API src

Found 692 results.

Related terms

Schwerpunktprogramm (SPP) 1006: Bereich Infrastruktur - Internationales Kontinentales Bohrprogramm, Teilprojekt: More - Mofetten Untersuchungen

Mofetten sind natürliche Gasaustritte, an denen CO2 entlang von Störungszonen aus dem Erdmantel aufsteigt und stellen als solche natürliche Fenster zu magmatischen/vulkanischen Prozessen in der Tiefe dar. Ziel der vorgeschlagenen Untersuchungen an Mofetten ist der physikalische Zusammenhang zwischen Fluideigenschaften, ihrer Migrationspfade und Erdbeben. Der Einsatz modernste Fluidmesstechnik stellt einen komplett neuen Ansatz dar im Vergleich zur Strategie diskreter Probennahmen während der letzten Jahrzehnte. Zusammensetzung und isotopische Signatur der Gase werden kontinuierlich in-situ in verschiedenen Tiefen analysiert. Weltweit einmalig, lassen sich so die aufsteigenden Mantelfluide entlang eines vertikalen Geradienten aus einer Tiefe von mehreren Hundert Metern bis an die Erdoberfläche verfolgen. Dies kann Hinweise auf die Ursache zeitlicher Veränderungen geben, die in Zusammenhang mit der Öffnung von fault-valves, der Zumischung krustaler Fluide zu einer stetigen Mantelentgasung, oder einer möglichen Freisetzung von Wasserstoff bei Bruchvorgängen stehen. Als Untersuchungsobjekt wurde die Hartousov Mofette ausgewählt. Detaillierte Messungen vor, während und nach der Bohrung eines 300 m tiefen Bohrlochs geben Aufschluss über einen möglichen Einfluss der Bohrtätigkeiten auf das lokale und regionale Fluidregime. Periodisch werden Proben zur Edelgasanalytik und detaillierten Isotopenanalyse entnommen. Die Arbeiten stehen in direktem Zusammenhang mit der für 2019 geplanten Fluidbohrung im Rahmen ICDP Projektes 'Drilling the Eger Rift: Magmatic fluids driving the earthquake swarms and the deep biosphere'.

Wirkung von Luftschadstoffen auf die Induktion und Freisetzung von Entzündungsmediatoren in respiratorischen Epithelien

Epidemiologische Untersuchungen belegen einen Zusammenhang zwischen Luftschadstoffbelastung und entzündlichen Erkrankungen der Atemwege. Einen besonderen Stellenwert hat in diesem Zusammenhang die Lösungsmittel- und Aldehyd-induzierte Rhinitis. Eigene Vorarbeiten haben gezeigt, dass auch niedrige Schadstoffdosen subklinische Schleimhautentzündungen verursachen können. Im Rahmen des Projektes werden mit Hilfe eines von unserer Arbeitsgruppe entwickelten in vitro Models Expositionen gegenüber arbeitsmedizinisch relevanten Schadgasen durchgeführt und die Synthese und Freisetzung von entzündungsrelevanten Zytokinen mittels ELISA-assays und quantitativer mRNA-Analytik untersucht. Wir konnten die Hochregulation verschiedener Zytokine nach Exposition mit hohen Gaskonzentrationen beobachten, was einen möglichen Wirkmechanismus nahe legt.

Transport und Verbleib von Mikroplastik in Süßwassersedimenten

Mikroplastik (MP, Plastikteile kleiner als 5 mm) werden als neu aufkommende Schadstoffe betrachtet und neuste Studien belegen die potentielle Gefahr von MP für die menschliche Gesundheit und die Umwelt. Die Forschung hat sich bisher mehrheitlich auf die Untersuchung von MP in der marinen Umgebung konzentriert. Allerdings konnte MP auch vermehrt Süßwasser und -sedimenten weltweit nachgewiesen werden. Als Primärpartikel oder Sekundärprodukte aus dem Abbau von Makroplastik kann MP entweder direkt toxisch wirken oder als Überträger von sorbierten Schadstoffen fungieren. Neuste Studien belegen außerdem, dass MP in die menschliche Nahrungskette eindringen kann. Weiterhin können die dem MP beigefügten endokrinen Disruptoren wie Bisphenol A (BPA) and Nonylphenol (NP) während der Transportprozesse an das Süßwasser abgegeben werden. Dabei können Flussbettsedimente potentielle Hotspots für die Akkumulation von MP und deren Additive darstellen.Das Hauptziel dieses Projektes ist, die Akkumulation und den Transport von MP in Süßwasser und -sedimenten näher zu untersuchen. Dabei soll den folgenden beiden grundsätzlichen Fragen nachgegangen werden:(i) Welche Prozesse kontrollieren Transport und Akkumulation von MP verschiedener Größe, Dichte und Zusammensetzung und wie bilden sich sogenannte Mikroplastik-Hotspots in der hyporheischen Zone?(ii) Wie können Transport und Akkumulation von MP sowie die Freisetzung von Additiven wie BPA und NP unter variablen Umweltbedingungen beschrieben und vorhergesagt werden? Zwei Arbeitspakete (WP) sollen helfen, diese Fragen zu beantworten:WP1 befasst sich mit den Auswirkungen der grundlegenden Eigenschaften von MP wie Größe, Form, Zusammensetzung, Dichte, Auftrieb auf deren Transport und untersucht systematisch, wie verschiedene Arten von MP in der hyporheischen Zone (hier Flussbettsedimente) unter diversen hydrodynamischen und morphologischen Bedingungen akkumulieren. Dafür sollen Versuche in künstlichen Abflusskanälen (artificial flumes) durchgeführt werden. In diesen Versuchen werden repräsentative hydrodynamische und morphologische Bedingungen geschaffen, um eine Spannbreite an primären und sekundären MP zu testen, ihr Transportverhalten zu beschrieben und die Freisetzung von Additiven näher zu untersuchen. MP wird mit verschiedensten Methoden charakterisiert, z.B. mit single particle ICP-MS zur Bestimmung der Größe oder FT-IR zur Bestimmung des vorherrschenden Polymers. Während der Flume-Experimente werden die Eigenschaften der Sedimente, des Porenwassers und der Biofilme, sowie die Konzentration an BPA und NP gemessen und später analysiert, um die Reaktivität der Akkumulationshotspots zu bestimmen.WP2 beinhaltet die Entwicklung und Anwendung eines Models, um MP-Transport sowie die Freisetzung von Additiven in der hyporheischen Zone vorherzusagen. Da Modelle, die momentan im Bereich Stofftransport verwendet werden nicht für MP ausgelegt sind, soll die Lattice-Boltzmann Methode als neuer Modellansatz verfolgt werden.

Forschergruppe (FOR) 409: Systemverständnis: Wasser- und Stoffdynamik urbaner Standorte; System Comprehension: Dynamics of Water and Materials at Urban Locations, Teilprojekt HUMUS: Die organische Bodensubstanz und ihre Wasser- und Stoffbindung in anthropogen beeinflußten Böden

Das Projekt HUMUS hat zum Ziel, die Wasserbindung der organischen Bodensubstanz urbaner Böden zu charakterisieren. Im Zentrum stehen Geleigenschaften und der Nachweis eines Glasüberganges in der organischen Bodensubstanz. Die meisten Untersuchungen erfolgen mit Hilfe der Differential Scanning Kalorimetrie (DSC). Sie werden durch dielektrische Messungen und 1H-NMR-Relaxation (TP GEO) sowie kinetische Untersuchungen zur DOC-Freisetzung und Quellung ergänzt. Die Feldexperimente und Mikrokosmen der Forschergruppe dienen zur Verknüpfung der Wasserbindung der organischen Bodensubstanz mit Faktoren des Wasserhaushaltes (TP BODEN), Mikroorganismen und ihren Biofilmen (TP MIKRO), der Bodenmesofauna (TP FAUNA) sowie unterschiedlichen Elektrolytbedingungen. In der zweiten Projektphase werden Auswirkungen der urban beeinflußten Humuseigenschaften auf die kleinräumige Variabilität und auf den Wasser- und Stofftransport der urbanen Standorte untersucht werden.

Sonderforschungsbereich Transregio 129 (SFB TRR): Oxyflame - Entwicklung von Methoden und Modellen zur Beschreibung der Reaktion fester Brennstoffe in einer Oxyfuel-Atmosphäre, Teilprojekt A01: Experimentelle Untersuchung der Kinetik von Pyrolyse und Koksabbrand in einem Well-Stirred-Reactor unter Flammen- und Ausbrandbedingungen

In einem Well-Stirred-Reaktor wird die Kinetik in Oxyfuel-Atmosphäre, d.h. die Freisetzung von Masse und Energie aus einem Brennstoffpartikel, experimentell und theoretisch untersucht. Aufbauend auf Referenzbedingungen (Luftatmosphäre, reiner Kohlenstoff als Brennstoff) werden in Experimenten Pyrolyse und Koksabbrand getrennt untersucht und die Konzentrationen der gasförmigen Reaktionsprodukte mittels eines FTIR-Spektrometers gemessen. Basierend hierauf sollen existierende Kinetikmodelle für die Pyrolyse und den Koksabbrand auf ihre Eignung in Oxyfuel-Atmosphäre geprüft und bei Bedarf neu formuliert werden. Die Ergebnisse werden mit Teilprojekt A2 abgeglichen.

Nitrogen and drought effects on the tree-soil interaction of ECM and AM temperate trees

Pollutant Release and Transfer Register (PRTR) - Abwasser (INSPIRE View/WMS)

Das PRTR ist ein Schadstoffregister, das darüber informiert, wie viele Freisetzungen von Schadstoffen in Luft, Wasser und Boden, Verbringungen mit dem Abwasser sowie Entsorgung von gefährlichen und nicht gefährlichen Abfällen aus bestimmten industriellen Tätigkeiten erfolgen. Die Daten werden jährlich aktualisiert und auf Thru.de veröffentlicht.

Bedeutung der pflanzlichen Rhizodeposition für die Bildung und Stabilisierung der organischen Bodensubstanz unter besonderer Berücksichtigung der wasserlöslichen Wurzelabscheidungen

Während der Vegetation können bis zu 20 Prozent der Netto-CO2-Assimilation durch Pflanzenwurzeln wieder an den Boden freigesetzt werden. Diese Rhizodeposition ist von beträchtlicher bodenökologischer Relevanz. Sie beeinflußt die pflanzliche Nährstoffaneignung ebenso wie die mikrobielle Besiedlung der Wurzeln. Demgegenüber ist der Umsatz dieser freigesetzten Verbindungen im Boden und insbesondere deren Beitrag zur Bildung und Stabilisierung der organischen Bodensubstanz (OBS) weitgehend unklar. Das vorliegende Teilprojekt soll einen Beitrag zur Klärung leisten. In Modellzeitreihenversuchen mit Boden aus ausgewählten Varianten der Hallenser und Bad Lauchstädter Dauerversuche sollen in sog. Doppelkompartimentgefäßen Pflanzensprosse simultan mit 14CO2 und 15NH3 begast und danach der 14C- bzw. 15N-Netto-Einbau in die verschiedenen physikalischen und chemischen OBS-Fraktionen verfolgt werden. Die Untersuchungen sollen Aufschluß über den Mengenanteil und den zeitlichen Verlauf der Umwandlung der Rhizodeposition in die OBS ermöglichen und ordnen sich daher in die Teilaspekte 4 (Umsatz verschiedener C-Pools) sowie 2 (Wechselwirkungen mit der Mineralphase) und 3 (Stabilisierung durch physikalische Trennung) ein.

Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), NAWDEX - North Atlantic Waveguide and Downstream Impact Experiment

The North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX) aims to provide the foundation for future improvements in the prediction of high impact weather events over Europe. The concept for the field experiment emerged from the WMO THORPEX program and contributes to the World Weather Research Program WWRP in general and to the High Impact Weather (HIWeather) project in particular. An international consortium from the US, UK, France, Switzerland and Germany has applied for funding of a multi-aircraft campaign supported by enhanced surface observations, over the North Atlantic and European region. The importance of accurate weather predictions to society is increasing due to increasing vulnerability to high impact weather events, and increasing economic impacts of weather, for example in renewable energy. At the same time numerical weather prediction has undergone a revolution in recent years, with the widespread use of ensemble predictions that attempt to represent forecast uncertainty. This represents a new scientific challenge because error growth and uncertainty are largest in regions influenced by latent heat release or other diabatic processes. These regions are characterized by small-scale structures that are poorly represented by the operational observing system, but are accessible to modern airborne remote-sensing instruments. HALO will play a central role in NAWDEX due to the unique capabilities provided by its long range and advanced instrumentation. With coordinated flights over a period of days, it will be possible to sample the moist inflow of subtropical air into a cyclone, the ascent and outflow of the warm conveyor belt, and the dynamic and thermodynamic properties of the downstream ridge. NAWDEX will use the proven instrument payload from the NARVAL campaign which combines water vapor lidar and cloud radar, supplemented by dropsondes, to allow these regions to be measured with unprecedented detail and precision. HALO operations will be supported by the DLR Falcon aircraft that will be instrumented with wind lidar systems, providing synergetic measurements of dynamical structures. These measurements will allow the first closely targeted evaluation of the quality of the operational observing and analysis systems in these crucial regions for forecast error growth. They will provide detailed knowledge of the physical processes acting in these regions and especially of the mechanisms responsible for rapid error growth in mid-latitude weather systems. This will provide the foundation for a better representation of uncertainty in numerical weather predictions systems, and better (probabilistic) forecasts.

Schwerpunktprogramm (SPP) 1006: Bereich Infrastruktur - Internationales Kontinentales Bohrprogramm, Teilprojekt: Prozesse der Wasserstoffgenese während seismischer Zyklen in aktiven Störungszonen (ProHydroGen)

Wir planen die Nutzung eines U-Tube-KASMA Systems, welches von Prof. Tullis Onstott (Princeton University) in einem 600 m tiefen Bohrloch installiert wird, das eine aktive Störungszone im Roodepoort Quarzit in 3400 m Tiefe in der 'Moab Khotsong gold mine' antrifft. Das Bohrloch ist Teil des ICDP-finanzierten Projektes DSeis und dient der Beobachtung von seismisch ausgelösten in situ geochemischen und isotopischen Änderungen tiefer Fluide sowie mikrobiellen Aktivitäten. Die Kombination unsers Gas-Monitoring-Systems mit der U-Tube-KASMA Installation ergibt die einmalige Möglichkeit, minimal veränderte Geofluide aus einer tiefen aktiven Störungszone zu beproben.Während seismischer Ereignisse entlang der Verwerfungszone erwarten wir die Freisetzung von Geogasen, insbesondere H2, der als Energiequelle für tiefes mikrobielles Leben dienen kann. Das Geogas (inkl. H2 und O3) sollen kontinuierlich mit spezifischen Sensoren eines portablen gasanalytischen Systems detektiert werden, welches direkt an den Gasseparator des automatischen U-Tube-KASMA angeschlossen ist. Durch die chemische und isotopische Charakterisierung der Fluide vor und nach seismischer Aktivität hoffen wir die Herkunft und Genese von H2 aufklären zu können; letztere beruht auf Spaltung der O-H Bindungen von Wasser. In Kombination mit Daten zur Permeabilität und Porosität der Störungszone werden diese Ergebnisse helfen, verschiedene Migrationsmechanismen des Fluids, vom Entstehungsort bis zum Zielhorizont, zu verstehen. Dabei stellt sich die Frage, ob schwache seismische Ereignisse die Konnektivität isoliert bestehender Fluide durch Bildung neuer Wegsamkeiten erhöhen, oder ob frische Mineraloberflächen für Wasser-Gesteinsreaktionen erzeugt werden, die mechano-chemisch neu synthetisierten H2 freisetzen. Die Echtzeit-Analyse der U-Tube Proben vor Ort kann zeigen, wie schnell Änderungen in der Untergrund Gaschemie aufgrund seismischer Aktivität stattfinden. Ein weiteres Ziel ist die Identifizierung der seismischen Momente und der Abstand und die Orientierung des Erdbebenherdes zur Störungszone und dem Bohrloch. Die Probenahme und Analyse in Isotopen-Laboratorien ermöglicht die Abschätzung, in welchem Ausmaß sich die H/D-Isotopie von H2 und CH4, sowie 13CCO2 und 13CCH4 ändert. Es soll geprüft werden, ob sie aus der gleichen Quelle stammen und ob der Isotopenaustausch zwischen diesen Spezies im thermodynamischen Gleichgewicht ist.Edelgasisotopenmessungen erlauben es, die Residenzzeiten der Kluftfluide zu berechnen und könnten die Frage lösen, ob gemessene H2/He-Verhältnisse mit der berechneten radiolytisch/radiogenen Produktionsrate übereinstimmen. Die Daten der gaschemischen Messungen sind wichtige Eingangsparameter für physikalisch-chemische Modelle zur Beschreibung des geochemischen Verhaltens der Fluide. In Kombination mit seismischen Karten tragen sie zur genaueren Bestimmung des globalen Vorkommens von gas-chemischen Produktionsprozessen in Störungszonen bei.

1 2 3 4 568 69 70