Wasser gehört zu den essentiellen Ressourcen bei der Produktion von Obst und Gemüse. Wachstum und Ertrag stehen in direktem Zusammenhang mit der Wasserverfügbarkeit, die wegen des Klimawandels zukünftig auch in gemäßigten Klimazonen aufgrund längerer Zeiträume ohne oder mit geringen Niederschlägen eingeschränkt sein wird. Ziel ist die Entwicklung eines innovativen pflanzenbasierten, kameragestützten Steuerungssystems für die Irrigation von Feld- und Fruchtgemüse. Teilziel ist die Erforschung der Möglichkeiten, IR-Kamerasysteme zur Bestimmung des Crow Water Stress Indexes in Kombination mit SWIR-Reflektometrie zur photogrammetrischen Bestimmung des Wasserstatus einzusetzen. Das Sensorsystem wird dazu an Schienen- und UAV-Trägersysteme angepasst. Neue Verfahren sind zu erforschen, um große Datenmengen über lange Wegstrecken outdoor und indoor im Gewächshausbereich ohne Störung zu übertragen und die auszuwertenden Bilddaten zur Steuerung der Irrigation zu verwenden. Zur Erforschung der berührungslosen Wasserstatusbestimmung werden zu Beginn des Vorhabens Messungen an Pflanzen und die Installation der IR-Kamera- und Sensorsysteme sowie die Entwicklung der photogrammetrischen Steuerungssoftware vorgenommen. Dabei ist es am Anfang von Bedeutung die berührungslosen Messungen des Wasserstatus parallel zu Kontrollmessungen mit destruktiven Verfahren einzusetzen. Anschließend folgt die Feinjustierung, die Programmierung der Auswerte- und Kontrollsoftware sowie die Erfassung georeferenzierter Bilddaten. Wesentliches Ziel des Projektes ist die Erforschung der Datenfernübertragungstechnik der Kamerabilddaten an den Zentralrechner über lange Wegstrecken und des Kommunikationssystems mit der Bewässerungseinrichtung. Im weiteren Verlauf findet ein Testbetrieb mit Datenprozessierung, -analyse und Ansteuerung der Irrigation sowie wissenschaftlicher Auswertung im Labor statt. Abschließend wird ein Labor-Funktionsmuster für das PLANTSENS System zusammengestellt und geprüft.
Wasser gehört zu den essentiellen Ressourcen bei der Produktion von Obst und Gemüse. Wachstum und Ertrag stehen in direktem Zusammenhang mit der Wasserverfügbarkeit, die wegen des Klimawandels zukünftig auch in gemäßigten Klimazonen aufgrund längerer Zeiträume ohne oder mit geringen Niederschlägen eingeschränkt sein wird. Ziel ist die Entwicklung eines innovativen pflanzenbasierten, kameragestützten Steuerungssystems für die Irrigation von Feld- und Fruchtgemüse. Teilziel ist die Erforschung der Möglichkeiten IR-Kamerasysteme zur Bestimmung des Crop Water Stress Indexes in Kombination mit SWIR-Reflektometrie zur photogrammetrischen Bestimmung des Wasserstatus einzusetzen. Das Sensorsystem wird dazu an Schienen/Seilzug- und UAV-Trägersysteme angepasst. Neue Verfahren sind zu erforschen, um große Datenmengen über lange Wegstrecken outdoor und indoor im Gewächshausbereich ohne Störung zu übertragen und die auszuwertenden Bilddaten zur Steuerung der Irrigation zu verwenden. Zur Erforschung der berührungslosen Wasserstatusbestimmung werden zu Beginn des Vorhabens Messungen an Pflanzen und die Installation der IR-Kamera- und Sensorsysteme sowie die Entwicklung der photogrammetrischen Steuerungssoftware vorgenommen. Dabei ist es am Anfang von Bedeutung die berührungslosen Messungen des Wasserstatus parallel zu Kontrollmessungen mit destruktiven Verfahren einzusetzen. Anschließend folgt die Feinjustierung, die Programmierung der Auswerte- und Kontrollsoftware sowie die Erfassung georeferenzierter Bilddaten. Wesentliches Ziel des Projektes ist die Erforschung der Datenfernübertragungstechnik der Kamerabilddaten an den Zentralrechner über lange Wegstrecken und des Kommunikationssystems mit der Bewässerungseinrichtung. Im weiteren Verlauf findet ein Testbetrieb mit Datenprozessierung, -analyse und Ansteuerung der Irrigation sowie wissenschaftlicher Auswertung im Labor statt. Abschließend wird ein Labor-Funktionsmuster für das PLANTSENS System zusammengestellt und geprüft.
Wasser gehört zu den essentiellen Ressourcen bei der Produktion von Obst und Gemüse. Wachstum und Ertrag stehen in direktem Zusammenhang mit der Wasserverfügbarkeit, die wegen des Klimawandels zukünftig auch in gemäßigten Klimazonen aufgrund längerer Zeiträume ohne oder mit geringen Niederschlägen eingeschränkt sein wird. Ziel ist die Entwicklung eines innovativen pflanzenbasierten, kameragestützten Steuerungssystems für die Irrigation von Feld- und Fruchtgemüse. Teilziel ist die Erforschung der Möglichkeiten IR-Kamerasysteme zur Bestimmung des Crop Water Stress Indexes in Kombination mit SWIR-Reflektometrie zur photogrammetrischen Bestimmung des Wasserstatus einzusetzen. Das Sensorsystem wird dazu an Schienen/Seilzug- und UAV-Trägersysteme angepasst. Neue Verfahren sind zu erforschen, um große Datenmengen über lange Wegstrecken outdoor und indoor im Gewächshausbereich ohne Störung zu übertragen und die auszuwertenden Bilddaten zur Steuerung der Irrigation zu verwenden. Zur Erforschung der berührungslosen Wasserstatusbestimmung werden zu Beginn des Vorhabens Messungen an Pflanzen und die Installation der IR-Kamera- und Sensorsysteme sowie die Entwicklung der photogrammetrischen Steuerungssoftware vorgenommen. Dabei ist es am Anfang von Bedeutung die berührungslosen Messungen des Wasserstatus parallel zu Kontrollmessungen mit destruktiven Verfahren einzusetzen. Anschließend folgt die Feinjustierung, die Programmierung der Auswerte- und Kontrollsoftware sowie die Erfassung georeferenzierter Bilddaten. Wesentliches Ziel des Projektes ist die Erforschung der Datenfernübertragungstechnik der Kamerabilddaten an den Zentralrechner über lange Wegstrecken und des Kommunikationssystems mit der Bewässerungseinrichtung. Im weiteren Verlauf findet ein Testbetrieb mit Datenprozessierung, -analyse und Ansteuerung der Irrigation sowie wissenschaftlicher Auswertung im Labor statt. Abschließend wird ein Labor-Funktionsmuster für das PLANTSENS System zusammengestellt und geprüft.
Basierend auf den Ergebnissen einer Vorlaufforschung sollen neue, rotes Licht reflektierende Folien für Gewächshausböden und andere Oberflächen entwickelt werden, die die Erträge und die Antioxidantiengehalte von Tomaten und anderer Gemüsearten positiv und nachhaltig beeinflussen. Die Integration neuer Stoffkomponenten in die Folien, insbesondere Schichtkombinationen sowie bestimmte Herstellungsverfahren der Folien, ermöglichen eine effektivere Rückstrahlung des roten Lichts von diesen Folien auf die Pflanzen. Folgende Vorteile gegenüber dem Stand der Technik bzw. der jetzigen Kulturführung sollen dadurch erreicht werden: - Positive Beeinflussung der pflanzenmorphologischen Reaktionen wie Blütenbildung oder Fruchtbildung, wenn dabei die Erhöhung des Rot-Blau-Verhältnisses eine entscheidende Rolle spielt. - Erhöhung der Erträge bei den Pflanzen, die auf die Erhöhung des Rot-Blau-Verhältnisses mit verstärkter Fruchtbildung reagieren. - Steigerung der Antioxidantien- und Zuckergehalte in den Früchten, wenn bei bestimmten Pflanzen die Synthese durch Erhöhung des Anteils an rotem Licht positiv beeinflusst wird. - Simulation des Endes der Vegetationsperiode durch Erhöhung des Anteils an dunkelrotem Licht bei den Pflanzen, die darauf mit einer Beschleunigung ihrer Entwicklung reagieren.
Die hohen Ansprüche an die Qualität von Obst und Gemüse führen zu einer besonders geringen Tole-ranz für Beeinträchtigungen durch Schädlinge. Deshalb muss deren wirkungsvolle und umweltschonende Regulierung auch in Zukunft garantiert sein, selbst unter dem Einfluss des Klimawandels und beim Auftreten neuer invasiver Arten. Als Grundlage für die Überwachung und für neue Integrierte Bekämpfungsstrategien liefert das Tätigkeitsfeld Kenntnisse über die Biologie von Schädlingen (Insekten, Milben) und Nützlingen in den Agrarökosystemen des Obstbaus und des Freilandgemüsebaus. Es stellt Phänologiemodelle und Entscheidungshilfesysteme (Decision support systems DSS) für die Praxis und für die vorausschauende Beurteilung von Folgen des Klimawandels bereit, entwickelt biologische und biotechnische Pflanzenschutzmassnahmen und stellt die Diagnostik von Quarantäneschädlingen sicher. Dies Arbeiten leisten signifikante Beiträge zu den thematischen Schwerpunkten 'Ökologische Intensivierung' sowie 'Klimaschutz und Anpassung an Klimawandel'. Die Leistungen erfolgen schwerpunktmässig im Bereich des Kernthemas 'Verbesserung der Pflanzenproduktion, insbesondere unter Einbezug von Pflanzenschutz, Sorten und Saat- und Pflanzgut'. In diesem Projekt werden Leistungen bei der Diagnostik von Quarantäneschädlingen zur Verfügung gestellt (in Zusammenarbeit mit FB 12 Diagnostik und Risikobeurteilung Pflanzenschutz) und wissenschaftliche Unterstützung für die kantonalen Fachstellen geboten.
Der Transfer von PCDD/PCDF aus dem Boden ueber die Wurzeln wurde bisher als unbedeutend angesehen; dafuer konnten durch eigene Untersuchungen an einer groesseren Zahl von Pflanzen weitere Belege erbracht werden. Eine Ausnahme bildet Zucchini, wo dieser Transfer auch in die Fruechte sehr gross ist. Aufgrund der relativ hohen PCDD/PCDF-Konzentrationen in Zucchinisprossen werden auch die als Ernterueckstaende im Boden verbleibenden Wurzeln hohe Belastungen aufweisen. In einem Freilandversuch sollen daher durch Anbau von Zucchini und zum Vergleich von einer Pflanzenart mit geringem Transfer (Tomate) in einem PCDD/PCDF-belasteten Boden die PCDD/PCDF-Konzentrationen in den Wurzeln und der Rhizosphaere dieser Pflanzen ermittelt werden. Ausserdem sollen in getrennten Versuchen Wurzelexsudate von Zucchini und Tomate gewonnen und durch Extraktion von PCDD/PCDF-belastetem Boden ueberprueft werden, ob Zucchiniwurzeln dioxin-mobilisierende Verbindungen in die Rhizosphaere abgeben. Ein Transfer Boden-Pflanze von polychlorierten Dibenzo-p-dioxinen und Dibenzofuranen (PCDD/PCDF) spielt nur bei im Boden wachsenden Speicherorganen wie Moehrenwurzeln und Kartoffelknollen eine Rolle, wobei der Transfer auch bei diesen Pflanzenorganen weitgehend auf die Schalen beschraenkt bleibt.Die PCDD/PCDF-Belastungen von Sprossorganen (Blaetter, Fruechte, Samen) stehen in keiner Beziehung zu den PCDD/PCDF-Konzentrationen der Boeden und sind selbst bei sehr hohen Bodenbelastungen auf atmogene PCDD/PCDF-Eintraege zurueckzufuehren. Eine Ausnahme bilden hierbei nur Zucchini und Kuerbis, deren PCDD/PCDF-Belastungen ein bis zwei Groessenordnungen ueber den Konzentrationen in allen untersuchten Sprossorganen anderer Pflanzenarten liegen. Fuer Zucchini konnte indirekt eine Ausnahme von PCDD/PCDF ueber die Wurzeln und eine Verlagerung in den Spross nachgewiesen werden. Ziel des ersten Vorhabens war es, am Beispiel von Zucchini zu untersuchen, ob die Aufnahme der extrem hydrophoben, im Boden fest an organische Substanz gebundenen PCDD/PCDF durch 'Dioxin-mobilisierende' Eigenschaften der Wurzelexsudate ermoeglicht wird. Hierzu wurden Zucchiniwurzelexsudate als Extraktionsmittel fuer einen hoch PCDD/PCDF-kontaminierten Boden eingesetzt und mit der Extraktionsleistung der Wurzelexsudate von Tomaten (eine Pflanzenart mit nachgewiesen sehr geringem PCDD/PCDF-Transfer) und H2O verglichen. Durch die Verwendung von Tomatenwurzelexsudaten konnte die Extraktionsausbeute im Vergleich zu H2O nicht gesteigert werden; dagegen wurden durch Zucchiniwurzelexsudate ca viermal so viel PCDD/PCDF aus dem Boden extrahiert. Dieses unerwartete Verhalten ist auf Substanzen in den Wurzelexsudaten von Zucchini zurueckzufuehren, die eine Mobilisierung der im Boden gebundenen PCDD/PCDF ermoeglichen und diese gleichzeitig in eine weniger hydrophobe, besser pflanzenverfuegbare Form ueberfuehren. Da eine Veraenderung der chemischen Struktur von PCDD/PCDF auszuschliessen ist, beruht die mobilisierende Wirkung ...
In internationalen Wertschöpfungsketten spielen Umweltmanagementstandards (EMS) eine zunehmend wichtige Rolle. Dabei ist die Einführung von EMS für die Produzenten häufig mit Problemen und Hemmnissen verbunden. Während die Rolle von Governance-Strukturen auf die Verbreitung von EMS bereits betrachtet wurde, existieren kaum Untersuchungen zum Einfluss unterschiedlicher Akteure außerhalb der Kette. Allerdings ist davon auszugehen, dass je nach Art der Kette, insbesondere Akteure der Zielregion (z.B. NGOs) über Konsumenten und Handel Einfluss auf den Produzenten bei der Einführung und Umsetzung der EMS nehmen können. Dabei stellt sich die Frage, inwiefern solche Cross Regional Influences (CRI) aus den Zielregionen, in Abhängigkeit von regionalen Unterschieden (z.B. von Entwicklungsstand, Ziel- und Wertemustern), zu Akzeptanzproblemen der Produzenten gegenüber den EMS führen können und damit die erfolgreiche Umsetzung und Verbreitung der EMS behindern. Ziel des Projektes ist es, am Vergleich der Obst- und Gemüsewertschöpfungsketten Kenia - EU und Südafrika - Subsahara-Afrika1 die Bedeutung von CRI und Akzeptanz auf die Einführung, Umsetzung und räumliche Verbreitung von EMS darzustellen, zu erklären und daraus Handlungsempfehlungen abzuleiten. Als theoretische Basis dienen Ansätze zu Wertschöpfungsketten, die durch die Bereiche CRI und Akzeptanz erweitert werden sollen. Die empirische Grundlage bieten qualitative Interviews entlang der Wertschöpfungsketten und quantitative Befragungen in den Produzentenregionen.
| Origin | Count |
|---|---|
| Bund | 21 |
| Type | Count |
|---|---|
| Förderprogramm | 21 |
| License | Count |
|---|---|
| offen | 21 |
| Language | Count |
|---|---|
| Deutsch | 17 |
| Englisch | 6 |
| Resource type | Count |
|---|---|
| Keine | 19 |
| Webseite | 2 |
| Topic | Count |
|---|---|
| Boden | 14 |
| Lebewesen und Lebensräume | 19 |
| Luft | 15 |
| Mensch und Umwelt | 21 |
| Wasser | 11 |
| Weitere | 21 |