspannungsnetz in Deutschland zunehmend belastet und muss dementsprechend ausgebaut werden. In diesem Kontext spielen Schaltanlagen als zentrales Element für die Energieverteilung und den Netzschutz eine entscheidende Rolle. Aufgrund der hohen Anforderungen an Zuverlässigkeit und mit einer Lebensdauer von mehr als 30 Jahren kann die Auslegung und das Design dieser Komponenten bisher als konservativ und vor allem Funktionsgetrieben angesehen werden; Aspekte der Nachhaltigkeit spielen abgesehen vom Ersatz von SF6 als Isoliergas bisher keine relevante Rolle. Ziel des Projects GreEner Tech ist es, Schaltanlagen im Mittelspannungsnetz grundlegend neu zu denken und nachhaltig zu gestalten. Dazu sollen unter anderem bessere und nachhaltigere Materialien gefunden, Konstruktionen verbessert und der Einsatz von Rohstoffen verringert werden. Insbesondere soll im Projekt ein neuer integrierter Ansatz gewählt werden, der das Design und die Materialauswahl mit wissenschaftlichen Methoden der Nachhaltigkeitsforschung verknüpft und den gesamten kooperativen Wissens- und Datengewinn in einer gemeinsamen digitalen Optimierungsplattform bündelt. So kann in Zusammenarbeit zwischen Industrie, Forschung und Netzbetreibern eine bessere Infrastruktur für das deutsche Mittelspannungsnetz entwickelt werden.

Nachhaltige Schaltanlagen für das Mittelspannungsnetz, Teilvorhaben: Optimierungmodell

Mit steigendem Anteil der erneuerbaren Energien und durch die Zunahme der Elektromobilität wird das Mittelspannungsnetz in Deutschland zunehmend belastet und muss dementsprechend ausgebaut werden. In diesem Kontext spielen Schaltanlagen als zentrales Element für die Energieverteilung und den Netzschutz eine entscheidende Rolle. Aufgrund der hohen Anforderungen an Zuverlässigkeit und mit einer Lebensdauer von mehr als 30 Jahren kann die Auslegung und das Design dieser Komponenten bisher als konservativ und vor allem Funktionsgetrieben angesehen werden; Aspekte der Nachhaltigkeit spielen abgesehen vom Ersatz von SF6 als Isoliergas bisher keine relevante Rolle. Ziel des Projects GreEner Tech ist es, Schaltanlagen im Mittelspannungsnetz grundlegend neu zu denken und nachhaltig zu gestalten. Dazu sollen unter anderem bessere und nachhaltigere Materialien gefunden, Konstruktionen verbessert und der Einsatz von Rohstoffen verringert werden. Insbesondere soll im Projekt ein neuer integrierter Ansatz gewählt werden, der das Design und die Materialauswahl mit wissenschaftlichen Methoden der Nachhaltigkeitsforschung verknüpft und den gesamten kooperativen Wissens- und Datengewinn in einer gemeinsamen digitalen Optimierungsplattform bündelt. So kann in Zusammenarbeit zwischen Industrie, Forschung und Netzbetreibern eine bessere Infrastruktur für das deutsche Mittelspannungsnetz entwickelt werden.

Nachhaltige Schaltanlagen für das Mittelspannungsnetz, Teilvorhaben: Nachhaltige Materialien und Prozesse

Mit steigendem Anteil der erneuerbaren Energien und durch die Zunahme der Elektromobilität wird das Mittelspannungsnetz in Deutschland zunehmend belastet und muss dementsprechend ausgebaut werden. In diesem Kontext spielen Schaltanlagen als zentrales Element für die Energieverteilung und den Netzschutz eine entscheidende Rolle. Aufgrund der hohen Anforderungen an Zuverlässigkeit und mit einer Lebensdauer von mehr als 30 Jahren kann die Auslegung und das Design dieser Komponenten bisher als konservativ und vor allem Funktionsgetrieben angesehen werden; Aspekte der Nachhaltigkeit spielen abgesehen vom Ersatz von SF6 als Isoliergas bisher keine relevante Rolle. Ziel des Projects GreEner Tech ist es, Schaltanlagen im Mittelspannungsnetz grundlegend neu zu denken und nachhaltig zu gestalten. Dazu sollen unter anderem bessere und nachhaltigere Materialien gefunden, Konstruktionen verbessert und der Einsatz von Rohstoffen verringert werden. Insbesondere soll im Projekt ein neuer integrierter Ansatz gewählt werden, der das Design und die Materialauswahl mit wissenschaftlichen Methoden der Nachhaltigkeitsforschung verknüpft und den gesamten kooperativen Wissens- und Datengewinn in einer gemeinsamen digitalen Optimierungsplattform bündelt. So kann in Zusammenarbeit zwischen Industrie, Forschung und Netzbetreibern eine bessere Infrastruktur für das deutsche Mittelspannungsnetz entwickelt werden.

1 2 3 4 5176 177 178