Der Niedersächsische Bodenfeuchteinformationsdienst (NIBOFID) des LBEG zeigt den tagesaktuellen Wassergehalt für alle Böden in Niedersachsen. Darüber hinaus lässt sich der Verlauf des Bodenwassergehalts für die letzten 10 Tage abrufen. Die Bodenfeuchte wird in % der nutzbaren Feldkapazität (%nFK) angegeben. Die nFK beschreibt die Wassermenge, die ein Boden maximal pflanzenverfügbar speichern kann. Die Werte des Bodenfeuchtemonitors sind berechnet und nicht gemessen. Die Berechnung erfolgt mit dem Bodenwasserhaushaltsmodell BOWAB und wird täglich mit Klimakennwerten (Niederschlag, Temperatur, Wind, Globalstrahlung und relative Luftfeuchte) des Vortages durchgeführt. Es werden für die jeweilige Landnutzung (Acker, Grünland, Laubwald, Nadelwald, Sonstiges) und den Boden spezifisch Parametern abgeleitet. BOWAB nutzt die hochaufgelösten Bodendaten der Bodenkarte 1:50.000 (BK50) von Niedersachsen und leitetet bodenwasserhaushaltliche Kennwerte, wie nFK, FK etc. ab. Die Berechnung erfolgt für die Flächen der BK50. Der Einfluss des Grundwassers wird in Form von kapillarem Aufstieg und durch den Grundwasserstand aus der BK50 berücksichtigt. Eine Bodenfeuchte von 100 %nFK zeigt an, dass der Bodenwasserspeicher gefüllt ist. Bei Werten oberhalb von 100 % entsteht Sickerwasser oder es steht Grundwasser innerhalb der betrachteten Bodenschicht. Werte kleiner als 100 %nFK zeigen an, dass die Pflanzen Bodenwasser entnommen haben und der Boden allmählich austrocknet. Ab Bodenfeuchtewerten unterhalb von 40 - 50 %nFK reagieren Pflanzen auf die Trockenheit und verringern ihre Verdunstung. Bei Werten von < 30 % nFK kann von Trockenstress ausgegangen werden. Im Kartenbild ist die Bodenfeuchte für den Boden von 0 – 60 cm Tiefe dargestellt, der dem Hauptwurzelraum bei den meisten Böden und Nutzungsformen entspricht. Standortbezogene Informationen liefert ein Maptip. Durch das Klicken auf einen Standort wird der aktuelle Bodenwassergehalt für den Hauptwurzelraum in %nFK angezeigt. Zusätzlich können auf der Detailseite weiterführende Informationen abgerufen werden. Als Grafik wird der Verlauf der mittleren Bodenfeuchte für die vergangenen 10 Tage für die Tiefenbereiche 0 - 30 cm (Oberboden), 0 - 60 cm (Hauptwurzelraum) und, sofern der Boden mächtiger ist, 0 - 90 cm (gesamte Betrachtungstiefe) dargestellt. Zudem wird die Sickerwassermenge unterhalb von 90 cm Tiefe für den betrachteten Standort angegeben. Falls Sie noch genauere Informationen zum Wassergehalt für Ihren Boden mit einer bestimmten Anbaukultur (Weizen, Mais, Grünland) benötigen, nutzen Sie gerne die Fachanwendung „Bodenwasserhaushalt“ im NIBIS® Kartenserver. Sie bietet die Möglichkeit den Verlauf der Bodenfeuchte für einzelne oder mehrere Flächen über einen längeren Zeitraum mit verschiedenen Fruchtfolgen (z.B. 1 Jahr oder länger) zu ermitteln.
Subproject 3 will investigate the effect of shifting from continuously flooded rice cropping to crop rotation (including non-flooded systems) and diversified crops on the soil fauna communities and associated ecosystem functions. In both flooded and non-flooded systems, functional groups with a major impact on soil functions will be identified and their response to changing management regimes as well as their re-colonization capability after crop rotation will be quantified. Soil functions corresponding to specific functional groups, i.e. biogenic structural damage of the puddle layer, water loss and nutrient leaching, will be determined by correlating soil fauna data with soil service data of SP4, SP5 and SP7 and with data collected within this subproject (SP3). In addition to the field data acquired directly at the IRRI, microcosm experiments covering the broader range of environmental conditions expected under future climate conditions will be set up to determine the compositional and functional robustness of major components of the local soil fauna. Food webs will be modeled based on the soil animal data available to gain a thorough understanding of i) the factors shaping biological communities in rice cropping systems, and ii) C- and N-flow mediated by soil communities in rice fields. Advanced statistical modeling for quantification of species - environment relationships integrating all data subsets will specify the impact of crop diversification in rice agro-ecosystems on soil biota and on the related ecosystem services.
Der Kartendienst (WMS-Gruppe) stellt die Geodaten aus dem Landschaftsprogramm Saarland dar-Themenkarte_Arten-Biotope und Lebensraumverbund:Zusammenhängende erosionsverdächtige Bereiche (> 40 ha) mit teilweise erkennbaren Erosionsereignissen werden als Schwerpunkträume aktueller Bodenerosion bezeichnet. Hier hat die Durchführung erosionsmindernder Maßnahmen oberste Priorität. Im Rahmen der kommunalen Landschaftsplanung sind die erosionsverdächtigen Bereiche räumlich weiter zu konkretisieren. Erosionsmindernde Maßnahmen sind in erster Linie in ackerbaulich genutzten Schwerpunkträumen aktueller Bodenerosion durchzuführen. Umfang und Art der Maßnahmen sind auf die jeweilige Problemsituation vor Ort und die Betriebsstrukturen abzustimmen. Maßnahmen, die auf eine Verringerung der Bodenerosion durch Wasser abzielen, müssen stets eine Verbesserung und Pflege der Bodenstruktur und damit des Wasseraufnahmevermögens des Bodens bewirken. Hierunter fallen Maßnahmen wie, z.B. das Belassen der Ernterückstände an der Ackeroberfläche, die Aufweitung der Fruchtfolge und bodenschonende Bearbeitungsverfahren. Gleichzeitig kann die erosionswirksame Hanglänge durch hangparallele lineare Strukturen reduziert werden, so dass auch die Anlage von Grünlandstreifen oder Hecken zentrale Maßnahmen für den Bodenschutz darstellen. Bei sehr stark erosionsgefährdeten Böden kann die Umwandlung der Ackerfläche in Dauergrünland als wirksamster Erosionsschutz erforderlich werden. (siehe auch Landschaftsprogramm Saarland, Kapitel 2.4.2)
Der Kartendienst (WMS-Gruppe) stellt die Geodaten aus dem Landschaftsprogramm Saarland die Themenkarte Klima-Boden-Grundwasser dar.:Zusammenhängende erosionsverdächtige Bereiche (> 40 ha) mit teilweise erkennbaren Erosionsereignissen werden als Schwerpunkträume aktueller Bodenerosion bezeichnet. Hier hat die Durchführung erosionsmindernder Maßnahmen oberste Priorität. Im Rahmen der kommunalen Landschaftsplanung sind die erosionsverdächtigen Bereiche räumlich weiter zu konkretisieren. Erosionsmindernde Maßnahmen sind in erster Linie in ackerbaulich genutzten Schwerpunkträumen aktueller Bodenerosion durchzuführen. Umfang und Art der Maßnahmen sind auf die jeweilige Problemsituation vor Ort und die Betriebsstrukturen abzustimmen. Maßnahmen, die auf eine Verringerung der Bodenerosion durch Wasser abzielen, müssen stets eine Verbesserung und Pflege der Bodenstruktur und damit des Wasseraufnahmevermögens des Bodens bewirken. Hierunter fallen Maßnahmen wie, z.B. das Belassen der Ernterückstände an der Ackeroberfläche, die Aufweitung der Fruchtfolge und bodenschonende Bearbeitungsverfahren. Gleichzeitig kann die erosionswirksame Hanglänge durch hangparallele lineare Strukturen reduziert werden, so dass auch die Anlage von Grünlandstreifen oder Hecken zentrale Maßnahmen für den Boden- schutz darstellen. Bei sehr stark erosionsgefährdeten Böden kann die Umwandlung der Ackerfläche in Dauergrünland als wirksamster Erosionsschutz erforderlich werden. (siehe auch Landschaftsprogramm Saarland, Kapitel 2.4.2)
Stickstoffdüngung im Pflanzenbau ist eine der wichtigsten anthropogenen Quellen von klimarelevanten Lachgasemissionen. Während die kurzfristigen Effekte der Stickstoffdüngung auf Lachgasemissionen relativ gut verstanden sind, ist über langfristige Auswirkungen pflanzenbaulicher Maßnahmen wenig bekannt. Ziel des Projektes ist es daher, die langfristigen Effekte von Fruchtfolgen, sowie des organischen und anorganischen Düngermanagements in pflanzenbaulichen Dauerversuchen zu verstehen. Dadurch soll ein Beitrag zu klimaschonendem Stickstoffmanagement im Pflanzenbau geleistet werden.
Zielsetzung: Im Zuge des Klimawandels, insbesondere durch einen steigenden Verdunstungsanspruch bei gleichzeitig stagnierenden Niederschlagsmengen, steigen die Anforderungen der Landwirtschaft an Wasserressourcen für die Feldberegnung. Diese stoßen aber regional auf Einschränkungen, da das nachhaltig verfügbare Bewässerungswasser begrenzt ist und konkurrierende Nutzungsansprüche bestehen. Dadurch können optimale Wassergehalte im Boden für das Pflanzenwachstum nicht durchgehend gewährleistet werden. Aus diesem Grund sollte sich die mengenmäßige und zeitliche Verteilung der Bewässerungsgaben am zu erwartenden Ertragseffekt orientieren. Ziel ist es, ineffiziente Wassergaben, also solche ohne relevanten Mehrertrag oder ohne Beitrag zur Produktqualität, zu vermeiden. Ein enger Zusammenhang besteht zudem zwischen der Wasserversorgung, der Ertragsbildung und der Stickstoffnutzungseffizienz. Eine bedarfsgerechte Bewässerung steigert nicht nur die Effizienz der Stickstoffnutzung, sondern ermöglicht auch, das Wasserangebot bei der schlagbezogenen Abschätzung des Ertragspotenzials zu berücksichtigen. Auf diese Weise wird eine gezieltere Düngung möglich, wodurch Emissionen reaktiver Stickstoffverbindungen vermieden werden können. Zur Entscheidungsunterstützung im Bereich der Beregnungssteuerung werden derzeit verschiedene methodische Ansätze genutzt, darunter Messungen des Wasserzustands in Boden und Pflanze sowie wasserhaushaltsbasierte Berechnungen. Diese Verfahren sind jedoch in der Praxis oft zu aufwändig, insbesondere bei einer einzelschlagbasierten Anwendung. Fernerkundliche Messverfahren bieten hier Vorteile, da sie leichter anwendbar sind, schlagbezogen repräsentativere Daten liefern und dadurch in der landwirtschaftlichen Beratungspraxis auf größere Akzeptanz stoßen können. Die bislang dominierenden Wasserhaushaltsberechnungen berücksichtigen allerdings keine Rückkopplungseffekte auf das Pflanzenwachstum und sind daher nicht in der Lage, mögliche Ertragswirkungen zu quantifizieren. Ein vielversprechender Ansatz ist die Nutzung gekoppelter Pflanzenwachstums- und Bodenwasserhaushaltsmodelle. Diese Modelle können Ertragseffekte in Abhängigkeit von Wasserverfügbarkeit besser abbilden, vorausgesetzt, es stehen hinreichend genaue Modelle zur Ertragsbildung der betreffenden Kulturen sowie präzise Felddaten für die Modellkalibrierung zur Verfügung. Ziel des Vorhabens ist es, ein Entscheidungsunterstützungssystem zur Optimierung von Bewässerung und Stickstoffdüngung für die Kulturen Kartoffel und Winterweizen zu entwickeln und in die landwirtschaftliche Beratungsplattform ISIP (Informationssystem Integrierte Pflanzenproduktion) zu integrieren. Für Winterweizen kann dabei teilweise schon auf bestehenden Ansätzen aufgebaut werden. Auf Basis von Feldversuchen sollen Methoden und Modelle entwickelt oder weiterentwickelt werden, um, differenziert nach lokalem Boden- und Wetterregime, funktionale Zusammenhänge zwischen Bewässerungsmenge und -zeitpunkt sowie Ertragsbildung zu erfassen. Hieraus erfolgt dann die Entwicklung optimierter Düngungs- und Bewässerungsstrategien, wobei auch die Allokation knapper Ressourcen innerhalb der Fruchtfolge des Betriebs berücksichtigt wird. Nach der Implementierung soll das Entscheidungsunterstützungssystem in der Beratungspraxis etabliert und evaluiert werden.
Die Antragsteller sind durch erfolgreiche, jahrelange Forschungsarbeit Experten für das Thema N-Kreislauf, N-Verluste und Modellierung und möchten die vorhandene Kompetenz sowie schon vorhandene eigene Versuchsdaten und -ergebnisse verwenden, um den N-Kreislauf einschließlich der N-Emissionen zu simulieren. Hierfür werden wir ausgewählte Varianten von fünf Feldversuchen untersuchen, für die schon für Zeiträume zwischen vier und 116 Jahren relevante Daten z.B. zur N-Aufnahme, Gehalte des organischen Kohlenstoffs und des Gesamtstickstoffs, oder Klimagasmessungen zur Verfügung stehen. Die Versuche wurden an unterschiedlichen Standorten in ganz Deutschland angelegt und decken verschiedenste Bodencharakteristika und Klimata ab. Durch die Verwendung schon vorhandener Daten und die erweiterte eigene Beprobung kann ein viele Jahrzehnte umfassender Datensatz (Pflanze x Management x Umwelt-Interaktionen) an verschiedenen Standorten modellbasiert und damit kostengünstig ausgewertet werden. In dem vorgestellten Projekt soll die prozessbasierte dynamische open-source-Modellplattform SIMPLACE eingesetzt werden. SIMPLACE berechnet u.a. den täglichen Nährstoffumsatz im Boden, den Nitrataustrag, die N2O-Emissionen abhängig von den Bodencharakteristika sowie das Pflanzenwachstum. Die Ziele des vorgestellten Projekts sind 1) den C-/N-Kreislauf und die Verluste besser zu verstehen, 2) die vielen Daten der unterschiedlichen Standorte zu verwenden, um das Modell robust zu kalibrieren und validieren, 3) Managementszenarien (Fruchtfolgen, Zwischenfrüchte, organische und anorganische Düngung) und deren Auswirkungen auf N-Verluste zu messen und zu simulieren, um die Wirksamkeit von Maßnahmen standortdifferenziert und unter verschiedenen Wetterbedingungen zu quantifizieren, sowie 4) Emissionsminderungspotentiale unterschiedlicher Bodenmanagementstrategien aufzuzeigen, um modellgestützte deutschlandweite Handlungsempfehlungen für ein klimaschonendes Stickstoffmanagement zu ermöglichen.
| Origin | Count |
|---|---|
| Bund | 823 |
| Land | 70 |
| Wissenschaft | 3 |
| Zivilgesellschaft | 7 |
| Type | Count |
|---|---|
| Agrarwirtschaft | 7 |
| Daten und Messstellen | 1 |
| Ereignis | 1 |
| Förderprogramm | 794 |
| Lehrmaterial | 1 |
| Text | 53 |
| Umweltprüfung | 8 |
| unbekannt | 32 |
| License | Count |
|---|---|
| geschlossen | 80 |
| offen | 812 |
| unbekannt | 5 |
| Language | Count |
|---|---|
| Deutsch | 854 |
| Englisch | 191 |
| Resource type | Count |
|---|---|
| Archiv | 2 |
| Bild | 7 |
| Datei | 4 |
| Dokument | 35 |
| Keine | 631 |
| Unbekannt | 6 |
| Webdienst | 12 |
| Webseite | 234 |
| Topic | Count |
|---|---|
| Boden | 742 |
| Lebewesen und Lebensräume | 874 |
| Luft | 498 |
| Mensch und Umwelt | 897 |
| Wasser | 462 |
| Weitere | 880 |