During the research cruises BE03/2016 (08.03.2016), BE10/2016 (19.10.2016), BE10/2018 (23.10.2018), BE03/2019 (15.03.2019), L23-13 (13.09.2023 - 15.09.2023), Sagitta24-1 (16.09.2024), Sagitta24-2 (23.09.2024), Hai24VE2 (24.09.2024), L25-2b (09.02.2025 - 17.02.2025) and EMB374 (04.09.2025 - 13.09.2025), CTDs were deployed and sediment corers were retrieved at 99 stations in Kiel Bight in the southwestern Baltic Sea. Water column oxygen concentrations were determined using oxygen sensors attached to the CTD framework. At selected water depths, water samples were collected with Niskin bottles for the analysis of nitrate concentrations using an autoanalyzer. Short sediment cores (<50cm) were recovered using a Multicorer (MUC), Minicorer (MIC) or Rumohrlot (RL). Bottom waters were sampled from the supernatant water in the sediment cores. Solid phase sediment samples were analyzed for total organic carbon using an element analyzer. Porewater was extracted from the sediment cores using rhizones and analyzed for total alkalinity (titration), ammonium (photometer), sulfate (ion chromatography), hydrogen sulfide (photometer), dissolved iron (ICP-OES) and dissolved manganese (ICP-OES). The collected data will be used to (i) determine the spatial and temporal variability of hydrogen sulfide in bottom waters of the Kiel Bight, (ii) identify the controlling factors governing the accumulation of hydrogen sulfide at the seafloor, and (iii) establish an early warning system of sulfidic seafloor conditions for regional stakeholders in the Baltic Sea.
Fünf Partnerinstitutionen (Bernhard-Nocht-Institut für Tropenmedizin, BNITM; Friedrich-Loeffler-Institut, FLI; Universität Oldenburg, CvO; Leibniz-Zentrum für Agrarlandschaftsforschung, ZALF; Gesellschaft zur Förderung der Stechmückenbekämpfung, GFS) und ein assoziierter Partner (Fraunhofer Institut für Zelltherapie und Immunologie, IZI) werden in CuliFo3 Effekte biotischer und abiotischer Faktoren auf das Auftreten tier- und humanmedizinisch bedeutender Arboviren in Deutschland analysieren. Das wissenschaftliche Konzept baut auf Erkenntnisse der zuvor vom BLE finanzierten Projekte CuliFo und CuliFo2 auf. Ergebnisse werden genutzt, um zeitnahe gezielte Reaktionen zum Management von Risikosituationen zu ermöglichen und adäquate Maßnahmenkataloge zu entwickeln. Für ein Frühwarnsystem wird der Einfluss von insektenspezifischen Viren auf die Arbovirus-Replikation in Vektoren, von Ko-Infektionen mit Arboviren auf die Vektorkapazität, die Ausscheidungsdynamik und minimale Infektionsdosis von Arboviren für Culiciden erforscht. Ebenso, ob Infektionen von Vögeln mit USUV oder TBEV zu Kreuzprotektion gegenüber WNV führen. Die klinische Relevanz von Arbovirus-Infektionen wird über Untersuchung von Blutspender- und Patientenproben und toten Wildvögeln erfolgen und die Arbovirus-Surveillance durch Analyse des Viroms von Culiciden und Vögeln und die Validierung des Einsatzes von FTA-Karten. Modellierung von Landschaftsstrukturen als Stechmückenhabitat, Erfassung von Flugaktivitäten, physikalisch-chemischer und ökologischer Parameter sowie der Rastplätze von Stechmücken tragen zum besseren Verständnis der Vektorökologie bei. Die biologische Bekämpfung von Culiciden-Larven durch Copepoden sowie mit mikrobiellen Bekämpfungsstoffen wird als umweltverträgliche und nachhaltige Strategie evaluiert. Eine Kosten-Nutzen-Analyse zur Wirksamkeit und zu sozioökonomischen Konsequenzen von Maßnahmen zur Bekämpfung von Arboviren untersucht Vor- und Nachteile der verschiedenen Methoden.
Fünf Partnerinstitutionen (Bernhard-Nocht-Institut für Tropenmedizin, BNITM; Friedrich-Loeffler-Institut, FLI; Universität Oldenburg, CvO; Leibniz-Zentrum für Agrarlandschaftsforschung, ZALF; Gesellschaft zur Förderung der Stechmückenbekämpfung, GFS) und ein assoziierter Partner (Fraunhofer Institut für Zelltherapie und Immunologie, IZI) werden in CuliFo3 Effekte biotischer und abiotischer Faktoren auf das Auftreten tier- und humanmedizinisch bedeutender Arboviren in Deutschland analysieren. Das wissenschaftliche Konzept baut auf Erkenntnisse der zuvor vom BLE finanzierten Projekte CuliFo und CuliFo2 auf. Ergebnisse werden genutzt, um zeitnahe gezielte Reaktionen zum Management von Risikosituationen zu ermöglichen und adäquate Maßnahmenkataloge zu entwickeln. Für ein Frühwarnsystem wird der Einfluss von insektenspezifischen Viren auf die Arbovirus-Replikation in Vektoren, von Ko-Infektionen mit Arboviren auf die Vektorkapazität, die Ausscheidungsdynamik und minimale Infektionsdosis von Arboviren für Culiciden erforscht. Ebenso, ob Infektionen von Vögeln mit USUV oder TBEV zu Kreuzprotektion gegenüber WNV führen. Die klinische Relevanz von Arbovirus-Infektionen wird über Untersuchung von Blutspender- und Patientenproben und toten Wildvögeln erfolgen und die Arbovirus-Surveillance durch Analyse des Viroms von Culiciden und Vögeln und die Validierung des Einsatzes von FTA-Karten. Modellierung von Landschaftsstrukturen als Stechmückenhabitat, Erfassung von Flugaktivitäten, physikalisch-chemischer und ökologischer Parameter sowie der Rastplätze von Stechmücken tragen zum besseren Verständnis der Vektorökologie bei. Die biologische Bekämpfung von Culiciden-Larven durch Copepoden sowie mit mikrobiellen Bekämpfungsstoffen wird als umweltverträgliche und nachhaltige Strategie evaluiert. Eine Kosten-Nutzen-Analyse zur Wirksamkeit und zu sozioökonomischen Konsequenzen von Maßnahmen zur Bekämpfung von Arboviren untersucht Vor- und Nachteile der verschiedenen Methoden.
This dataset presents porewater and bottom water data from 63 stations in the Kiel Bight taken during the research cruises BE03/2016 (08.03.2016), BE10/2016 (19.10.2016), BE10/2018 (23.10.2018), BE03/2019 (15.03.2019), L23-13 (13.09.2023 - 15.09.2023), Sagitta24-1 (16.09.2024), Sagitta24-2 (23.09.2024), L25-2b (09.02.2025 - 17.02.2025) and EMB374 (04.09.2025 - 13.09.2025). Short sediment cores (<50cm) were recovered using a Multicorer (MUC), Minicorer (MIC) or Rumohrlot (RL). At 22 of those stations, bottom water and porewater samples were analysed for total alkalinity (TA), ammonium (NH4+), sulfate (SO42-), hydrogen sulfide (H2S), dissolved iron (Fe2+) and dissolved manganese (Mn2+). At 41 stations, exclusively a bottom water sample was taken for H2S measurements. Bottom waters were sampled from the supernatant water in the sediment cores. Porewater samples were extracted from the sediments using rhizones. TA was determined by titration (METROHM 876 Dosimat Plus), NH4+ and H2S using a photometer (Hitachi U-2900), SO42- by Ion Chromatography (METROHM 761 Compact) and Fe2+ and Mn2+ by Inductively Coupled Plasma Optical Emission Spectroscopy (Varian 720-ES). The collected data will be used to determine the spatial and temporal variability of hydrogen sulfide in bottom waters of the Kiel Bight, (ii) identify the controlling factors governing the accumulation of hydrogen sulfide at the seafloor, and (iii) establish an early warning system of sulfidic seafloor conditions for regional stakeholders in the Baltic Sea.
Das "Non-Target Screening im Rheineinzugsgebiet" ist eine Initiative, deren Ziel es ist, die Non-Target Screening (NTS) Methodik zwischen den Umweltüberwachungsbehörden im Rheineinzugsgebiet zu harmonisieren. Das Ziel dieser Harmonisierung ist es, eine hohe Vergleichbarkeit der NTS-Daten aus verschiedenen Laboren zu erreichen, um neu auftretende Schadstoffe über die Überwachungsstationen entlang des Rheins und seiner Nebenflüsse hinweg zu detektieren und zu verfolgen. Das Projekt wird von der Internationalen Kommission zum Schutz des Rheins koordiniert und umfasst derzeit Institutionen aus fünf europäischen Ländern. Ein Vorgängerprojekt, genannt "Rhein-Projekt NTS", lief von 2021 bis 2024 und wurde von der Europäischen Union über das LIFE-Programm finanziert. Während dieser frühen Phase wurde eine Plattform für die schnelle, automatisierte, zentralisierte Auswertung und Speicherung von NTS-Daten entwickelt. Diese Plattform wird als NTS-Tool bezeichnet und wird von der deutschen Landesbehörde IT Baden-Württemberg gehostet. Das NTS-Tool umfasst derzeit eine harmonisierte Analysemethode auf Basis der Flüssigchromatographie gekoppelt mit hochauflösender Massenspektrometrie (LC-HRMS), IT-Infrastruktur (Cloud, Terminalserver), die Software enviMass zur Auswertung von NTS-Daten, Qualitätskontrollmaßnahmen basierend auf isotopenmarkierten Standardverbindungen sowie das Datenaggregierungs- und Visualisierungstool (DAV-Tool). Das DAV-Tool ermöglicht es Laborpersonal, nach neuartigen Schadstoffen in allen beteiligten Überwachungsstationen zu suchen. Das NTS-Tool wird im Rahmen des Internationalen Warn- und Alarmplans Rhein (IWAP Rhein) für Warnzwecke genutzt, da die zentrale Datenauswertung es ermöglicht, Schadstoffe schnell zu identifizieren, sodass geeignete Maßnahmen ergriffen werden können, um die öffentliche Gesundheit und die Umwelt zu schützen. Ein weiteres Ziel des Projekts ist der Wissenstransfer über bekannte und unbekannte neuartige Schadstoffe an Expertengruppen und Trinkwasserversorger im Rheineinzugsgebiet. Die Ergebnisse, die mit dem NTS-Tool gewonnen werden, sollen zur Überwachung der im "Rhein 2040"-Programm formulierten Ziele beitragen, einschließlich des 30%-Reduktionsziels für Mikroverunreinigungen, den Zielen des "Null-Schadstoff-Aktionsplans" der EU sowie den individuellen Strategien der Staaten im Rheineinzugsgebiet. Das Rheinüberwachungsprogramm und das Programm „Rhein 2040“ stützen sich auf die NTS-Methode, um neu auftretende chemische Substanzen zu identifizieren.
Neue Ansätze in digitalem Wald-Monitoring, Aufbereitung und der digitalen Bereitstellung von räumlich und zeitlich hochaufgelösten Daten zu Wuchsleistung, Stress, und Waldschäden sind dringend erforderlich, um die Auswirkungen mehrerer und kombinierter Stressfaktoren auf das Funktionieren von Waldökosystemen und den damit verbundenen Ökosystemleistungen besser und auch schneller beurteilen zu können. Das Verbundvorhaben WALD-Puls setzt sich aus zwei integrierten Teilvorhaben zusammen. Ziel des ersten Teilvorhabens ist die Entwicklung und Erprobung eines Wald-Monitoring Systems, das in Nahe-Echtzeit und räumlich verteilt boden- als auch satellitengestützte Daten sammelt und verknüpft, um dadurch die Risikoabschätzung zu verbessern und langfristige Projektionen zu unterstützen - von der Wurzel bis zur Krone - vom Einzelbaum zum Bestand - vom Bestand zum Waldökosystem. Ziel des zweiten Teilvorhabens ist den bereits bestehenden Waldzustandsmonitor (WZM) bzgl. der räumlichen Auflösung und der zeitlichen Latenz zu verbessern, zusätzliche Produkte einschließlich Frühwarnindikatoren bereitzustellen um darauf basierend ein deutschlandweites, digitales Waldzustandsmonitoring aufzubauen. Beide TVs sollen durch ein integratives Arbeitspaket schließlich miteinander verknüpft werden, um durch iterative Optimierung maximale Synergien zu erzielen. Den traditionellen Blick von unten in die Baumkronen wird in WALD-Puls um den informierten Blick von oben erweitert. Echtzeitdaten des Baumwachstums werden mit Satellitendaten verschnitten, ermöglichen eine flächenhafte, hochaufgelöste Risikobewertung und werden direkt über eine Web-Plattform und ein gekoppeltes, automatisiertes Frühwarnsystem (z.B. SMS) Waldbewirtschafter*innen und anderen Interessent*innen zur Verfügung gestellt.
Neue Ansätze in digitalem Wald-Monitoring, Aufbereitung und der digitalen Bereitstellung von räumlich und zeitlich hochaufgelösten Daten zu Wuchsleistung, Stress, und Waldschäden sind dringend erforderlich, um die Auswirkungen mehrerer und kombinierter Stressfaktoren auf das Funktionieren von Waldökosystemen und den damit verbundenen Ökosystemleistungen besser und auch schneller beurteilen zu können. Das Verbundvorhaben WALD-Puls setzt sich aus zwei integrierten Teilvorhaben zusammen. Ziel des ersten Teilvorhabens ist die Entwicklung und Erprobung eines Wald-Monitoring Systems, das in Nahe-Echtzeit und räumlich verteilt boden- als auch satellitengestützte Daten sammelt und verknüpft, um dadurch die Risikoabschätzung zu verbessern und langfristige Projektionen zu unterstützen - von der Wurzel bis zur Krone - vom Einzelbaum zum Bestand - vom Bestand zum Waldökosystem. Ziel des zweiten Teilvorhabens ist den bereits bestehenden Waldzustandsmonitor (WZM) bzgl. der räumlichen Auflösung und der zeitlichen Latenz zu verbessern, zusätzliche Produkte einschließlich Frühwarnindikatoren bereitzustellen um darauf basierend ein deutschlandweites, digitales Waldzustandsmonitoring aufzubauen. Beide TVs sollen durch ein integratives Arbeitspaket schließlich miteinander verknüpft werden, um durch iterative Optimierung maximale Synergien zu erzielen. Den traditionellen Blick von unten in die Baumkronen wird in WALD-Puls um den informierten Blick von oben erweitert. Echtzeitdaten des Baumwachstums werden mit Satellitendaten verschnitten, ermöglichen eine flächenhafte, hochaufgelöste Risikobewertung und werden direkt über eine Web-Plattform und ein gekoppeltes, automatisiertes Frühwarnsystem (z.B. SMS) Waldbewirtschafter*innen und anderen Interessent*innen zur Verfügung gestellt.
Neue Ansätze in digitalem Wald-Monitoring, Aufbereitung und der digitalen Bereitstellung von räumlich und zeitlich hochaufgelösten Daten zu Wuchsleistung, Stress, und Waldschäden sind dringend erforderlich, um die Auswirkungen mehrerer und kombinierter Stressfaktoren auf das Funktionieren von Waldökosystemen und den damit verbundenen Ökosystemleistungen besser und auch schneller beurteilen zu können. Das Verbundvorhaben WALD-Puls setzt sich aus zwei integrierten Teilvorhaben zusammen. Ziel des ersten Teilvorhabens ist die Entwicklung und Erprobung eines Wald-Monitoring Systems, das in Nahe-Echtzeit und räumlich verteilt boden- als auch satellitengestützte Daten sammelt und verknüpft, um dadurch die Risikoabschätzung zu verbessern und langfristige Projektionen zu unterstützen - von der Wurzel bis zur Krone - vom Einzelbaum zum Bestand - vom Bestand zum Waldökosystem. Ziel des zweiten Teilvorhabens ist den bereits bestehenden Waldzustandsmonitor (WZM) bzgl. der räumlichen Auflösung und der zeitlichen Latenz zu verbessern, zusätzliche Produkte einschließlich Frühwarnindikatoren bereitzustellen um darauf basierend ein deutschlandweites, digitales Waldzustandsmonitoring aufzubauen. Beide TVs sollen durch ein integratives Arbeitspaket schließlich miteinander verknüpft werden, um durch iterative Optimierung maximale Synergien zu erzielen. Den traditionellen Blick von unten in die Baumkronen wird in WALD-Puls um den informierten Blick von oben erweitert. Echtzeitdaten des Baumwachstums werden mit Satellitendaten verschnitten, ermöglichen eine flächenhafte, hochaufgelöste Risikobewertung und werden direkt über eine Web-Plattform und ein gekoppeltes, automatisiertes Frühwarnsystem (z.B. SMS) Waldbewirtschafter*innen und anderen Interessent*innen zur Verfügung gestellt.
| Origin | Count |
|---|---|
| Bund | 701 |
| Global | 1 |
| Land | 37 |
| Wissenschaft | 14 |
| Type | Count |
|---|---|
| Daten und Messstellen | 2 |
| Ereignis | 6 |
| Förderprogramm | 626 |
| Text | 68 |
| unbekannt | 48 |
| License | Count |
|---|---|
| geschlossen | 106 |
| offen | 643 |
| unbekannt | 1 |
| Language | Count |
|---|---|
| Deutsch | 637 |
| Englisch | 196 |
| Resource type | Count |
|---|---|
| Archiv | 1 |
| Bild | 4 |
| Datei | 6 |
| Dokument | 29 |
| Keine | 402 |
| Multimedia | 1 |
| Unbekannt | 3 |
| Webseite | 333 |
| Topic | Count |
|---|---|
| Boden | 589 |
| Lebewesen und Lebensräume | 615 |
| Luft | 548 |
| Mensch und Umwelt | 750 |
| Wasser | 564 |
| Weitere | 750 |