Ausgangslage/Betroffenheit: Die Stadt Regensburg hat etwa 134.000 Einwohner (Erstwohnsitze) und ist damit die viertgrößte Stadt Bayerns. Unter den Modellvorhaben weist Regensburg das stärkste Bevölkerungswachstum auf - sowohl in der zurückliegenden Einwohnerentwicklung als auch in den Prognosen bis 2025, nach denen ein Anstieg der Bevölkerung um 5,4Prozent erwartet wird. Regensburg liegt am nördlichsten Punkt der Donau und den Mündungen der linken Nebenflüsse Naab und Regen. Es wird von den Winzerer Höhen, den Ausläufern des Bayrischen Waldes und dem Ziegetsberg umrandet, wodurch die Entstehung von Inversionswetterlagen begünstigt wird. Durch die topographische Pfortenlage weist die Stadt zudem eine hohe Nebelhäufigkeit auf und ist insbesondere in den Wintermonaten anfällig für Feinstaubbelastungen. Im Gegensatz zu vielen anderen Städten hat Regensburg einen relativ kompakt gegliederten Stadtkörper und eine insgesamt homogene Siedlungsstruktur. Prägend ist die historische Altstadt mit ca. 1.000 denkmalgeschützten Gebäuden. Diese gilt als einzige authentisch erhaltene, mittelalterliche Großstadt Deutschlands und ist seit 2006 Welterbe der UNESCO (Organisation der Vereinten Nationen für Erziehung, Wissenschaft und Kultur). Die Regensburger Altstadt wird als 'Steinerne Stadt' charakterisiert. Ihre historisch gewachsene dichte Baustruktur mit steinernen Plätzen und Gassen, wenig Bäumen im öffentlichen Raum und einer hohen Nutzungsdichte (Wohnen, Einkaufen, Arbeiten, Tourismus) erwärmt sich insbesondere im Sommer stärker als das Umland und wirkt als Hitzespeicher. So können die Temperaturunterschiede im Stadtgebiet bis zu 6 GradC betragen. Das Phänomen der Wärmeinsel, das sich im Zuge des fortschreitenden Klimawandels deutlicher ausprägt, impliziert einen sinkenden thermischen Komfort, löst zusätzliche Energiebedarfe aus und stellt u.U. veränderte Ansprüche an die Gestaltung von Freiflächen. Aufgrund der Lage an der Donau muss sich Regensburg ferner auf häufigere Schwüle und Gefährdung durch Hochwasser einstellen. Aus der Notwendigkeit zur Anpassung an den Klimawandel erwächst in Verbindung mit anderen Zielbildern einer nachhaltigen Siedlungsentwicklung ein umfassender planerischer Handlungsbedarf. Im Rahmen des Modellprojekts thematisiert die Stadt Regensburg den Widerspruch zwischen einer Stadtentwicklungs- und Bauleitplanung, die auf Flächensparsamkeit und Innenentwicklung ausgerichtet ist, und erforderlichen Anpassungsstrategien an den Klimawandel, die bei der besonderen städtebaulichen Kompaktheit der Stadt Regensburg tendenziell eine Auflockerung von Baustrukturen und Flächenentsiegelung beinhalten. Im Sinne einer klimaangepassten Stadtentwicklung galt es: - auf strategischer Ebene die Weichen für eine klimaangepasste Flächennutzung für die zukünftige Stadtentwicklung zu stellen - auf operativer Ebene Maßnahmen für restriktive bis persistente Stadt- und Freiraumstrukturen zu entwickeln.
Fuer die Uebernahme von Innovationen - hier solche im Bereich des Bodenschutzes gibt es einen Komplex von sozio-oekonomischen und sozio-kulturellen Faktoren. Das Forschungsvorhaben hat das Ziel, diese zu identifizieren und ihre Relevanz fuer entsprechende Entwicklungsfoerderungsansaetze zu bestimmen.
norganische Funktionsmaterialien spielen innerhalb der Schlüsseltechnologien des 21. Jahrhunderts, etwa im Bereich der Informationstechnik oder der Energieerzeugung und -speicherung, eine zentrale Rolle. Dabei sind komplex strukturierte multifunktionelle Materialien auf rein anorganischer Basis sowie im Verbund mit organischen Anteilen zur Weiterentwicklung dieser Technologien von wesentlicher Bedeutung. Die Erzeugung solcher Materialien mit definierter Struktur und Stöchiometrie über die konventionelle Prozesstechnik, die in der Regel bei erhöhten Temperaturen und/oder Drücken sowie unter erheblichem verfahrenstechnischen Aufwand abläuft, stößt hierbei jedoch an ihre Grenzen. Demgemäß ist die Suche nach neuen Verfahren, die eine Generierung von diesen Materialien bei Umgebungsbedingungen und mit reduziertem prozesstechnischen Aufwand ermöglichen, derzeit Gegenstand weltweiter Forschungsanstrengungen. Für die Bildung von komplex strukturierten anorganischen Festkörpern bei Umgebungsbedingungen liefert die belebte Natur eindrucksvolle Beispiele. So entstehen durch Biomineralisationsprozesse Stoffe wie etwa Calciumphosphat oder -carbonat, deren Bildung genetisch determiniert ist und durch die Wechselwirkung mit Biomolekülen gesteuert wird, wobei unter anderem Selbstorganisationsprozesse eine Rolle spielen. Die hierdurch entstehenden anorganischen Materialien besitzen multifunktionelle Eigenschaften, wobei deren Eigenschaftsspektrum durch den Einbau von bioorganischen Komponenten erweitert wird. Wenngleich viele technisch relevante Materialien bei diesen natürlichen Prozessen keine Rolle spielen, ergeben sich hieraus unmittelbar aussichtsreiche Perspektiven zur Generierung neuer anorganischer Funktionsmaterialien durch spezifische molekulare Interaktionen zwischen bioorganischen und anorganischen Stoffen. Das Hauptziel dieses Schwerpunktprogramms ist daher die Übertragung von Prinzipien der Biomineralisation auf die Generierung von anorganischen Funktionsmaterialien und von deren Hybriden mit bioorganischen Anteilen. Zur Erreichung dieses Ziels werden Arbeiten durchgeführt (1) zur In-vitro- und In-vivo-Synthese anorganischer Funktionsmaterialien und deren Hybride mit bioorganischen Molekülen in Form von Schichten oder 3D-Strukturen, (2) zur Charakterisierung der Bildungsprozesse und der Struktur der Materialien sowie (3) zur Bestimmung und zum Design von deren physikalischen und chemischen Eigenschaften. Diese experimentellen Untersuchungen werden weiterhin durch Arbeiten zur Modellierung der Materialbildung, -struktur und -eigenschaften begleitet.
Institutionen strukturieren die Beziehungen von Menschen untereinander, zur Natur und sogenannten Nature's Contribution to People (NCP). Sie beeinflussen unsere Einstellungen und ermöglichen Transformationen, was sie zu Elementen von Orientierungs - und Transformationswissen macht. Die Arbeit nutzt Erkenntnisse in Kili-SES-1 zu Interessengruppen, Institutionen und Akteuren in Bezug zu Land-, Wald- und Wassernutzung sowie den Mehrebenentreibern, die NCP und institutionellen Wandel prägen. Das Forschungsprogramm ist durch Erkenntnisse über sozial-ökologische Herausforderungen motiviert, die sich auf Arten von Forst- und Landwirtschaft beziehen sowie auf Institutionen (z.B. Kihamba-Institution, welche Vererbung von Landnutzungsrechten regelt, Regeln der Landnutzung im Umfeld des Nationalparks und der Wasserläufe), Machtausübung ausgehend von mehreren Ebenen, exogene Faktoren wie den demografischen und klimatischen Wandel und das tele-coupling von Arenen. Das Projekt ist in drei Arbeitspakete aufgeteilt und mit der Forschung zu Wassergovernance abgestimmt. Man wird landwirtschaftliche Betriebe in drei Fallstudiengebieten, ihre Nachhaltigkeit und Widerstandsfähigkeit sowie deren Determinanten im Rahmen einer Haushaltsbefragung bewerten. Für Betriebstypen, die Teil bestimmter Nahrungsmittelsysteme und Waldschutzinitiativen sind, werden mit Interessenvertreter*innen, Expert*innen und Fokusgruppen sogenannte Causal Loop Diagrams entwickelt. Es werden die Dimensionen der Mehrebenen- und gekoppelten (tele-coupled) Governance und Institutionen, die die Resilienz und Nachhaltigkeit von NCPs prägen, identifiziert. Das Projekt nutzt den konzeptionellen Rahmen Networks of Adjacent Action Situations in Kombination mit miteinander verbundenen (hybriden) Koordinationsmodi. Governance und Institutionen sind Querschnittsthemen in Kili-SES-2. Mit SP1 arbeitet es an wasserbezogenen NCP und mit SPs 2 und 6 an biodiversitäts- und forstwirtschaftsbezogenen NCPs. Die Nachhaltigkeitsbewertung stützt sich auf das Wissen aller SPs. Die Arbeit zu Institutionen wird das Verständnis lokaler land- und forstwirtschaftlicher Einstellungen und Initiativen, die in den SPs 3 und 4 untersucht werden, einbetten. SP5 wird die Rolle von Institutionen als Hebelpunkten für Transformation in die SP7-Synthese einbringen. Das Verständnis der Rolle von Institutionen für NCPs als Grundlage für eine Nachhaltigkeitstransformation ist nach wie vor begrenzt. Ein Grund dafür ist die Lücke zwischen System- und Institutionenanalyse. Darüber hinaus verhindern häufig zu komplexe Beschreibungen von Sozial-Ökologischen Systemen die Identifikation der Konfigurationen (d.h. Hybriden) von Institutionen und Governance, die für die Nachhaltigkeitstransformation verantwortlich sind. SP5 trägt zur Schließung dieser Forschungslücken, welche auch in der IPBES-Forschung vorherrschen, bei.
Einige sind schon gut aufgestellt, andere können noch etwas lernen: Um Städte fit für die Zukunft zu machen, ist der internationale Austausch mit anderen Städten von großen Nutzen. Hier setzt ein neues Projekt des Bundesinstituts für Bau-, Stadt- und Raumforschung (BBSR) und des Bundesministeriums für Umwelt, Naturschutz, Bau und Reaktorsicherheit (BMUB) an, das in Zusammenarbeit mit der Deutschen Gesellschaft für Internationale Zusammenarbeit (GIZ) und dem German Marshall Fund of the United States (GMF) durchgeführt wird. Ob klimagerechter Stadtumbau, Energieeffizienz, bürgerschaftliches Engagement oder soziale Integration - neue Strategien für die Stadtentwicklung sind gefragt und sollen den Projektpartnern und Deutschland neue Impulse für Gesetze und Förderpolitik geben. Ziel: Ziel ist es, das Memorandum STÄDTICHE ENERGIEN als eines der derzeit zentralen städtebau- und wohnungsbaupolitischen Themen mit dem Ansatz der integrierten Stadtentwicklung durch international ausgerichtete Formate der Kooperation mit zentralen Partnern des BMUB umzusetzen. Dies wird auch von der LEIPZIG CHARTA gefordert. Für die Bundesebene werden so auch wichtige Impulse zur kontinuierlichen Anpassung von Gesetzgebung und Förderpolitik an neue Herausforderungen generiert, denen sich insbesondere Kommunen gegenübersehen. Lebenslanges Lernen von unterschiedlichen Akteuren und Institutionen mit dem Ziel der nachhaltigen Stadtentwicklung sowohl in Deutschland als auch weltweit wird durch internationale Zusammenarbeit angereichert. Dies erfordert, neue Kooperationsformen einzugehen und gewinnbringend für kommunale Entwicklung zu nutzen.
Ziel des FAM ist es, in einem langfristigen Versuch die oekologischen Folgen von zwei unterschiedlichen Bewirtschaftungssystemen in einem Landschaftsausschnitt zu untersuchen. Dabei sollen Wege der Landbewirtschaftung aufgezeigt werden, die wirtschaftliche Landnutzung mit der Erhaltung und Wiederherstellung der natuerlichen Lebensgrundlagen unserer Agrarlandschaft zu vereinen. Teilprojekte und Arbeitsgruppen: Bereich Landnutzungsysteme, Bereich Biologische Diversitaet, Bereich Wasser- und Stoffbilanz, Bereich Betriebsbilanz, Planungsgrundlagen und Dokumentation, Bereich Zentrale Aufgaben
The Northern Eurasia Earth Science Partnership Initiative, or NEESPI, is a currently active, yet strategically evolving program of internationally-supported Earth systems science research, which has as its foci issues in northern Eurasia that are relevant to regional and Global scientific and decision-making communities (see NEESPI Mission Statement). This part of the globe is undergoing significant changes - particularly those changes associated with a rapidly warming climate in this region and with important changes in governmental structures since the early 1990s and their associated influences on land use and the environment across this broad expanse. How this carbon-rich, cold region component of the Earth system functions as a regional entity and interacts with and feeds back to the greater Global system is to a large extent unknown. Thus, the capability to predict future changes that may be expected to occur within this region and the consequences of those changes with any acceptable accuracy is currently uncertain. One of the reasons for this lack of regional Earth system understanding is the relative paucity of well-coordinated, multidisciplinary and integrating studies of the critical physical and biological systems. By establishing a large-scale, multidisciplinary program of funded research, NEESPI is aimed at developing an enhanced understanding of the interactions between the ecosystem, atmosphere, and human dynamics in northern Eurasia. Specifically, the NEESPI strives to understand how the land ecosystems and continental water dynamics in northern Eurasia interact with and alter the climatic system, biosphere, atmosphere, and hydrosphere of the Earth. The contemporaneous changes in climate and land use are impacting the biological, chemical, and physical functions of the northern Eurasia, but little data and fewer models are available that can be used to understand the current status of this expansive regional system, much less the influence of the northern Eurasia region on the Global climate. NEESPI seeks to secure the necessary financial and related institutional support from an international cadre of sponsors for developing a viable understanding of the functioning of northern Eurasia and the impacts of extant changes on the regional and Earth systems. Many types of ground and integrative (e.g., satellite; GIS) data will be needed and many models must be applied, adapted or developed for properly understanding the functioning of this cold and diverse regional system. Mechanisms for obtaining the requisite data sets and models and sharing them among the participating scientists are essential and require international and active governmental participation. (abridged text)
Future global climate change resulting from anthropogenic activity is now inevitable. The consequences for the stratosphere are poorly understood. A better understanding of the interactions between atmospheric chemistry and climate change is urgently required. This is a prerequisite for impact assessment and the definition of mitigation strategies. The DFG Research Unit Stratospheric Change and its Role for Climate Prediction (SHARP) addresses this issue and aims to improve our understanding and ability to predict global climate change and its interplay with the stratosphere. SHARP follows the recommendations for research, formulated by the Stratospheric Processes and their Role in Climate (SPARC) Programme of the World Climate Research Programme (WCRP). SHARP will focus on the quantitative detection, attribution and prediction of changes in stratospheric dynamics and composition linked to climate change and their implications for the troposphere. The evolution of the stratosphere over the next decades in response to climate change is of crucial significance for the atmosphere as a whole. A unique window of opportunity exists to exploit the investment in the development of remote sensing and atmospheric modelling for scientific objectives of societal relevance, which provide the evidence base needed by international policymakers. To address these issues SHARP brings together excellent national expertise in state-of-the-art climate models and observations, in particular those derived from satellite instruments. SHARP will provide an important contribution by German scientists to the upcoming international WMO/UNEP and IPCC assessments.
Durchführen innovativer Forschungen zur Primärenergieeinsparung und Reduzierung der Kohlendioxidemission in der dezentralen Energieversorgung; - Untersuchen von Blockheizkraftwerken, Wärmepumpen und evtl. Brennstoffzellen; - Kernpunkte: Zusammenwirken der Komponenten in komplexer Einheit aus Energetik, Hydraulik und Regelungstechnik, Teillastverhalten und Schadstoffemissionen. - Errichten einer einzigartigen Versuchsanlage in der Art einer 'kleinen Energiezentrale' im Labor 'Dezentrale Energiesysteme' der FH Erfurt, Durchführung umfangreicher experimenteller/meßtechnischer Untersuchungen; - Ziel: neue Methoden zum Bewerten, Optimieren und Planen von Anlagen der dezentralen und kommunalen Energieversorgung, intensive Öffentlichkeitsarbeit; - Resultate: Erstmalige Untersuchungen zum Teillastverhalten von Klein- BHKW; Entwickeln eines dynamischen Wärmepumpentests unter variablen Feldbedingungen; Ausloten der Potentiale zum Optimieren der Regelung von dezentralen Energieerzeugern, inklusive Versuchen; Entwurf einer Total-Energie-Anlage für liberalisierte Energiemärkte; Aufbau eines System zum übergeordneten Steuern und Regeln von dezentralen Energieerzeugern mit PC (dezentrales Energiemanagement).
The North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX) aims to provide the foundation for future improvements in the prediction of high impact weather events over Europe. The concept for the field experiment emerged from the WMO THORPEX program and contributes to the World Weather Research Program WWRP in general and to the High Impact Weather (HIWeather) project in particular. An international consortium from the US, UK, France, Switzerland and Germany has applied for funding of a multi-aircraft campaign supported by enhanced surface observations, over the North Atlantic and European region. The importance of accurate weather predictions to society is increasing due to increasing vulnerability to high impact weather events, and increasing economic impacts of weather, for example in renewable energy. At the same time numerical weather prediction has undergone a revolution in recent years, with the widespread use of ensemble predictions that attempt to represent forecast uncertainty. This represents a new scientific challenge because error growth and uncertainty are largest in regions influenced by latent heat release or other diabatic processes. These regions are characterized by small-scale structures that are poorly represented by the operational observing system, but are accessible to modern airborne remote-sensing instruments. HALO will play a central role in NAWDEX due to the unique capabilities provided by its long range and advanced instrumentation. With coordinated flights over a period of days, it will be possible to sample the moist inflow of subtropical air into a cyclone, the ascent and outflow of the warm conveyor belt, and the dynamic and thermodynamic properties of the downstream ridge. NAWDEX will use the proven instrument payload from the NARVAL campaign which combines water vapor lidar and cloud radar, supplemented by dropsondes, to allow these regions to be measured with unprecedented detail and precision. HALO operations will be supported by the DLR Falcon aircraft that will be instrumented with wind lidar systems, providing synergetic measurements of dynamical structures. These measurements will allow the first closely targeted evaluation of the quality of the operational observing and analysis systems in these crucial regions for forecast error growth. They will provide detailed knowledge of the physical processes acting in these regions and especially of the mechanisms responsible for rapid error growth in mid-latitude weather systems. This will provide the foundation for a better representation of uncertainty in numerical weather predictions systems, and better (probabilistic) forecasts.
| Origin | Count |
|---|---|
| Bund | 1651 |
| Global | 2 |
| Kommune | 1 |
| Land | 22 |
| Wissenschaft | 32 |
| Zivilgesellschaft | 6 |
| Type | Count |
|---|---|
| Agrarwirtschaft | 1 |
| Daten und Messstellen | 16 |
| Ereignis | 7 |
| Förderprogramm | 1485 |
| Repositorium | 2 |
| Text | 93 |
| unbekannt | 96 |
| License | Count |
|---|---|
| geschlossen | 160 |
| offen | 1527 |
| unbekannt | 13 |
| Language | Count |
|---|---|
| Deutsch | 1373 |
| Englisch | 503 |
| Resource type | Count |
|---|---|
| Archiv | 9 |
| Bild | 4 |
| Datei | 18 |
| Dokument | 77 |
| Keine | 1159 |
| Multimedia | 2 |
| Webdienst | 2 |
| Webseite | 458 |
| Topic | Count |
|---|---|
| Boden | 1105 |
| Lebewesen und Lebensräume | 1516 |
| Luft | 974 |
| Mensch und Umwelt | 1700 |
| Wasser | 912 |
| Weitere | 1589 |