The energetic efficiency of C4 photosynthesis is strongly affected by bundle sheath leakiness, which is commonly assessed with the 'linear version' of the Farquhar model of 13C discrimination, and leaf gas exchange and 13C composition data. But, the linear Farquhar model is a simplification of the full mechanistic theory of ? in C4 plants, potentially generating errors in the estimation of leakiness. In particular, post-photosynthetic C isotope fractionation could cause large errors, but has not been studied in any detail. The present project aims to improve the understanding of the ecological and developmental/physiological factors controlling discrimination and leakiness of the perennial grass Cleistogenes squarrosa. C. squarrosa is the most important member of the C4 community which has spread significantly in the Mongolia grasslands in the last decades. It has an unusually high and variable discrimination, which suggests very high (and potentially highly variable) leakiness. Specifically, we will conduct the first systematic study of respiratory 13C fractionation in light and dark at leaf- and stand-scale in this C4 species, and assess its effect on discrimination and estimates of leakiness. These experiments are conducted in specialized 13CO2/12CO2 gas exchange mesocosms using ecologically relevant scenarios, testing specific hypotheses on effects of environmental drivers and plant and leaf developmental stage on discrimination and leakiness.
The formation of biogeochemical interfaces in soils is controlled, among other factors, by the type of particle surfaces present and the assemblage of organic matter and mineral particles. Therefore, the formation and maturation of interfaces is studied with artificial soils which are produced in long-term biogeochemical laboratory incubation experiments (3, 6, 12, 18 months. Clay minerals, iron oxides and charcoal are used as major model components controlling the formation of interfaces because they exhibit high surface area and microporosity. Soil interface characteristics have been analyzed by several groups involved in the priority program for formation of organo-mineral interfaces, sorptive and thermal interface properties, microbial community structure and function. Already after 6 months of incubation, the artificial soils exhibited different properties in relation to their composition. A unique dataset evolves on the development and the dynamics of interfaces in soil in the different projects contributing to this experiment. An integrated analysis based on a conceptual model and multivariate statistics will help to understand overall processes leading to the biogeochemical properties of interfaces in soil, that are the basis for their functions in ecosystems. Therefore, we propose to establish an integrative project for the evaluation of data obtained and for publication of synergistic work, which will bring the results to a higher level of understanding.
SP0 is conceived for coordination of the ICON research, for internal and external scientific exchange as well as for investigating development pathways of land use on the Philippines. The SP0 team will supervise the project activities as a whole, including reporting and final synthesis. It will design the ICON homepage, establish and maintain a web-based database and present the project and its results in scientific forums and public media. It will organize collaboration and scientific exchange with international networks dealing with atmospheric processes, global carbon, nitrogen, water and energy cycles, and long-term ecological research. Specifically, SP0 is devoted to ensuring a sound integration of the ICON project within the scientific communities of Germany and SE Asia. Supported by the ICON local research coordinator based at and employed by IRRI, it will coordinate with the IRRI farm management to assist other ICON subprojects with field setup, routine data collection and technical backstopping.
The development of sustainable and efficient energy conversion processes at interfaces is at the center of the rapidly growing field of basic energy science. How successful this challenge can be addressed will ultimately depend on the acquired degree of molecular-level understanding. In this respect, the severe knowledge gap in electro- or photocatalytic conversions compared to corresponding thermal processes in heterogeneous catalysis is staggering. This discrepancy is most blatant in the present status of predictive-quality, viz. first-principles based modelling in the two fields, which largely owes to multifactorial methodological issues connected with the treatment of the electrochemical environment and the description of the surface redox chemistry driven by the photo-excited charges or external potentials.Successfully tackling these complexities will advance modelling methodology in (photo)electrocatalysis to a similar level as already established in heterogeneous catalysis, with an impact that likely even supersedes the one seen there in the last decade. A corresponding method development is the core objective of the present proposal, with particular emphasis on numerically efficient approaches that will ultimately allow to reach comprehensive microkinetic formulations. Synergistically combining the methodological expertise of the two participating groups we specifically aim to implement and advance implicit and mixed implicit/explicit solvation models, as well as QM/MM approaches to describe energy-related processes at solid-liquid interfaces. With the clear objective to develop general-purpose methodology we will illustrate their use with applications to hydrogen generation through water splitting. Disentangling the electro- resp. photocatalytic effect with respect to the corresponding dark reaction, this concerns both the hydrogen evolution reaction at metal electrodes like Pt and direct water splitting at oxide photocatalysts like TiO2. Through this we expect to arrive at a detailed mechanistic understanding that will culminate in the formulation of comprehensive microkinetic models of the light- or potential-driven redox process. Evaluating these models with kinetic Monte Carlo simulations will unambiguously identify the rate-determining and overpotential-creating steps and therewith provide the basis for a rational optimization of the overall process. As such our study will provide a key example of how systematic method development in computational approaches to basic energy sciences leads to breakthrough progress and serves both fundamental understanding and cutting-edge application.
The majority of the worlds forests has undergone some form of management, such as clear-cut or thinning. This management has direct relevance for global climate: Studies estimate that forest management emissions add a third to those from deforestation, while enhanced productivity in managed forests increases the capacity of the terrestrial biosphere to act as a sink for carbon dioxide emissions. However, uncertainties in the assessment of these fluxes are large. Moreover, forests influence climate also by altering the energy and water balance of the land surface. In many regions of historical deforestation, such biogeophysical effects have substantially counteracted warming due to carbon dioxide emissions. However, the effect of management on biogeophysical effects is largely unknown beyond local case studies. While the effects of climate on forest productivity is well established in forestry models, the effects of forest management on climate is less understood. Closing this feedback cycle is crucial to understand the driving forces behind past climate changes to be able to predict future climate responses and thus the required effort to adapt to it or avert it. To investigate the role of forest management in the climate system I propose to integrate a forest management module into a comprehensive Earth system model. The resulting model will be able to simultaneously address both directions of the interactions between climate and the managed land surface. My proposed work includes model development and implementation for key forest management processes, determining the growth and stock of living biomass, soil carbon cycle, and biophysical land surface properties. With this unique tool I will be able to improve estimates of terrestrial carbon source and sink terms and to assess the susceptibility of past and future climate to combined carbon cycle and biophysical effects of forest management. Furthermore, representing feedbacks between forest management and climate in a global climate model could advance efforts to combat climate change. Changes in forest management are inevitable to adapt to future climate change. In this process, is it possible to identify win-win strategies for which local management changes do not only help adaptation, but at the same time mitigate global warming by presenting favorable effects on climate? The proposed work opens a range of long-term research paths, with the aim of strengthening the climate perspective in the economic considerations of forest management and helping to improve local decisionmaking with respect to adaptation and mitigation.
Perennial fodder cropping potentially increases subsoil biopore density by formation of extensive root systems and temporary soil rest. We will quantify root length density, earthworm abundance and biopore size classes after Medicago sativa, Cichorium intybus and Festuca arundinacea grown for 1, 2 and 3 years respectively in the applied research unit's Central Field Trial (CeFiT) which is established and maintained by our working group. Shoot parameters including transpiration, gas exchange and chlorophyll fluorescence will frequently be recorded. Precrop effects on oilseed rape and cereals will be quantified with regard to crop yield, nutrient transfer and H2-release. The soil associated with biopores (i.e. the driloshpere) is generally rich in nutrients as compared to the bulk soil and is therefore supposed to be a potential hot spot for nutrient acquisition. However, contact areas between roots and the pore wall have been reported to be low. It is still unclear to which extent the nutrients present in the drilosphere are used and which potential relevance subsoil biopores may have for the nutrient supply of crops. We will use a flexible videoscope to determine the root-soil contact in biopores. Nitrogen input into the drilosphere by earthworms and potential re-uptake of nitrogen from the drilosphere by subsequent crops with different rooting systems (oilseed rape vs. cereals) will be quantified using 15N as a tracer.
In the Bavarian Forest National Park a brief, but intense storm event on 1 August 1983 created large windfall areas. The windfall ecosystems within the protection zone of the park were left develop without interference; outside this zone windfall areas were cleared of dead wood but not afforested. A set of permanent plots (transect design with 10 to 10 m plots) was established in 1988 in spruce forests of wet and cool valley bottoms in order to document vegetation development. Resampling shall take place every five years; up to now it was done in 1993 and 1998. On cleared areas an initial raspberry (Rubus idaeus) shrub community was followed by pioneer birch (Betula pubescens, B. pendula) woodland, a sequence well known from managed forest stands. In contrast to this, these two stages were restricted to root plates of fallen trees in uncleared windfalls; here shade-tolerant tree species of the terminal forest stages established rather quickly from saplings that had already been present in the preceeding forest stand. Soil surface disturbances are identified to be causal to the management pathway of forest development, wereas the untouched pathway is caused by relatively low disturbance levels. The simulation model FORSKA-M is used to analyse different options of further stand development with a simulation time period of one hundred years.
Introduction: In Malaysia, excessive nutrients from livestock waste management systems are currently released to the environment. Particularly, large amounts of manure from intensive pig production areas are being excreted daily and are not being fully utilised. Alternatively, the excess manure can be applied as an organic fertiliser source in neighbouring cropping systems on the small landholdings of the pig farms to improve soil fertility so that its nutrients will be available for crop uptake instead of being discharged into water streams. Thus, there is a need for better tools to analyse the present situation, to evaluate and monitor alternative livestock production systems and manure management scenarios, and to support farmers in the proper management of manure and fertiliser application. Such tools are essential to quantify, and assess nutrient fluxes, manure quality and content, manure storage and application rate to the land as well as its environmental effects. Several computer models of animal waste management systems to assist producers and authorities are now available. However, it is felt that more development is needed to adopt such models to the humid tropics and conditions of Malaysia and other developing countries in the region. Objectives: The aim is to develop a novel model to evaluate nutrient emission scenarios and the impact of livestock waste at the landscape or regional level in humid tropics. The study will link and improve existing models to evaluate emission of N to the atmosphere, and leaching of nutrients to groundwater and surface water. The simulation outputs of the models will be integrated with a GIS spatial analysis to model the distribution of nutrient emission, leaching and appropriate manure application on neighbouring crop lands and as an information and decision support tool for the relevant users.
Chromium (Cr) is introduced into the environment by several anthropogenic activities. A striking ex-ample is the area around Kanpur in the Indian state of Uttar Pradesh, where large amounts of Cr-containing wastes have been recently illegally deposited. Hexavalent Cr, a highly toxic and mobile contaminant, is present in significant amounts in these wastes, severely affecting the quality of sur-roundings soils, sediments, and ground waters. The first major goal of this study is to clarify the solid phase speciation of Cr in these wastes and to examine its leaching behavior. X-ray diffraction and synchrotron-based X-ray absorption spectroscopy techniques will be employed for quantitative solid phase speciation of Cr. Its leaching behavior will be studied in column experiments performed at un-saturated moisture conditions with flow interruptions simulating monsoon rain events. Combined with geochemical modeling, the results will allow the evaluation of the leaching potential and release kinetics of Cr from the waste materials. The second major goal is to investigate the spatial distribution, speciation, and solubility of Cr in the rooting zone of chromate-contaminated soils surrounding the landfills, and to study the suitability of biochar as novel soil amendment for mitigating the deleterious effects of chromate pollution. Detailed field samplings and laboratory soil incubation studies will be carried out with two agricultural soils and biochar from the Kanpur region.
Prehistoric pits are filled with ancient topsoil material, which has been preserved there over millennia. A characteristic of these pit fillings is that their colour is different depending on the time the soil material was relocated. Soil colour is the result of soil forming processes and soil properties, and it could therefore indicate the soil characteristics present during that specific period. To the best of our knowledge, no investigation analysed and explained the reasons for these soil colour changes over time. The proposed project will investigate soil parameters from pit fillings of different archaeological periods in the loess area of the Lower Rhine Basin (NW-Germany). It aims to implement the measurement of colour spectra as a novel analytical tool for the rapid analyses of a high number of soil samples: the main goal is to relate highresolution colour data measured by a spectrophotometer to soil parameters that were analysed by conventional pedogenic methods and by mid infrared spectroscopy (MIRS), with a main focus on charred organic matter (BPCAs). This tool would enable us to quantify the variation of soil properties over a timescale of several millennia, during different prehistoric periods at regional scale and for loess soils in general. Detailed information concerning changing soil properties on a regional scale is necessary to determine past soil quality and it helps to increase our understanding of prehistoric soil cultivation practices. Furthermore, these information could also help to increase our understanding about agricultural systems in different archaeological periods.
Origin | Count |
---|---|
Bund | 269 |
Wissenschaft | 8 |
Type | Count |
---|---|
Förderprogramm | 269 |
License | Count |
---|---|
offen | 269 |
Language | Count |
---|---|
Deutsch | 65 |
Englisch | 262 |
Resource type | Count |
---|---|
Keine | 209 |
Webseite | 60 |
Topic | Count |
---|---|
Boden | 241 |
Lebewesen & Lebensräume | 259 |
Luft | 209 |
Mensch & Umwelt | 269 |
Wasser | 217 |
Weitere | 269 |