The North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX) aims to provide the foundation for future improvements in the prediction of high impact weather events over Europe. The concept for the field experiment emerged from the WMO THORPEX program and contributes to the World Weather Research Program WWRP in general and to the High Impact Weather (HIWeather) project in particular. An international consortium from the US, UK, France, Switzerland and Germany has applied for funding of a multi-aircraft campaign supported by enhanced surface observations, over the North Atlantic and European region. The importance of accurate weather predictions to society is increasing due to increasing vulnerability to high impact weather events, and increasing economic impacts of weather, for example in renewable energy. At the same time numerical weather prediction has undergone a revolution in recent years, with the widespread use of ensemble predictions that attempt to represent forecast uncertainty. This represents a new scientific challenge because error growth and uncertainty are largest in regions influenced by latent heat release or other diabatic processes. These regions are characterized by small-scale structures that are poorly represented by the operational observing system, but are accessible to modern airborne remote-sensing instruments. HALO will play a central role in NAWDEX due to the unique capabilities provided by its long range and advanced instrumentation. With coordinated flights over a period of days, it will be possible to sample the moist inflow of subtropical air into a cyclone, the ascent and outflow of the warm conveyor belt, and the dynamic and thermodynamic properties of the downstream ridge. NAWDEX will use the proven instrument payload from the NARVAL campaign which combines water vapor lidar and cloud radar, supplemented by dropsondes, to allow these regions to be measured with unprecedented detail and precision. HALO operations will be supported by the DLR Falcon aircraft that will be instrumented with wind lidar systems, providing synergetic measurements of dynamical structures. These measurements will allow the first closely targeted evaluation of the quality of the operational observing and analysis systems in these crucial regions for forecast error growth. They will provide detailed knowledge of the physical processes acting in these regions and especially of the mechanisms responsible for rapid error growth in mid-latitude weather systems. This will provide the foundation for a better representation of uncertainty in numerical weather predictions systems, and better (probabilistic) forecasts.
Bei Freisetzung transgener Pflanzen (Mais, Raps, Zuckerrueben) wird die Problematik des Gentransfers bearbeitet. Im Vordergrund stehen dabei Untersuchungen zum Pollentransfer und zur Stabilitaet von DNA in Boeden.
Mikroplastik (MP, Plastikteile kleiner als 5 mm) werden als neu aufkommende Schadstoffe betrachtet und neuste Studien belegen die potentielle Gefahr von MP für die menschliche Gesundheit und die Umwelt. Die Forschung hat sich bisher mehrheitlich auf die Untersuchung von MP in der marinen Umgebung konzentriert. Allerdings konnte MP auch vermehrt Süßwasser und -sedimenten weltweit nachgewiesen werden. Als Primärpartikel oder Sekundärprodukte aus dem Abbau von Makroplastik kann MP entweder direkt toxisch wirken oder als Überträger von sorbierten Schadstoffen fungieren. Neuste Studien belegen außerdem, dass MP in die menschliche Nahrungskette eindringen kann. Weiterhin können die dem MP beigefügten endokrinen Disruptoren wie Bisphenol A (BPA) and Nonylphenol (NP) während der Transportprozesse an das Süßwasser abgegeben werden. Dabei können Flussbettsedimente potentielle Hotspots für die Akkumulation von MP und deren Additive darstellen.Das Hauptziel dieses Projektes ist, die Akkumulation und den Transport von MP in Süßwasser und -sedimenten näher zu untersuchen. Dabei soll den folgenden beiden grundsätzlichen Fragen nachgegangen werden:(i) Welche Prozesse kontrollieren Transport und Akkumulation von MP verschiedener Größe, Dichte und Zusammensetzung und wie bilden sich sogenannte Mikroplastik-Hotspots in der hyporheischen Zone?(ii) Wie können Transport und Akkumulation von MP sowie die Freisetzung von Additiven wie BPA und NP unter variablen Umweltbedingungen beschrieben und vorhergesagt werden? Zwei Arbeitspakete (WP) sollen helfen, diese Fragen zu beantworten:WP1 befasst sich mit den Auswirkungen der grundlegenden Eigenschaften von MP wie Größe, Form, Zusammensetzung, Dichte, Auftrieb auf deren Transport und untersucht systematisch, wie verschiedene Arten von MP in der hyporheischen Zone (hier Flussbettsedimente) unter diversen hydrodynamischen und morphologischen Bedingungen akkumulieren. Dafür sollen Versuche in künstlichen Abflusskanälen (artificial flumes) durchgeführt werden. In diesen Versuchen werden repräsentative hydrodynamische und morphologische Bedingungen geschaffen, um eine Spannbreite an primären und sekundären MP zu testen, ihr Transportverhalten zu beschrieben und die Freisetzung von Additiven näher zu untersuchen. MP wird mit verschiedensten Methoden charakterisiert, z.B. mit single particle ICP-MS zur Bestimmung der Größe oder FT-IR zur Bestimmung des vorherrschenden Polymers. Während der Flume-Experimente werden die Eigenschaften der Sedimente, des Porenwassers und der Biofilme, sowie die Konzentration an BPA und NP gemessen und später analysiert, um die Reaktivität der Akkumulationshotspots zu bestimmen.WP2 beinhaltet die Entwicklung und Anwendung eines Models, um MP-Transport sowie die Freisetzung von Additiven in der hyporheischen Zone vorherzusagen. Da Modelle, die momentan im Bereich Stofftransport verwendet werden nicht für MP ausgelegt sind, soll die Lattice-Boltzmann Methode als neuer Modellansatz verfolgt werden.
Die primäre Quelle for Phosphor in allen Ökosystemen ist dessen Freisetzung durch die Gesteinsverwitterung. Diese Freisetzungsrate ist stets langsam. Gemeinsam mit dem Grad der Immobilisierung des Phosphors in sekundären Bodenmineralen bestimmt sie die Verfügbarkeit des Phosphors für Ökosysteme. Auf geringe Phosphorverfügbarkeit reagieren Ökosysteme mit einer Erhöhung der Phosphor-Rezyklierungsrate. Um diese Systeme voll zu beschreiben, werden in einem Einzelantrag zum SPP 'Ecosystem Nutrition: forest strategies for limited phosphorus resources' Phosphor- Freisetzungsraten aus der Gesteinsverwitterung an vier Waldschadens 'Level 2' Standorten in Deutschland mittels kosmogener Nuklide und geochemischer Massenbilanzen ermittelt. Dabei wird an Böden über Quarz-haltigen Substraten das in situproduzierte kosmogene Nuklid 10Be, angewendet, und an zwei Standorten mit Böden über vulkanischen Substrat das neue 10Be(meteorisch)/9Be System. Mit radiogenen Sr Isotopen werden zudem die Phosphorquellen für das Waldökosystem ermittelt. Schliesslich werden die ermittelten Freisetzungsraten mit gelöstem Phosphor-Abfluss und Phosphor-Rezyklierungsraten verglichen. Dabei wird die Hypothese getestet, dass die langsame Freisetzungsrate von Phosphor aus der Gesteinsverwitterung letztendlich limitierend für die Ökosysteme wirkt, und damit bestimmt, ob die Waldökosysteme Phosphor-aquirierend oder -rezyklierend sind.
Unsere konzeptionelle Sicht des P-Kreislaufes in Waldökosystemen beruht auf der Untersuchung von P-Pools, den Zusammenhängen zwischen verschiedenen P-Pools und zu einem geringen Anteil von P-Flüssen. Bisherige Arbeiten konnten aber nicht die Prozesse aufdecken, die ein Phosphatmolekül auf ökosystemarer Skala durchlief. Zum Beispiel sind die oben genannten Ansätze nicht geeignet, um zwischen der Freisetzung aus einem Mineral oder aus einer organischen Verbindung zu unterscheiden. Die Untersuchung des Sauerstoffisotopenverhältnisses in Phosphat könnte diese Informationen liefern. Unser Ziel ist es, die Wichtigkeit biologischer und geochemischer Prozesse, die den P-Kreislauf in 4 Waldökosystemen kontrollieren, entlang eines Gradienten der P-Verfügbarkeit im Boden zu untersuchen. Wir werden den Verbleib von Phosphat i) im Kreislauf vom Streufall-P über P-Freisetzung während des Abbaus organischer Substanz in der organischen Auflage und im Boden bis hin zur Aufnahme durch die Pflanzen und ii) während der Freisetzung aus P-haltigen Mineralen im Boden und der anschließenden Aufnahme in die Pflanzen verfolgen. Wir werden Mulit-Isotopenansätze (O im Wasser, P and O in Phosphat, C in der organischen Substanz) nutzen, die wir innovativ verbinden, um unsere Forschungsfragen zu beantworten. Für das tiefgreifende Verständnis des P-Kreislaufes während des Abbaus von organischer Substanz werden wir uns auf folgende experimentelle Ansätze stützen: i) Messungen in den etablierten Waldsystemen (Output 1), ii) Laborinkubationen der organischen Auflage und des Mineralbodens (Outputs 2 und 3) sowie iii) Topfexperimente mit wachsenden Pflanzen (Outputs 4 und 5). Unser Projekt wird zur Verifizierung der allgemeinen Hypothese des SPP-Programmes beitragen, dass die mit der Zeit sinkende P-Verfügbarkeit die Waldökosysteme von Mobilisierungs- (effiziente Mobilisierung aus der Mineralphase) zu Recycling-Systemen (sehr effizientes Recycling von P) verschiebt.
Denitrifikation ist der bedeutendste Transformationsprozess, der reaktiven Stickstoff (N) im Boden in atmosphärisches N2 überführt. In Böden befinden sich räumlich sehr heterogene Mikrosites mit sehr unterschiedlichem Potential für Denitrifikation und N Transformationen. Der Beitrag der einzelnen Mikrosites an der Gesamtdenitrifikation ist bisher nur sehr unzureichend verstanden. In dieser Studie soll der Beitrag von hot spots (hoch aktive Mikrosites) in homogenen, (gesiebten) Böden und intakten Bodenkernen untersucht werden. Basierend auf Untersuchungen mit homogenen (gesiebten) Böden wird ein Verfahren entwickelt, um die N Transformationen und die gasförmigen N Freisetzungen der verschiedenen Bodenvolumina auf die N Dynamik des Gesamtbodens zu beziehen. Diese Methode wird angewandt, um den Beitrag der hot spots an der Gesamtdenitrifikation in gesiebten und intakten Böden zu quantifizieren. Um verschiedene Wege der N2O und N2 Freisetzungen zu identifizieren, werden eine Reihe von Isotopenmethoden (dual 15N / 18O-Markierung, 15N Tracing, Isotopomere) eingesetzt und kreuz-kalibriert. Ein neues 15N-Tracing Modell wird entwickelt, um die Gesamt N Dynamik auf die N Dynamik in verschiedenen Bodenvolumina in Beziehung zu setzen. Wir erwarten, dass durch Berücksichtigung der Bodenheterogenität die Unsicherheiten der verschiedenen Isotopentechniken erheblich reduziert werden können. Die Experimente werden unter kontrollierten Bedingungen durchgeführt und sind eng mit den anderen DASIM Projekten verknüpft. In diesem Projekt werden Daten zu Brutto N Transformationen und gasförmigen N Dynamiken erhoben, die für die Validierung und Entwicklung von Denitrifikationsmodellen eingesetzt werden.
Origin | Count |
---|---|
Bund | 680 |
Land | 10 |
Wissenschaft | 11 |
Type | Count |
---|---|
Ereignis | 1 |
Förderprogramm | 674 |
Text | 1 |
unbekannt | 5 |
License | Count |
---|---|
geschlossen | 5 |
offen | 675 |
unbekannt | 1 |
Language | Count |
---|---|
Deutsch | 659 |
Englisch | 107 |
Resource type | Count |
---|---|
Datei | 1 |
Keine | 440 |
Webseite | 241 |
Topic | Count |
---|---|
Boden | 681 |
Lebewesen & Lebensräume | 681 |
Luft | 681 |
Mensch & Umwelt | 681 |
Wasser | 681 |
Weitere | 669 |