This database contains a compilation of published zircon geochronology, chemistry and isotope data. The database was created through automated web scraping of the Figshare data repository. Data included U-Pb and Pb-Pb dating, Lu-Hf isotopes, trace element and rare earth element chemistry and isotopes. Where available, metadata on the analytical method, lithology, sample description and sampling coordinates are included. All analyses include a citation and doi link to the original data hosted on Figshare. See metadata table for descriptions of table headers. See associated manuscript for web scraping code.
A compilation of 90,688 published radiometric dates for sedimentary rocks from the South American Andes and adjacent parts of South America have been tabulated for access by researchers via GEOROC Expert Datasets. The compilation exists as a spreadsheet for access via MS Excel, Google Sheets, and other spreadsheet applications. Initial igneous compilations were utilized in two publications by the author, Pilger (1981, 1984). The compilations have been added to in subsequent years with the metamorphic and sedimentary compilations separated in the last few years. Locations in latitude and longitude are largely taken from the original source, if provided, with UTM locations maintained and converted; in some cases, sample locations were digitized from electronic maps if coordinates were otherwise not available. Analytical results are not included to prevent the files from becoming too large. The existing compilation incorporates compilations by other workers in smaller regions of the Andes. References to original and compilation sources are included. While I am updating reconstructions of the South American and Nazca/Farallon plates, incorporating recent studies in the three oceans, for comparison with the igneous dates for the past 80 m. y., it is hoped that the spreadsheets will be of value to other workers. Reliability: In most cases the data have been copy/pasted from published or appendix tables. In a few cases, the location has been digitized from published maps; the (equatorial equidistant) maps were copied into Google Earth and positioned according to indicated coordinates, with locations digitized and copied/pasted into the spreadsheet. (It is possible that published maps are conventional Mercator-based, even if not so identified, rather than either equatorial equidistant or Universal Transverse Mercator; this can be a source of error in location. For UTMs, the errors should be minor.) Duplicates are largely recognized by equivalent IDs, dates, and uncertainties. Where primary sources have been accessed, duplicate data points in compilations are deleted. (Analytic data are NOT included.) This compilation is part of a series. Companion compilations of radiometric dates from igneous and metamorphic rocks are available at https://doi.org/10.5880/digis.e.2023.005 and https://doi.org/10.5880/digis.e.2023.007, respectively.
A compilation of 39,070 published radiometric dates for igneous rocks from the South American Andes and adjacent parts of South America have been tabulated for access by researchers via GEOROC Expert Datasets. The compilation exists as a spreadsheet for access via MS Excel, Google Sheets, and other spreadsheet applications. Initial igneous compilations were utilized in two publications by the author, Pilger (1981, 1984). The compilations have been added to in subsequent years with the metamorphic and sedimentary compilations separated in the last few years. Locations in latitude and longitude are largely taken from the original source, if provided, with UTM locations maintained and converted; in some cases, sample locations were digitized from electronic maps if coordinates were otherwise not available. Analytical results are not included to prevent the files from becoming too large. The existing compilation incorporates compilations by other workers in smaller regions of the Andes. References to original and compilation sources are included. While I am updating reconstructions of the South American and Nazca/Farallon plates, incorporating recent studies in the three oceans, for comparison with the igneous dates for the past 80 m. y., it is hoped that the spreadsheets will be of value to other workers. Reliability: In most cases the data have been copy/pasted from published or appendix tables. In a few cases, the location has been digitized from published maps; the (equatorial equidistant) maps were copied into Google Earth and positioned according to indicated coordinates, with locations digitized and copied/pasted into the spreadsheet. (It is possible that published maps are conventional Mercator-based, even if not so identified, rather than either equatorial equidistant or Universal Transverse Mercator; this can be a source of error in location. For UTMs, the errors should be minor.) Duplicates are largely recognized by equivalent IDs, dates, and uncertainties. Where primary sources have been accessed, duplicate data points in compilations are deleted. (Analytic data are NOT included.) This compilation is part of a series. Companion compilations of radiometric dates from sedimentary and metamorphic rocks are available at https://doi.org/10.5880/digis.e.2023.006 and https://doi.org/10.5880/digis.e.2023.007, respectively.
A compilation of 29,574 published radiometric dates for metamorphic rocks from the South American Andes and adjacent parts of South America have been tabulated for access by researchers via GEOROC Expert Datasets. The compilation exists as a spreadsheet for access via MS Excel, Google Sheets, and other spreadsheet applications. Initial igneous compilations were utilized in two publications by the author, Pilger (1981, 1984). The compilations have been added to in subsequent years with the metamorphic and sedimentary compilations separated in the last few years. Locations in latitude and longitude are largely taken from the original source, if provided, with UTM locations maintained and converted; in some cases, sample locations were digitized from electronic maps if coordinates were otherwise not available. Analytical results are not included to prevent the files from becoming too large. The existing compilation incorporates compilations by other workers in smaller regions of the Andes. References to original and compilation sources are included. While I am updating reconstructions of the South American and Nazca/Farallon plates, incorporating recent studies in the three oceans, for comparison with the igneous dates for the past 80 m. y., it is hoped that the spreadsheets will be of value to other workers. Reliability: In most cases the data have been copy/pasted from published or appendix tables. In a few cases, the location has been digitized from published maps; the (equatorial equidistant) maps were copied into Google Earth and positioned according to indicated coordinates, with locations digitized and copied/pasted into the spreadsheet. (It is possible that published maps are conventional Mercator-based, even if not so identified, rather than either equatorial equidistant or Universal Transverse Mercator; this can be a source of error in location. For UTMs, the errors should be minor.) Duplicates are largely recognized by equivalent IDs, dates, and uncertainties. Where primary sources have been accessed, duplicate data points in compilations are deleted. (Analytic data are NOT included.) This compilation is part of a series. Companion compilations of radiometric dates from igneous and sedimentary rocks are available at https://doi.org/10.5880/digis.e.2023.005 and https://doi.org/10.5880/digis.e.2023.006, respectively.
Compilation of igneous rock compositions from Iran and SE Anatolia Meso-Cenozoic (ISA), including major, trace element and Sr-Nd-Pb isotopic data as published in Lustrino et al. (2021).
Major and trace element concentrations and Sr, Nd, Hf, Pb isotope ratios of global mid ocean ridge and ocean island basalt whole-rock compositions from the GEOROC and PetDB databases (2021-2022). Key publications: Stracke, A., Willig, M., Genske, F., Béguelin, P., & Todd, E. (2022). Chemical Geodynamics Insights From a Machine Learning Approach. In Geochemistry, Geophysics, Geosystems (Vol. 23, Issue 10). https://doi.org/10.1029/2022GC010606 Stracke, A., Willig, M., Genske, F., Béguelin, P., & Todd, E. (2022). Chemical and radiogenic isotope data of ocean island basalts from Tristan da Cunha, Gough, St. Helena, and the Cook-Austral Islands [dataset]. GRO.data. https://doi.org/10.25625/BQENGN
Global database of >20, 000 geochemical analyses of Neogene-Quaternary intraplate volcanic rocks. The database collates major, trace element and Sr-Nd-Pb isotopic data for whole-rock samples <20 Ma old that were published between 1990 and 2020. Database as published in Ball et al. (2021). Key publication: Ball, P. W., White, N. J., Maclennan, J., & Stephenson, S. N. (2021). Global influence of mantle temperature and plate thickness on intraplate volcanism. Nature Communications, 12(1), 2045. https://doi.org/10.1038/s41467-021-22323-9
Global database of isotopic and major element compositions of kimberlites and carbonatites as compiled in: Tappe, Sebastian; Romer, Rolf L.; Stracke, Andreas; Steenfelt, Agnete; Smart, Katie A.; Muehlenbachs, Karlis; et al. (2017): Sources and mobility of carbonate melts beneath cratons, with implications for deep carbon cycling, metasomatism and rift initiation. Earth and Planetary Science Letters. https://doi.org/10.1016/j.epsl.2017.03.011
Global geochemistry database for cratonic / anorogenic lamproites and related potassic rocks (compiled and screened from GEOROC in April 2020). Related key publication: Ngwenya, Ntando S.; Tappe, Sebastian (2021): Diamondiferous lamproites of the Luangwa Rift in central Africa and links to remobilized cratonic lithosphere. Chemical Geology. https://doi.org/10.1016/j.chemgeo.2020.120019
Origin | Count |
---|---|
Wissenschaft | 9 |
Type | Count |
---|---|
unbekannt | 9 |
License | Count |
---|---|
offen | 9 |
Language | Count |
---|---|
Englisch | 9 |
Resource type | Count |
---|---|
Keine | 9 |
Topic | Count |
---|---|
Boden | 7 |
Lebewesen & Lebensräume | 6 |
Mensch & Umwelt | 9 |
Wasser | 4 |
Weitere | 9 |