The nature of the microbial communities inhabiting the deeper soil horizons is largely unknown. It is also not clear why subsurface microorganisms do not make faster use of organic compounds under field conditions. The answer could be provided by a reciprocal soil transfer experiment studying the response of transferred soils to fluctuations in microclimate, organic inputs, and soil biota. The subproject P9 will be responsible for the establishment of reciprocal transfer experiments offering a strong link between subgroups interested in organic matter quality, transport of organic substances, as well as functions of the soil microbial community. A single, high molecular weight substrate (13C labelled cellulose) will be applied at two different levels in the pre-experiment to understand the dose-dependent reaction of soil microorganisms in transferred surface and sub-soils. Uniformly 13C labelled beech roots - representing complex substrates - will be used for the main reciprocal soil transfer experiment. We hypothesize that transferring soil cores between subsoil and surface soil as well as addition of labelled cellulose or roots will allow us to evaluate the relative impact of surface/subsurface habitat conditions and resource availability on abundance, function, and diversity of the soil microbial community. The second objective of the subproject is to understand whether minerals buried within different soil compartments (topsoil vs. subsoil) in the field contribute to creation of hot spots of microbial abundance and activity within a period of two to five years. We hypothesize that soil microorganisms colonize organo-mineral complexes depending on their nutritional composition and substrate availability. The existence of micro-habitat specific microbial communities could be important for short term carbon storage (1 to 6 years). The third objective is to understand the biogeography and function of soil microorganisms in different subsoils. Parent material as well as mineral composition might control niche differentiation during soil development. Depending on size and interconnectedness of niches, colonization and survival of soil microbial communities might be different in soils derived from loess, sand, terra fusca, or sandstone. From the methodological point of view, our specific interest is to place community composition into context with soil microbial functions in subsoils. Our subgroup will be responsible for determining the abundance, diversity, und function of soil microorganisms (13C microbial biomass, 13C PLFA, enzyme activities, DNA extraction followed by quantitative PCR). Quantitative PCR will be used to estimate total abundances of bacteria, archaea and fungi as well as abundances of specific groups of bacteria at high taxonomic levels. We will apply taxa specific bacterial primers because classes or phyla might be differentiated into ecological categories on the basis of their life strategies.
Der Dienst stellt Daten des Verwaltungsatlas Sachsen dar. Er umfasst die Standorte von Gerichten und Staatsanwaltschaften sowie die Zuständigkeitsbereiche der Fachgerichte, Landgerichte, Amtsgerichte und des Verfassungsgerichtshofes. Darüber hinaus beinhaltet der Dienst die Notariellen Amtsbereiche.
Der Datensatz beinhaltet Daten der Karten des "Verwaltungsatlas Sachsen". Er umfasst die Standorte von Staatsanwaltschaften und Gerichten sowie deren Zuständigkeitsbereiche.
Predictions of effects of climate change on species distributions assume constant climatic niches. Our current understanding of how climate niches developed through evolution is very limited. This project shall analyse how climate niche of the 5488 mammal species worldwide is related to their phylogenetic position. The hypothesis is that closely related species will also have similar climate niches, indicating climate niche conservation. Based on current distributions and environmental data, we shall quantify the climate niche of each species and compare it to that of its closest relative (sister species). We shall investigate whether climate niche position is similarly phylogenetically constrained as other species traits such as body weight, gestation length or litter size. The huge breadth of mammal ecologies, their highly resolved phylogenetic tree, their high conservation relevance and their relatively well-known geographical distribution make them an ideal study system. In the process of this study, new methodological standards for the analysis of niche evolution will be developed, including randomisation tests, virtual species analysis and character tracing of climate niche position. In the end, we shall be able to specify the adaptation potential to climate change for a large number of species studied.
Objective: Increasing awareness by the public opinion about environmental issues, energy and material conservation at all stages of product life (from raw materials to disposal/recycling) is putting the industry in general and the transport industry in particular under increased pressure to reduce CO2 emissions and save energy. Environmental protection and safety will be increasingly influenced by legislation. The European transport industry is estimated to generate 22 percent of the carbon dioxide emission. As the car population is expected to grow 40 percent by the year 2010 new tough targets for reducing emissions by 30 percent in 2010 are being set by the EU, against the state of the art technologies of 1995. It is generally agreed by the industry that reductions of this size will require a change in current technologies. Multi-material technology (sandwich and/or hybrid materials) is becoming increasingly important in new vehicle design. Public service vehicles (buses and coaches) are regarded as primary targets for application of sandwich construction and multi-materials. Public service vehicles (PSV) play a major role in the transportation industry of both industrialized and developing countries. The proposed project will be focused on the development of a novel technology to manufacture bus/coach bodies using sandwich multi-material panels. The main overall objectives of the project are: - Solving the problem of reducing weight and production costs of land transport vehicles through the development of a technology of modular bus/coach construction, using 'all composite' multi-material sandwich panels instead of steel/aluminium space frame lined with sheets of different materials. - Devise design methodologies that reduce production lead time through reduction of number of components, functional integration, and allowance for dismantling, easy repair and recycling. Primce Contractor: INEGI - Instituto de Engenharia Mecanica e Gestao Industrial, Leca do Balio, Portugal.
In Anbetracht der potentiell katastrophalen Nebeneffekte von Climate Engineering (CE) wird generell ein passgenaues Haftungsregimes als Voraussetzung für einen international anerkannten und legitimen Einsatz für erforderlich gehalten. Diesbezüglich ergeben sich jedoch zwei grundsätzliche Fragen: Zum einen bedarf der Klärung, ob ein Haftungsregime als Mittel der Zuordnung und Verteilung von Risiken gewollt und realisierbar ist; zum anderen ist zu untersuchen, wie mit der Tatsache umzugehen ist, dass die Einschätzung der durch CE hervorgerufenen Klimaeffekte nur auf numerischen Klimamodellen, nicht aber auf empirischen Daten beruht. Obwohl das Thema der Haftung für CE-induzierte Schäden in der Literatur zunehmend Beachtung gefunden hat, wurde diesen Fragen bislang noch nicht systematisch Aufmerksamkeit geschenkt. Auch ist ungeklärt, wie Urteile über die Robustheit und Verlässlichkeit konkurrierender Modelle, die Auswirkungen eines CE-Einsatzes simulieren, getroffen werden können. Noch nicht beleuchtet worden ist schließlich, ob und wie die Entscheidung darüber, wie Beweise zu beurteilen sind, das Verhalten der Streitparteien (Staaten) beeinflusst, insbesondere im Hinblick auf die Frage, wann und ggf. wie CE eingesetzt wird. Angesichts dieser Forschungslücken kommt in vorliegendem Projekt, anders als in traditionellen Haftungsregimen, der Verlässlichkeit und Robustheit von Modellen zentrale Bedeutung zu. Vor diesem Hintergrund wird CELARIT (1) der Frage nachgehen, wie konkurrierende Modelle vor Gericht oder einem anderen zuständigen Gremium beurteilt, verglichen und bewertet werden können, und mit welchen Abstrichen erhöhte Robustheit und Verlässlichkeit einhergehen; (2) untersuchen, ob und ggf. nach welchen Kriterien ein Modell vor Gericht als zulässige Methode der Beweiserbringung herangezogen werden kann; und (3) erarbeiten, wie ein Schaden in einer Situation festgestellt werden kann, in der der kontrafaktische Zustand, welcher zur Ermittlung des Schadens herangezogen wird (eine Welt ohne CE oder sogar ohne Klimawandel), keiner Beobachtung zugänglich, sondern selbst Ergebnis eines numerischen Modells ist. Schließlich (4) wird das Problem in einem größeren Zusammenhang betrachtet. Es wird untersucht, wie Modelle trotz ihrer beschränkten Verlässlichkeit genutzt werden können, um mit CE zusammenhängende Maßnahmen zu steuern, und wie wissenschaftliche Politikberatung angemessen mit Unsicherheit und Nichtwissen umgehen kann. CELARIT bringt die Projektpartner von CEIBRAL (Klimamodellierer, Ökonomen, Juristen und Philosophen) erneut zusammen, geht jedoch insoweit einen großen Schritt über CEIBRAL hinaus, als eine methodische Neuorientierung in Richtung einer integrierten Untersuchung unternommen wird, und zwar von Anfang an disziplinübergreifend hinsichtlich sämtlicher Forschungsfragen.
Lichens are highly specialized symbioses between heterotrophic fungi and autotrophic green algae or cyanobacteria. Polar and alpine habitats are mostly dominated by lichens, which successfully outcompete vascular plants and bryophytes in terms of biodiversity and often also biomass. Previous results by the applicant show that (sub) Antarctic and arctic populations of Cetraria aculeata select different strains of the green algal photobiont Trebouxia jamesii s. lat. than temperate populations. However, it is so far unknown, whether this is just a phlogeographic pattern or whether genetic differences between the photobionts are associated with differences in physiological traits (ecotypic differentiation). In this project, we propose (1) to genotype mycobionts and photobionts from six antarctic, arctic and temperate populations, (2) to measure photosynthetic parameters for these genotyped lichens and their isolated photobionts, and (3) to transplant temperate individuals to arctic populations and vice versa in a common garden design to measure changes in dry weight over three years. The ultimate goal is to investigate whether differential association with ecotypically differentiated photobionts allows widely distributed lichen fungi to inhabit climatically hostile Polar Regions. The results of our study will strongly influence our ability to predict the impact of global climate change on polar terrestrial ecosystems.
The aim of BioBuild is to use biocomposites to reduce the embodied energy in building facade, supporting structure and internal partition systems by at least 50Prozent over current materials with no increase in cost. This will lead to a step change in the use of sustainable, low carbon construction materials, by replacing aluminium, steel, FRP, brick and concrete in buildings. Facades are widely used in construction, primarily to protect and insulate the internal structure. Internal partitions are used to divide space, carry utilities and provide thermal and acoustic insulation. The current materials used such as aluminium, steel, brick and concrete are energy intensive to produce and have high embodied energy. FRP is an alternative construction material, benefitting from low weight, formability and simple manufacturing, allowing low material content structures and innovative design. However, typical resin and glass fibre are non-renewable, energy intensive to synthesise. Biocomposites overcome these drawbacks, whilst maintaining the benefits, being based on natural fibres and bioresins which have low embodied energy and cost. Biocomposites are renewable and sustainable resin and reinforcement structures. The resins in this project are furan and cashew nut oil based with reinforcing fibres of flax and jute. Bast fibres have lower environmental impacts than glass, concerning climate change and energy but have similar properties. Biocomposites are used commercially in automotive interior parts, but for outdoor applications they can degrade due to moisture absorption and bio-degradation. BioBuild will develop biocomposites and construction products with a life span of 40 years, by protecting the fibres with novel treatments and coatings. The result of the project will be a low cost, lightweight, durable and sustainable biocomposite building system, with full technical and environmental validation, offering low embodied energy construction materials.
Hydrogen is the ideal synthetic fuel to convert chemical energy into electrical energy or into motive power because it is light weight, highly abundant and its oxidation product is vapor of water. Thus its usage helps to reduce the greenhouse gases and it conserves fossile resources. There is even a clean way to produce hydrogen by electrolysis of water by means of photo voltaics (SvW06, VSM05, PMM05). There are various possibilities to store the hydrogen for later use: Liquid and gaseous hydrogen can be stored in a pressure vessel, hydrogen can be adsorped on large surface areas of solids, and finally crystal lattices of metals or other compounds can be used as the storage system, where hydrogen is dissolved either on interstitial or on regular lattice sites by substitution (SvW06, San99). The latter process and its reversal is called hydriding respectively dehydriding. The subject of this proposal is the modeling and simulation of that process. The main problem of a rechargeable lithium-ion battery is likewise a storage problem, because in a rechargeable battery, both the anode and cathode do not directly take part in the electrochemical process that converts chemical energy into electrical energy, rather they act as host systems for the electron spending element, which is here lithium (Li). During the last month the applicant developed and exploited a mathematical model that is capable to capture the storage problem of an iron phosphate (FePO4) cathode, where the Li atoms are stored on interstitial lattice sites (DGJ07).